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ABSTRACT

Artificial Neural neswork (ANN) is a new approach for dat
(mulilayer perceptron and radial basis function), and ¢
Lorenz systemn under chaotic regime is used as a test pEa

a gssimilation process, The performance of two feedforsard
wo tecurrent (Elman and Jordan) ANNs are analyzed. The
blem. These four ANNs were trained for emmulating a Kalman

filter using cross validation scheme. Multilayer Perceptron and Elman ANNs show better results among ANNs tested.
The results obtained encouraging the application of the ANNs as an assimilation technigue,
Keywords: cross validation, data assimilation, Larenz system, recurrent neural networks,

RESUMO: REDES NEURAIS RECOR RENTES E FEEDFORWARD TREINADAS COM CORRELACAO
CRUZADA APLICADAS A ASSIMILACAD DE DADOS EM DINAMICA NAO-LINEAR

Rede Neural Artificial é uma nova aberdagem para assimilagio de dados, Neste ar ga ¢ analisado o desempenho de
duas redes feedforward {perceptron de miltiplas camadas ¢ funcio de base radial) ¢ duas redes recorrentes ( Elman
¢ lordan). O sistema de Lorenz sob regime cadtico ¢ usado como um problema teste. As redes foram treinadas para
emular um filtro de Kalman, usando a técnica de validagio cruzada. O perceptron de miltiplas camadas ¢ a rede de
Elman apresentaram melhor desempenho entre as redes testadas. Qs resultados encorajam a investigacio de redes
neursis como uma téenica para assimilagio de dados em previsio de tempo operacional.

Palavras-chave: Assimilagio de dados, redes neurais recomentes, sistema de Lorenz, validacdo cruzada,

L INTRODUCTION

After 1950 the numerical weather prediction (NWT) be-
came an operational procedure. Essentially, NWP consists on the
time integration of the Navier-Stokes equation using numerical
procedures. Therefore, atter some time-steps, there is a disagree-
ment due to small uncertainties in the specification of the Initial
Conditions (IC). In other words, sensitive dependence on the IC
causes the forecasting error to grow exponentially fast the integra-
tion time, (Grebogi et al., 1987). NWP is an initial value problem,
this imply that a better representation for the 1C will produce a
better prediction, The problem for estimating the initial condition
is s0 complex and important that it becomes a science called Data
Assimilation, (Kalnay, 2003),

The insertion of the noise observational data into an inac-
curate computer model does not allow a good prediction (see Fig-
ure 1), Tt is necessary to apply some data assimilation technique,

Many methods have been developed for data assimila-
tion (Daley, 1991). They have different strategies to combine the
forecasting (background) and observations. From mathematical
aoint of view, the assimilation process can be represented by

e =x" +Wply —H(x' 1] (1)

where x_is the value of the analysis; x.is the forecasting (from
the mathematical model); W is the weighting matrix, generally
computed from the covariance matrix of the prediction errors
from forecasting and observation; yo denotes the observation;
H represents the observation system:{y* — H{x' 1} s the inova-
tion; and p|.] is a discrepancy function.

The use of ANN for data assimilation is VEry recent issie,
ANNs were suggested as a possible technique for data assimilation
by Hsieh and Tang (1998), but the first implementation of the ANN
as & new approach for data assimilation was employed by Nowosad
et al, (2000) (see also Vijaykumar et al, [2002), Campos Velho et
al, (2002)). The ANN has also be used in the works of Liagat et al,
(2003) and Tang and Hsieh (2001) for data assimilation. The tech-
nique developed by Nowosad et al. (2000) is quite different from
the latter two works, where the ANN is used to represent unknown
equation in the mathematical system equations of the model,

Differently from previous works using ANN for data
assimilation, this paper deals with recurrent NN, In addition,
the cross validation is used as leaming process. The Lorenz
system under chaotic dynamics is applied as test model for as-
similating noise data. Four ANNs are considered: Multi-Layer
Perceptron (MLP), Radial Base Function (RBF), Elman Neu-
ral Network (E-NN), and Jordan Neural Metwork {J-MNM). The
E-NN and J-NN are known as recurrent or time-delay ANNs,
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Figure 1: Shock in the numerical model afier data ingertion,
without assimilation technique:

2. METHODOLOGY

This Section presents the model used for testing the
assimilation schemes, a brief overview on Kalman filter, and a
description of the ANNs emploved in this work.

