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Abstract

Conformance testing aims at validating if an unit
under test accepts the normal-expected inputs; and if
it properly rejects erroneous-inputs such that
consistency with the original specification is
maintained. Methods for automatically generating test
cases for protocol conformance testing have long been
progressed. Most of them depend on state-based
specifications and may detect transition faults.
However, real protocol faults go beyond the state
transition faults. Based on previous research in
building testing tools for conformance and for fault
injection, we propose a testing methodology which
guides the test personnel to model the exceptional
behavior of a unit under test using UML-diagrams
and an external fault model as well. The modeling
starts from a textual specification towards the fault
cases definition. The fault cases are based on the
communication fault-model and executed with SWIFI.
The fault cases are deterministic fault injection
experiments once they are derived from specification
models. The methodology has been used to validate
INPE’s in-house implementation of  the
communication system between the On-Board Data
Handling (OBDH) computer and a payload
experiment of Brazilian scientific satellites. The
methodology and the experimental results of testing a
real communication system are discussed and
analyzed.

Keywords: testing methodology, communication
faults, conformance testing, SWIFI.

1. Introduction

The International Standard Organization (ISO) and
the International Telecommunication Union (ITU-T)
have standardized procedures for communication
protocols with practical guides for conformance
testing, stated in the IS-9646 standard [8]. This
standard describes the structure of an abstract test
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suite to be obtained from a standard protocol
specification and used to certify that a corresponding
implementation conforms to the specification.

In addition to the ISO practical testing guides,
protocol conformance testing using formal methods
have been researched. This test consists in checking
the conformance of an implementation with respect to
a specification written in a formal language. If the
specification is in a formal notation, such as a finite-
state machine, one may use graph algorithms to
automatically generate cases for such specification
[5], [15]. Automated test methods lead to time and
effort reduction with tests as well as to assure great
coverage of the specification with the tests. However,
there are difficulties in obtaining a formal
representation of a specification and also in executing
and analyzing the results of the huge test suite
(generated by exponential combination of input
events) of real protocols [9].

According to Holzmann, a set of conformance test
cases aims to establish that a given unit under test: (i)
performs all functions of the original specification,
over the full range of parameter values and (ii) can
properly reject erroneous inputs in such a way that it is
consistent with the original specification [7]. This
definition has motivated us to model the system
behavior under correct and erroneous inputs in
separate models, thereby deriving abstract test cases
and fault cases from distinct models. So, it reduces the
difficulty of handling the complexity of the
specification as a whole and allowing the execution of
the fault cases with the Software-Implemented Fault-
Injection (SWIFI) technique. Moreover, fault injection
has been invaluable in space application testing due to
its capability to model space environment faults which
commonly occur in the system’s operational phase.

Once the domain of real protocol faults is much
broader than faults related to state transitions [13] this
approach allows augmenting the fault classes for
evaluating communication systems.

In order to master the fault case derivation, which
may be executed with SWIFI a systematic testing
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methodology, named conformance and fault injection
(CoFI), is presented. This methodology addresses the
issue on “how to deduce faults to inject, starting from
a specification?” and makes a comprehensive use of
the ATIFS project’ tools [11].

In CoFI, normal and exceptional scenarios are
mapped into separated models; consequently, each
model is smaller than the complete model. The
“normal” models allow one to suitably apply
algorithms to generate test cases. The “exceptional”
models guide a fault injection process in: (i)
monitoring the fault cases coverage against to the test
criteria all-exceptional-scenarios, (ii) facilitating the
detection of design/implementation faults of fault
tolerance mechanisms when dealing with erroneous
inputs caused by the medium.

The paper is organized as follows. Section 2
presents concepts used in this article. In section 3 the
CoFI methodology is explained. Section 4 illustrates
the approach with the OBDH-Apex communication
software testing; which provides the communication
between an intelligent scientific experiment (the
Apex) with the on-board data handling computer of a
Brazilian satellite. Section 5 discusses similar
solutions. Finally, section 6 concludes the paper.

