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Abstract. The Mario Schenberg gravitational wave detector has been constructed at its
site in the Physics Institute of the University of Sao Paulo as programmed by the Brazilian
Graviton Project under full financial support from FAPESP (the Sao Paulo State Foundation
for Research Support). We are ready to do a first test run of the spherical antenna at 4.2 K with
three parametric transducers and an initial target sensitivity of h ∼ 10−21 Hz−1/2 in a 60 Hz
bandwidth around 3.2 kHz.

We have built a computer code for determining the source direction and the wave polarization
(solution of the inverse problem) in real time acquisition for strong signal-to-noise ratio cases.
The digital filter used is a simple bandpass filter.

The “data” used for testing our code was simulated, it had both the source signal and
detector noise. The detector noise includes the antenna thermal, back action, phase noise, series
noise and thermal from transducer coupled masses. The simulated noise takes into account all
these noise and the antenna-transducers coupling. The detector transfer function was calculated
for a spherical antenna with six two-mode parametric transducers.

Finally, we were able to check at what distance Schenberg would detected some known
sources. Here we present the results of these simulations.

1. Introduction
Gravitational Waves (GWs) are local space-time curvature perturbations caused by accelerated
masses. These perturbations travel through spacetime with the speed of light and can excite
quadrupolar normal-modes of elastic bodies. This principle is used for detecting GWs as it was
proposed by Weber almost a half of a century ago [1].

In 1971 Forward suggested the use of a sphere as the antenna element of a resonant-mass
detector [2]. He idealized a sphere with nine sets of electromechanical strain transducers placed
along great circle routes. The tensor gravitational radiation components would be determined
by five independent quantities from the nine transducer outputs.

Ashby and Dreitlein studied in detail the reception of GWs by an elastic self-gravitating
spherical antenna [3] and Wagoner and Paik found the lowest eigenvalues for the monopole and
quadrupole modes of a uniform elastic sphere [4].

In the 1990’s, Johnson and Merkowitz studied the antenna-transducer coupling problem and
found an optimum configuration which minimizes the number of transducers while keeping
them in a symmetric distribution on the antenna: the truncated icosahedron (TI) configuration
[5, 6, 7]. Magalhaes and collaborators showed that distributions with more resonators also can
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present some interesting symmetric properties [8, 9, 10]. Lobo also suggested a more elaborated
symmetric distribution [11].

Nowadays some research groups have been constructing spherical GW detectors. One of them
is the brazilian GW detector, the Mario SCHENBERG. SCHENBERG has a 65 cm-diameter and
∼ 1150 kg copper alloy [Cu(94%)Al(6%)] spherical antenna that will operate at temperatures
below 1 K [12]. These features are shared with the MiniGrail (The Netherlands). SCHENBERG
is not operational yet so we use a model based in harmonic oscillators to simulate the detector
behavior.

2. The Model
In order to develop a model for the response of the SCHENBERG detector to gravitational
wave signals, we created a set of displacement equations for the antenna plus resonators system.
That set of equations considers the dynamics of a spherical antenna coupled to 6 two-mode
transducers.

The set of transducers follows the TI arrangement. That optimum distribution for the
transducers allows us to monitor all those 5 quadrupolar normal modes of the sphere through the
five “mode channels”, g. By following this configuration we obtained an overall of 17 resonant
modes (5 from the sphere and 12 from the set of transducers). We solved the equation of motion
of such a system in order to find the eigenfrequencies which are between 3.17 − 3.24 kHz. We
also obtained an expression for the mode channels which is given by

g̃(ω) = ξ̃(ω)F̃S(ω) + Ω̃R1(ω)F̃R1(ω) + Ω̃R2(ω)F̃R2(ω). (1)

The quantities denoted by F̃i(ω) correspond to forces whose are acting on: the sphere (S),
the intermediate mass (R1), and the final mass (R2). The transfer function matrix ξ̃(ω) is the
proportionality ratio between the mode channels and the mode effective forces. We can easily
refer the intermediate and final mass noises into the sphere by using the mode response function
Ω̃Ri(ω) to the mode i of the transducers. In this way, we projected all noise sources to the
antenna modes which is measured like

g̃(ω) = ξ̃(ω)F̃S(ω) (2)

where F̃S(ω) denotes signal plus noise forces which are acting on the modes. Once the effective
gravitational force at frequency domain is given by [13, 14, 15]

f̃(ω) = −1
2
ω2χmSRh̃(ω), (3)

we can deconvolve the mode channel into the spherical amplitudes

h̃(f) = − 2
ω2χmSR

ξ̃−1(ω)g̃(ω). (4)

Those spherical amplitudes correspond to the projected wave polarizations into sphere’s
quadrupolar modes under incident angle. The strain amplitudes mimetizes both signal and
noise and allows us to calculate the sensitivity curve for each quadrupolar mode of the antenna.