2.1. Testing Model: Lorenz System

Lorenz (1963) was looking for the periodic solutions
of the Saltzman’s model (Saltzman, 1962), considering a spec-
tral Fourier decomposition and taking into account only low
order terms. Lorenz obtained the following system of nonlin-
ear coupled ordinary differential equations

dX[dv =G (X -¥) (2)
dYjdv =rX - ¥ - XZ (3)
dZ/dt = XY — b2 (4)

where © == “17 {1+ o’ )k 1 is the nondimensional time, being
H, a, v and f respectively the layer height, thermal conductiv-
ity, wave number (diameter of the Rayleigh-Bémard cell), and
time; o =x"V isthe Prandtl number { v is the kinematic vi-
cosity);b =4(1 + &* ) The parameter r=R/R « AT is the
Rayleigh number (T is the temperature). and £ _is the critical
Ravleigh number.

2.2. Kalman Filter

Starting from a prediction model (subscripts n de-
notes discrete time-step, and superseripts  represents the fore-
casting value) and an observation system:

Wiy =Fowl v (s)

z, =Hw +v, (6)

Nolume 200 3)

where [ 15 our mathematical model, w_1s the stochastic fore-
ing (modeling noise error). The observation system is modeled
by matrix H, and v is the noise associated to the observation,
The typical gaussianity, zero-mean and ortogonality hypoth-
eses for the noises are adopted. The state vector is defined as
W =[X 0 Y. 2, ) and it is estimated through the recursion

Wart U~ G HJF W +G, 2!, (7)
where w2, is the analysis value, G 15 the Kalman gain, com-
puted from the minimization of the estimation error variance
J 1 (Jaswinskd, 1970)

oo = EHOZ —wil ) (w0, — w0 (8)
being E{.} the expected value. The algorithm of the Linear
Kalman Filter (LKF) is shown in Figure 2, where s the
covariance of g and R is the covariance of v,

The assimilation is done through the sampling:

5 =2 Iy T 2||~| _hrn“::q [(}_}
2.3, Artificial Neural Networks

An artificial neural network (ANN) is an arrangement
of units characterized by: a large number of very simple neu-
ron-like processing units; a large number of weighted connee-
tions between the units, where the knowledge of a network s
stored; highly parallel, distributed contral,

The processing element (unit) in an ANN has multiple
weighted inputs, followed by an activation function. There are
several different architectures of ANN's, most of which directly
depend on the leaming strategy adopted, Two distinet phases
can be devised while using an ANN: the training phase (leamn-
ing process) and the run phase (activation of the network), The
training phase consists of adjusting the weights for the best per-
formance of the network in establishing the tapping of many
input/output vector pairs, Cnce trained. the weights are fixed
and new inputs can be presented to network for which it calou-
lates the corresponding outputs, based on what it had learned.
The back-propagation algonithm is used as the learning process
tor MLP studied in this paper, (Haykin, 2001},
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Figure 2: Schematic diagram of the linear Kalnian filter
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The k-th neuron can be described by the two coupled
equations

M = ZH h'.'l-'l1 {“]}
i=l
M= (e b (11

where wl, ..., wn are the inputs; 8, ..., 0, are weights for
the neuron-k, u, is the linear output of the linear combination
among weighted inputs, b, s the bias; () is the activation
function. and v, is the neuron output.

Multilayer perceptrons with backpropagation learn-
ing algorithm, commonly referred to as backpropagation neural
networks are feedforward networks composed of an input lay-
er, an output laver, and a number of hidden lavers, whose aim
15 to extract high order statistics from the input data (Haykin,
2001). Figure 3a)-(c) depicts a backpropagation neural net-
work, one hidden layer, and the activation functions.

KBF networks are feedforward networks with only
one hidden layer They have been developed for data inter-
polation in multidimensional space. RBF nets can also learn
arbitrary mappings. The primary difference between a back-
propagation with one hidden tayer and an RBF network 1% in
the hidden layer units, RBF hidden layer units have a receptive
field, which has a center, that is, a particular input value at
which they have a maximal output. Their output tails off as the
input moves away from this point, The most used function in
an RBF network is a Gaussian distribution — Figure 3(c).