2. Some Concepts and Assumptions

A finite state machine (FSM)M = (X, O, Q, §, A,
do» F) where: ¥ -alphabet of input symbols, O -
alphabet of output symbols, Q - finite set of possible
states, & -transition function 8: Q x X - Q, A: Q x X
— O, qp -initial state, qo € Q, F -set of ending states,
F < Q; allows to represent a system behavior
specification. The diagrammatic representation of a
FSM is a directed graph, thus algorithms may be used
to traverse the graph and generate test cases (a
sequence of input and their corresponding output
symbols = {<i;,0,>, <iy,0,>, ..}) [15].

The fault injection technique means to submit a
unit under test (UUT) to faults in order to detect and
remove design and implementation faults. The fault,
representing hardware mal-functioning, may be
random or deterministically chosen [2], [6].

Experiments of fault injection are executions of
fault cases, i.e., sequences of correct and faulty inputs.
They are characterized by the FARM attributes,
where: F={faults to be injected}; A={test data aimed
at exercising the injected faults}; R={observed
outputs  generated during the experiments};
M={measure obtained from the readouts, that allows
the verdict for fault removal}[1]. A fault case is a
sequence of inputs, corresponding outputs and an fault

indication = {<i;0;fp>, <is0, f>, ..}, where: i € A, o
€ Rand fe F, and f, means no fault.
In CoFI, the FARM attributes mean: F={faults
caused by the communication  medium};
A={observable inputs arriving in the UUT that lead it
to a state in which faults may occur}; R={observed
outputs obtained during the fault cases execution};
M={verdicts obtained on comparing the expected
output with the observed outputs}.
A fault model is a class of faults. A communication
fault model comprises the typical faults caused by the
communication medium. A communication fault is
characterized by the following parameters:
® when - time or message identification, when the
fault should be injected,

e what - fault type: lost, delay, corruption or
duplication [7],

® how — the way a message should be corrupted,

® where - fault location to where the message flows.

We have considered the communication fault
model as a set of the following fault primitives:
f.corrupt(when, how, where); f.delay(when, how,
where); f.duplic(when, where); f..lost(when, where).

A fault injector is a mechanism, external to the
UUT, able to inject the faults during the test execution
which supports the fault primitives.

A test architecture establishes the testing elements
and the visible points of the UUT available for testing.
In this work the ferry-injection test architecture [18] is
taken into account. The general elements of the ferry-
injection are illustrated in Figure 1. This architecture
allows an upper tester (UT) and a lower tester (LT) to
observe and to monitor the UUT via points of control
and monitoring (PCO) available in the UUT. PCOs
are communication channels. The fault injector (FI) is
able to inject faults via the lower PCO.

For the given architecture, the fault parameters are:
when- the ordinal number of the messages passing
through the PCO in which the fault is to be injected,
i.e., the first, the second, etc.; what- one of the fault
primitives that may be applied; how- the corrupted
field values of the massage or the delay time
according to the fault primitive; where- a PCO.

UT |-

Figure 1: Testing architecture.
3. CoFI: Conformance-and-Fault-Injection testing
methodology
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CoFI consists in building, step-by-step, scenarios
designed in UML-based diagrams (use-case, sequence
and state diagrams), from which abstract test and fault
cases are derived. The steps allow one to map every
UUT-specified observable inputs and outputs. In
short, the methodology main steps are:
1.identify inputs, outputs, points of control and

observation and the available clements of test

architecture, including the injectors;

2.describe the functions of the UUT, in use case
notation, identifying only the normal scenarios
based on the system behavior in presence of the
valid inputs,

3.describe the normal scenarios in a normal sequence
diagram. At least the UUT, its peer and the
communication medium must be the entities
represented in vertical lines of the diagram;

4.translate the sequence diagram into a FSM. One
may find in literature some algorithm guiding this
translation [14]. Then, automatically derive test
cases;

5.identify the fault model in agreement with the
communication medium features and the faults the

UUT is supposed to tolerate;

6.create exceptional scenarios based on the fault
model and write them in exceptional sequence
diagrams:

a. identify the entities interacting with the unit under
test, including the fault injectors,

b. describe the scenario as a sequence of interactions
arriving and leaving the UUT as horizontal lines,

c.for each normal scenario defined in step 3,
combine a fault type of the fault model, identify
what should be the system reaction under such a
fault, then create a new exceptional scenario,

d.in that exceptional scenario, draw, firstly, a fault
interaction, an interaction between the fault
injectors representing the fault to be injected to
origin such a scenario;

e. repeat steps 6.c and 6.d for every fault of the fault
model (step 5) applied to every normal input of
every normal scenario of the step 4; (repetitions
should be avoided);

7.check if the scenarios created in step 6 cover all
exceptions defined in the specification. If not
complete them,;

8.derive a fault case from each exceptional scenario.