3. The Sensitivity Curves
When usual noises (thermal, backaction, series and phase noises)[16] are added we find a ∼ 60 Hz
bandwidth. The detector presents h ∼ 10−21 Hz−1/2 centered in 3206.3 Hz.

The Figure 1 presents the sensitivity curves for a quadrupole mode (all others are supposed
the same) and the individual contributions from inputed noise sources. Those noise sources are
refered into the sphere via transfer function (Equations from 1 to 4).
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Figure 1. The SCHENBERG sensitivity curves at 4.2 K (upper line) for a single quadrupole
mode and the individual contributions of the noise sources.

4. The Signal plus Noise
To simulate the SCHENBERG behavior when it is excited both by an incident gravitational
wave and noise we needed to use some waveform. We adopted the AstroGravS Catalog
(http://astrogravs.gsfc.nasa.gov) where a large number of gravitational waveforms are
avaliable. We used in this work, as an example, an adiabatic inspiral of a corotating binary [17],
which was rescaled to 1.9 M� neutron stars.

Signal and noise are expressed in distint units (i.e. at frequency domain the signal amplitude
is given in Hz−1 and the noise amplitude is given in Hz−1/2), so we turn signal amplitude into

another important quantity the characteristic strain which is defined as hc(f) =
√

∆f |h̃GW (f)|2,
where |h̃GW (f)|2 is the power spectral density of the signal at frequency f [18]. The characteristic
strain is essentially the rms signal in a frequency interval of width ∆f centered at frequency f
and it has same units of noise sources.

5. The Problem of Incompleteness
The fact that only the quadrupolar modes have been considered instead of all spherical harmonic
functions yields to a problem of incompleteness on the sphere’s reconstruction. The sum of the
five quadrupolar modes (Figure 2) with equal degrees of excitation implies on amplified regions
which point to a preferential direction (Figure 3) when only noise is considered. From this result
we produce a “gain mask” which normalizes the output position map.
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Figure 2. The sum of the five quadrupolar
modes over the sphere in a Hammer-Aitoff
projection (the brightest areas represent the
highest absolute amplitudes).

Figure 3. When the direction is calculated
that pattern points to some preferential
direction. So, the noise isn’t uniformly
distributed over the sphere.

6. The Amplitude Signal-to-Noise Ratio
The amplitude signal-to-noise ratio [19] was estimated as

ASNR =

√∫ ∞

−∞
W̃ (f)

|h̃GW (f)|2
SN (f)

df (5)

where W̃ (f) represents the applied filter function. SN (f) is the equivalent noise profile [20]. It
denotes the sum of the noises which acts on each normal mode. It is given by

SN (f) =
5∑

m=1

hm(f)2, (6)

where hm(f) is the sensitivity of mode m as presented in Figure 1. It is easy to show that sum
represents the total noise energy on the sphere.

7. The Results
We numerically solved the inverse problem to recover the informations about an input source
as its incident direction, polarizations and spectrum.

The Figure 4 shows the incident direction of a source with ASNR ∼ 3, using just a simple
band-pass filter. That low signal-to-noise ratio makes the determination of source location to
be spreaded and gives an error in that position. Such error is determined by the solid angle
element δΩ = δ(cos θ)δφ.

The Mario SCHENBERG detector will be able to detect nearby events (up to Magellanic
clouds) at its first goal sensitivity (4.2 K) just by using a simple band-pass filter.

For ASNR < 3 (simple band-pass filter) another approach must be used. We tested the
efficiency of a matched filter and checked that it works well when the waveform is known.
However it has a poor performance when the input signal doesn’t match perfectly with the
template.

The presented method can be applied in a real time data analysis software which will be able
to emit an on-line warning to be checked. This method is very flexible and can be adapted for
the real case.
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Figure 4. Position of a source with ASNR ∼ 3.
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