Two recurrents ANNs are also investigated, Elman
and Jordan ANNs (Braga et al., 2000). Beyond of the standard
units, such as inputfoutput and hidden layers, recurrent ANNs
present the context units, Input and output units are in contact
with the external environment, while the context units are not,
Input units are just buffer units, they do not change the inputs,
The hidden layers present activation functions, alternating the
inputs and producing the outputs. Context units intreduce i
memory in the system, keeping the previous outputs as addi-
tonal inputs (recurrent ).

For the E-NN. the recurrent neurons is done con-
necting the hidden layer with the mput layer -see Figure 4(a).
Similar topology is employed to the J-NN, Figure 4(h}, but the
oulput values are used in the recurrent.

S,

Figure 4: Dutline for recurrent ANNs: (a) Elman: {b) Jordan
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LNUMERICAL EXPERIMENTS

Our numerical experiments are pertormed using the
following features for Kalman filter; (@ =0.11, R =2],

g e
Pl = 100wy ) '}?Jr
|0 S

The Lorens system was integrated using a first order
predictor-corrector scheme, with At=10, The dala msertion iz

done at each 12 time-steps. For training data set, 2000 data are
considered, and 333 data are used for cross validation. Afier

=
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the training, the model is integrated for 106 time-steps,

In order to test different architectures of ANNsg,
for emulating a Kalman filter in data assimilation, one
uses momentum constant for hidden layver g, and o (n= X,
¥ 2} Tor the output layer. Similar feature is used for learn-
ing rates: 51, for hidden layer, and n_ (n= X, ¥ Z) for the
output layer. The numerical values for these paramecters
are shown in Table |,

MNeural networks with two hidden layers were also
considered, The parameters employed for this topology 1s pre-
sented in Table 2.

MLP RBF | E-NN J-NN
neurons 2 40 2 | 2

e, ] - .51 (1.4
o, 0.6 - (1.4
oy 0.6 = - 0.4
, 0.6 ' 0.4
n, 0.001 0.0001 0.00001 0.0001
m, 0.001 0.0001 0.00001 ' 0.000
1, 0.001 0.0001 ‘ 0.00001 0.0001
n, 0.001 0.0001 l 0.00001 0.001

Table | Meural network parameters: one hidden layer,

MLP |
(L1,1.2)
neurans [2.6)
&, 0.6
o, 0.6
&, 0.6
@, 0.6
m, 0.001
e 0.001
n, 0.001
N, o.001

RBF J-NN
(L1,L.2) (L1,1.2)
(11,2) 82
0.4
0.4
0.4
0,4
0.0001 0.0001
0.0001 0.0001
00001 0.0001
0.000] 0,001

Table 2: Neural network parameters: two hidden layers.
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During the learning process, the cost function ithe
square difference between the ANN output and the target data)
s decreasing, bul this does not mean that the ANN will have an
effective generalization, On the other hand, the minimization can
fall in a local minimum of the error surface. Appropriate momen-
tum constant and learning rate can avoid these local mininim,
and the cross validation is an alternative to choose a better set of
cannection weights implying in a better generalization.

Cross validation consists of splitting the tarpet data set
into two sub-sets, one for training and another one for valida-
tion. For each iteration, the connection weights are tested with
the second data set to evaluate the ANN skill for generalization,
For the traming phase, the first data set containing 2000 pairs
of mputioutput vector is considered (observation and forecast-
ing vector in input layer and KF oulput as a target vector). Af
ter training, cross validation is performed with the vector with
the second data set of 333 vectar pairs. The data sets for the
crass validation phase are obtained from the previous simula-
tion using KF for data assimilation every |2 time-steps. Afrer
the choice of the best weight set, the Lorenz systern is integrated
by 106 time-steps considering data assimilation at each 12 time-
steps. The training {for each epoch), cross validation (for each
epoch), and estimation errors (for each time-step) are computed
as following (n=X, Y, Z and average):

EACH waa ...mzm_l.(xh' — KA (12
B TR A v b .
. - | 33 III = T
B =3 VKT XY (13)
g pmme——n
BE, =~ > X~ X[FF (14)
k=l

Results show below are obtained with only ene hid-
den layer. However, some experiments were also performed
considering two hidden layers for MLP, FBR. and J NN, look-

aj

Figure 5: Error for Lorens system, solid (mean error), dashed (error

phase; (b) for the cross validation,
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ing for a better performance, However, the results are pretty
similar to those obtained with one hidden layer,