The inputs are obtained from every normal
interaction arriving in the UUT, the expected
outputs are obtained from the interactions leaving
the UUT and the faults are obtained from the fault
interactions (the first interaction drawn in an
exceptional scenario).

9. optionally, exceptional scenarios may be translated
to one or more FSM. In this translation, the fault
interaction information is used to mark the
transition representing the fault. Once the scenarios
are modeled in FSM other combinations of normal
and exceptional inputs may be obtained with
algorithms that traverse the machine and create fault
cases as the test cases are created.

The abstract test and fault cases are derived from
state diagrams (FSM) in such a way that a path
through the state machine [15] is a test or fault case.
This derivation is automatically performed by using
Condado [10]. The test and fault cases are abstract as
they are implementation independent and have a tool-
independent description.

The generation of faults to be injected is
deterministic as the faults are derived from the
exceptional scenarios. The test criterion for the fault
cases is to cover every exceptional scenario
established in the specification basis.

The UML-models used in this methodology
contain enough information to allow automation.
Presently, steps 4 and 9 are fully automated and a tool
for supporting the fault cases execution with reusable
fault injectors has been already underway. The
automation for creating exceptional scenarios on
combining normal scenarios with the fault of the fault
model (step 6) has been intended to be designed as
well as, the derivation of fault cases from sequence
diagrams to script that may be directly executed by the
FIC.

4. Case study

In order to evaluate the CoFI approach in a realistic
application we have used the commands recognition
software, part of the communication protocol
developed at the National Institute for Space Research
(INPE). This protocol is in charge of providing the
communication between on-board data handling
computer (OBDH) and an intelligent satellite payload
for Brazilian scientific satellites. The UUT is the
command recognition implementation of the payload
experiment named APEX - Alpha, Proton and
Electron Monitoring  Experiment in the
Magnetosphere, to be included in the EQUARS —
Equatorial Atmosphere Research Satellite.

The APEX sends data only under OBDH request,
in a master-slave relationship. The physical
communication is the RS-422 serial interface in
asynchronous mode. Whenever the experiment fails,
the OBDH timeouts. The command message sent by
the OBDH to APEX is shown in Figure 2.
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| SYNC | EXPID | TYPE | SIZE |

DATA CKSUM |

Optional Field

Figure 2: Command message sent to APEX.

The fields SYNC (synchronism) and EXPID
(experiment identification) must have the value EB
92H, meaning a communication starting. TYPE
contains commands such as resetting the micro-
controller, transmitting scientific data, memory load,
memory dump, load parameters, send clock, initiate
and stop data acquisition. SIZE identifies the amount
of bytes in DATA field and CKSUM is the checksum
of the ongoing message.

The APEX accepts a command message byte-to-
byte. If a field value is not in agreement with the
specification or if it does not arrive within 500ms the
full message is discarded and the APEX waits for a
new command. The starting of a new message is
identified by the value EBH.

4.2. Applying the CoFI

Step 1. for testing the command recognition, the
inputs being considered are the bytes arriving in
APEX; the outputs are null if everything goes
correctly; the PCOs and the testing architecture are
shown in Figure 3, which includes the fault injector
controller (FIC) and the fault injector module (FIM)
The option was to avoid as much intrusiveness as
possible in flight software, so the FIM is not into the
UUT.

Test System

uuT e I
au
(APEX) Serial | Iniector K— Injector ‘.L
Driver Module Controler .

Figure 3: Test architecture for the OBDH-APEX.

Step 2: use cases were omitted here for brevity.

Step 3: two of nine normal scenarios in sequence
diagram are shown in Figure 4. The entities are the
OBDH, the communication medium and the APEX
which were divided into 3 components: command
recognizer, clock and protocol.

Step 4. the FSM translated from the normal
sequence diagram (see Figure 5) was submitted to
Condado, generating 10 conformance test cases.

Comm. medium APEX

OBDH_| [ serialline | [Cmdrecogn] [ clock | [ protocol

EB -
set(500)

o2 set(500
5 set(500) Scenario 1 =

cs

set(500)
datatx
EB

set(500)

92 sef(
set(500)

1 ) Scenario 2 =
set(
set(

- set(500) command reset
set(500)

reset

Figure 4: Normal scenarios in sequence diagram.

set(500) command data transfer

EB

92 (Apex)

Figure 5: Normal scenarios in FSM.

Step 5: the communication medium between the
APEX and the OBDH is the RS-422, in which
Byzantine faults are possible, so bytes may be lost,
duplicated, delayed, and corrupted.

Step 6: for the exceptional scenarios two extra
entities are included: the FIC and the FIM. The
interactions between the injectors, illustrated in the
sequence diagram, represent the communication fault
in such a scenario. On applying the four fault types to
each correct byte arriving to the APEX in the normal
scenarios (without repeating it for EB and 92 as they
are equal in all scenario), 116 exceptional scenarios
were obtained. Figure 6 shows only three exceptional
scenarios, two of them are based on the corruption
fault in the incoming byte of the command and one is
based in the lost fault. Note that, in Figure 6, the first
scenario (first msg corrupted) is obtained when one
applies a corruption fault to the SYNC byte
transmitted by the OBDH. In the third scenario the
third byte is lost and do not achieve APEX.
Duplication and delay are created in the same way. In
all of these scenarios the command is not recognized
by APEX and no reaction is expected.

OBDH | [IEICH] [ driver | [IEIMN] [Tine ] [Cmd recogn | [ clock ] ["protocol
f.corr(1, EA)

EB EA

92 Scenario =

5 corruption in the

first message
cs
| f.corr(2,/99) >
EB s
set(500) cenario =
92 9 corruption in the
1 second message
cs
f.lost(3) -
EB| s P
set(500). cenario = lost

92 i of the third

5 \ set(500), message

>X
o to——

Figure 6: Exceptional scenarios in sequence diagram.
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Step 7: the scenarios created with the fault types
covered all the specified exceptions. These scenarios
are important to uncover the cases to validate the
implemented fault tolerance mechanisms.

Step 8: the fault case were derived from each
exceptional scenario. Table 1 illustrates six fault
cases, whose inputs are shown in column Valid Inputs
and the fault parameters are in the next column. This
translation was manually performed. The fault
parameter location requires information about the
point of control and observation (PCO) where the
faults will be injected. This is implementation related
information, which will be obtained at a later stage.

Table 1: Fault cases.

Valid Fault Parameters
Inputs

when what how | where

1 | EB9205cs [ 1% byte |corrupt |[EA |PCO

2 | EB9205cs |2™ byte |corrupt |99 |PCO

3 | EB9205cs |3 byte |corrupt |99 |PCO

7 | EB9205cs |3™ byte |delay 600 | PCO

8 | EB9205cs | 4™ byte |delay 600 |PCO

17 | EB9201Ics |[3“byte |corrupt |99 |PCO

4.3. Fault injection experiment results

The defined fault cases covered every exceptional
scenario, which mapped the system behavior in
presence of the set of defined communication faults.
Every 20 test cases plus 116 fault cases were applied
to the APEX command recognition implementation.
The tests were executed with the help of a testing
program developed by the APEX development team.
This program was adapted for supporting delay, lost,
duplication and corruption of the bytes according to
values chosen by the user, via a graphical user
interface. Table 2 summarizes the observed outputs of
some executed fault cases.

Table 2: Fault injection experiments results.

Input Observed Comments
Output
EA9205cs timeout SYNC not recognized

EB(f.delay)9205 | no reaction No reaction

EB(f.delay)92 timeout EXPID - not received

EB9905c¢s timeout EXPID - unknown

EB9299cs timeout TYPE - invalid

EB92(fdelay)01 timeout TYPE - not received

EB921A04FFFF timeout Incorrect address

FFFF

EB921F0131CC | timeout CKSUM - incorrect

22.2% of the cases covered delay, 22,2% covered
duplication and the others covered data corruption
and loss. The fault cases covering delay and loss had

not been previously designed by the development
team. Therefore, neither the fault cases nor the test
cases uncovered new errors in APEX implementation.

This may be explained by the fact that APEX
implementation, used in this case study, had already
been tested by experts when we applied the cases
created with CoFI.