Therefore, results with two hidden layers will not
be commented,

3.1. Assimilation: Multi-layer Ferceptron (MLP)

Figures 5(a) shows the training error curves ohtained
during the leaming phase, and 3(b) displays the generalization
error. The mean error ([emor-X + emrorY + error-7 /37 15 also
shown. Afler the choice of the best weight set, the Lorenz system
Is integrated considering data assimilation at each 12 time-steps,

Two neurons are used for MLP in the hidden laver, and
the learning ratio are described in Tahle 1, reaching a minimun
<A average error at 4. 106 for the [44-th epoch. The leaming error
dramatically decreases for the first four iberations, and it continues
decreasing slowing lor the rest of iteralion process - see Figure
3(a). This shows how the cross validation works, selecting the
best weight set for activation {or generalization) of the ANN,

Figures 6(a)-(c) depicted the last 103 time-steps of the
integration, where the data assimilation is performed by the MLP
with one hidden layer, In these figures, the blye line represents the
ohservation and the red line represents the MLP. Clearly, the MLP
15 eflective to carry out the assimilation,

3.2, Assimilation: Radial Base Function (RBF)

The same experiment applied to the MLP is carried
out for the RBF, with one hidden laver. The iteration errors
are shown in Figures 7(a)-(b) and forecasting performance in
Figures 8(a)-(c). The best architecture of this ANN is obtained
with 40} neurons in the hidden layer, using leamning ratio listed
in Table 1, without momentum constant, The smallest activa-
tion error was obtained at the first epoch. The training error
is very small at second and twelve epochs, but the estimation
error for the cross validation data set grows exponentially, ex-
cept for the component-Y,
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3.3 Assimilation: Recurrents NN

Here, the results for E-NN {recurrency from the
hidden layer to input layer) and J-NN {recurrency from the
output 1o input laver). The idea to investigate the use of re-
current ANNs is to verity if the imbedding a memory in the
ANN could improve the assimilation for a longer period of
the time integration.

Figures 9(a)-(b) plot the error computed from the
training data set for the E-NN. In the Figures 10{a)-(c) the last
1000 time-steps of the whale integration {with 106 time-steps)
is shown for this ANN,

Twao neurons are used in the hidden layer, with leam-
ing ratio and momentum constant as given in Table 1. The aver-

age error EAaverage=4.091 is reached at the second weight set
from the training set. From Figure 9(a), one can be noted that the
training error decreases abruptly after the second epoch.

The E-NN also produces a good assimilation, as seen
in Figures 10{a)-(c), giving EEX=3.840, EE_Y=3469, EE_
£=3.612 and EEaverage=3.612 for components X, Y, £, and
the average error, respectively,

The assimilation with J-NN is efficient too, and there
is no big difference related 10 other ANNs - see Figures 12(a).
{¢). The errors for the X, ¥, Z, and the average are EE X=2 134
EE_Y=4.609, EE 7=2.13&%, EEaverage=3.044 Figures | I{a)-
(b) show that the training errors decrease fast for the first ep-
ochs, while cross validation errors increase. For this ANN, the
best answer from the J-NN is obtained at the first epoch,
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4, CONCLUSIONS

In this work the technique of the ANNs was tested
for application to the data assimilation in chaotic dynamics
The efficiency of the recurrent ANNs (Elman and Jordan), was
compared with the feed-forward ANNs (multi-layer percep-
tron and radial base function). These ANNs were trained using
cross validation scheme, The learning with cross validation
allows a complete knowledge of the error surface. From the
knowledge of the authors, this is the first time that cross valj-
dation was employed in this application.

Neural networks arc a nice alternative for data as-
similation, because, after the training phase, the ANNs present
2 lower computational complexity than the Kalman filter and
the variational approach. There are also other additional advan-
tages, such as: ANNs are intrinsically parallel procedures, and
hardware implementation [neuro-compuiers) s also possible,

All ANNs emploved were effective for data assimila-
tion, [t was not noted any improvement considenng the recurrent
ANNs used, related w the two feed-forward ANNs employed,
The cross correlation 1s a good strategy to choose the best weight
set. The best weight set means that we are not enly looking for
the weight set that leamn from the pattemns, but also the ANN that
gives a best estimation for a data out from the training sgt,
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