Although, the CoFI tests did not detect any error,
this approach was well-accepted by the test personnel
as it allows them to plan the test effort based on a
model-based covered test strategy. Moreover, it
guides the definition of scenarios leading them to face
not only with the internal defects (software bugs) but
also focus on the environment (and its faults) under
which the system will be running. It provides the test
personnel with a new vision of conformance by
adding a systematic way of generating fault cases
based on the faulty inputs caused by the medium.
Besides, CoFI leads test and fault injection design to
be performed early in the development process.

5. Related solutions

The CoFI methodology is based on two research
areas: protocol conformance testing and experimental
evaluation by software-implemented fault-injection. In
this article we have focused on the definition of fault
injection experiments.

The fault injection technique has been mostly
applied to experimental evaluation in which the
system is stressed with randomly inputs selected from
fault/error models that are intended to simulate.
However, deterministic fault injection has shown good
results in [2], [6].

Echtle and Chen [6] showed analytically that
deterministic fault selection offers certain benefits
over random injection in fault-tolerant protocol
testing. They inject the faults at message level based
on the knowledge of the program control-flow graph.
The fault injection is deterministically guided by
coverage criteria on such a graph. In CoFI the faults
are applied in the messages but the program control
flow is unknown. The faults are defined on system
exceptional behavior basis and on the coverage
criteria all-exceptional-scenarios.

In [2] a graph, representing the execution tree, is
used to map all the possible executions of fault
tolerant mechanisms. Sequences of deterministic fault
injection for testing the corresponding implementation
are automatically derived from the execution tree by
static analysis. Paths from the root to the leaves are
formally defined as set of assertions (or formula). The
formulas allow characterizing the fault injection-based
test sequence. In CoFI, the test sequence, including
the fault parameter values, are derived on the analysis
of the exceptional UML-sequence diagrams.

In [4] a state-driven fault injection tool that
controls fault injections in concurrent systems is
defined. CoFI does not treat concurrence issues. The
fault injection experiments consist in executing each
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fault case at once: as soon as an experiment finishes,
the system returns to its initial state.

Statecharts diagram are used in [12] to model the
system behavior under explicit faults and their effects.
Fault injection is not used, instead a formal analysis is
performed on model for faulty state analysis. Error-
free and the erroneous behavior are modeled into a
single Statecharts. In CoFI, flattened Statecharts and
other UML-diagrams help the modeling of the
exceptional behavior for fault cases designing in
several diagrams.

Binder [3] defines a test strategy based on state-
based representation of a system, similar to CoFI, in
which Statecharts represent object-oriented
implementations. This strategy guides the definition of
test cases. The completeness assumptions on the
flattened  Statecharts improve the test case
effectiveness. However, neither fault injection nor test
cases providing external faults coverage are used.

6. Conclusion

This paper has presented the CoFI testing
methodology which guides the design of fault
injection experiments based on exceptional scenarios
of the system behavior. The methodology consists of a
set of steps, starting from a textual specification,
toward exceptional scenarios that fault tolerance
mechanisms should support.

Normal and exceptional scenarios are designed in
UML-diagrams, such as, use cases, sequence and state
diagrams. Fault cases are derived from sequence
diagram or optionally from the state diagram. For the
latter, the Condado is used to automate this step. The
fault cases complement the test cases created to cover
the normal behavior. The use of UML-diagrams
points out mainly advantages for testing as they are
usually developed in early software development
phases; the time spent with tests is reduced, moreover
the automation of the steps are feasible.

The methodology is illustrated with a realistic
application, an implementation of the On-Board Data
Handling (OBDH)-APEX communication software
developed at INPE. APEX is a scientific experiment
to fly on board of a Brazilian satellite. The complete
test suite for this example consisted of 126 elements
from which 8 percent are test cases and 92 percent are
fault cases, so, covering every specified scenario.

This methodology for designing tests has shown
advantage in the sense that it provides a systematic
way for generating test (conformance) and the fault
cases (fault injection experiments). It has allowed
fault injection experiments to be defined and applied
to different units under test developed from a common
specification. As CoFI does not require any
knowledge of the source code fault cases can be re-
used.

Further research has been performed in the test
suite effectiveness evaluation and the use of other
fault models especially useful in space applications.
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