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Abstract. We present a procedure to obtain the observed characteristics of synchrotron outbursts
in relativistic jets. We have used a representative radio long-term light curves of 3C273 at 4.8, 8.0,
14.5, 22.0 and 43.0 GHz to derive the spectral and temporal evolution of a typical outburst. The
technique consists in an analysis and decomposition of these light curves into a series of twenty
identical flares. We fit the same outbursts simultaneously to 3 light curves covering 3 frequencies
at radio domain. The development of a flare is a function of time and frequency. We find that the
obtained outburst’s evolution is in satisfactory qualitative agreement with the expectations of shock
models in relativistic jets. The main goal is to obtain the spectral and temporal characteristics of a
typical flare. Individual flares differ only by a few parameters when compared with a typical flare.
The relevant parameters of three-stage shock models were found in a second approach. Marscher
and Gear (1985) identified three stages of the evolution of the shock according to the dominant
cooling process of the electrons: the Compton scattering loss phase, the synchrotron radiation loss
phase and the adiabatic expansion loss phase.
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INTRODUCTION

Models for the emitting region should yield predictions for the evolution of the spectrum
of newly created components. Light curves of quasars show evidence of outbursts prop-
agating from high to low frequencies. Observing powerful extragalactic radio sources
is of utmost importance to try to find out the source of these objects’ energies which
are emitted in all the radio band of the spectrum as well as in other electromagnetic
spectrum ranges ( optical, infrared, x-rays). Another question is how to explain the
presence of radio lobes several hundreds of kpc far from the nuclear source and the
presence of collimation in the low scale jets (pc) and high scale lobes (kpc). The knowl-
edge of radio lobe morphology and the interaction between them and the intergalactic
medium that surrounds them are greatly important to try to understand the physics in-
volved in this process. We may estimate some parameters such as jet speed and den-
sity from the knowledge of the interaction between the jet and the medium around it.
Quasars, BL Lacertae objects and active galactic nuclei show prominent variability at
many wavelengths, which has been used to provide clues to the size and structure of
the region producing the radiation. Several models for the variability of compact radio
sources have been proposed since 1963 (see, e.g., Slish 1963, Shklovsky 1965, van der
Laan 1966, Pauliny-Toth and Kellermann 1966, Rees 1967, Kellermann and Pauliny-
Toth 1967, Pauliny-Toth and Kellermann 1968, Condon and Dressel 1973, Jones et al.
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1974, Pacini and Salvati 1974, Pacholczyk and Scott 1976, Peterson and King III 1975,
de Bruyn 1976, Marscher 1977, Jones and Tobin 1977, Terrell 1977, Marscher 1978,
Pacholczyk 1979, Blandford and Konigl 1979, Spangler 1980, Konigl 1981) An impor-
tant step in the understanding of the flares was taken by Marsher and Gear in 1985 ,
when they studied the strong 1983 outburst of the quasar 3C273. They perceived that
the major problem of radio variability studies is that the mean time between events is
often less than the decay time of each event (Marscher and Gear 1985). Then the sep-
aration between the bursting component and quiescent emission is very difficult. Three
stages of the evolution of the shock wave propagating down a relativistic jet were identi-
fied, according to the dominant cooling process of the electrons: the Compton scattering
loss phase; the synchrotron radiation loss phase and the adiabatic expansion loss phase.
Another shock model was developed by Valtaoja et al. in 1992. They also identified
three stages of the evolution of the shock. Their model, based on observations, describes
qualitatively theses three stages. The properties of the outbursts were extracted from
the observations. This is very difficult because of the brevity of the outbursts at high
frequencies (a few days to months at submillimetre spectral range) and at radio frequen-
cies, because they often overlap due to their longer duration. These studies were based
on separate outbursts. Simultaneous multi-frequencies spectra were constructed for as
many epochs as possible after the subtraction of a more slowly varying emission (con-
stant with the time). A different approach was developed by Turler et al. (1999). Turler’s
idea was to decompose several light curves covering a large time span into a series of
identical flares. The fit was made simultaneously to the same outbursts to several light
curves, at several frequencies (from the radio to submillimetre frequencies). The aim
was to obtain both the spectral and temporal properties of a typical flare (Turler et al.
1999). We have used in this work light curves of 3C273 at 4.8 GHz, 8.0 GHz, 14.5 GHz,
22 GHz and 43 GHz (Itapetinga and Michigan radiotelescopes data). We fit three of
these light curves (at 4.8 GHz, 8.0 GHz and 14.5 GHz) simultaneously to the same out-
bursts. The Itapetinga light curves at 22 and 43 GHz were used to determine the 3C273
behaviour before 1980 and for the estimation of the quiescent emission. The light curve
of each outburst at a given frequency is described by a simple analytical function in the
Turler’s model. The technique consists in an analysis and decomposition of these light
curves into a series of twenty similar flares, covering a period of 24 years- from 1980
to 2004. The method has therefore many free parameters to a wide range of different
situations. Several parameters were also derived from the three-stage shock models (the
second procedure).

OBSERVATIONS

This work is based on the light curves of the Itapetinga and Michigan database at
4.8 GHz, 8.0 GHz, 14.5 GHz, 22 GHz and 43 GHz. The observations were made
at the frequencies of 22 and 43 GHz with the 13.7-m radome enclosed Itapetinga
radiotelescope (Atibaia, Brazil), during the period from July 1980 to december 2004.
The feed consisted of a retangular horn, sensitive to the vertical component of the E
vector. The half-power beamwidths were 4.2’ and 2.1’ at 22 and 43 GHz, respectively.
The receiver was a K-band mixer with 1 GHz d.s.b., giving a sytem temperature of about
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FIGURE 1. Ligth curves of 3C273 (Flux density (Jy) x Time (years)) at 4.8 GHz, 8.0 GHz and 14.5
GHz decomposed into series of 20 outbursts (dotted lines). The dashed line is the hot spot contribution
(Two-stage evolution).

700K. The receiver was operated in the total-power mode. The observations consisted
of scans through the source at constant elevation, with an amplitude in the sky of 60’ at
22 GHz and 30’at 43 GHz. At low frequencies (4.8, 8.0 and 14.5 GHz) we have used the
measurements of the University of Michigan Radio Astronomy Observatory (UMRAO).

THE TWO-STAGE EVOLUTION

We have used a simple analytical function to describe the 3C273 light curve of each
outburst at a given frequency. This function is described in two different ways. We
have two stages: rising phase and decaying phase. This function defines the temporal
evolution of a flare (see, e.g. Turler et al 1999). Figure 1 shows three light curves with
the outbursts parameterized as a simple analytical function. The principal characteristics
of the light curves are reproduced by the model above. The overall fit has a reduced χ 2

value = 0.23.
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FIGURE 2. Ligth curves of 3C273 (Flux density (Jy) x Time (years)) at 4.8 GHz, 8.0 GHz and 14.5
GHz decomposed into a series of 20 outbursts (dotted lines). The dashed line is the hot spot contribution
(Three-stage evolution).

THE THREE-STAGE EVOLUTION

The shock model of Marscher and Gear 1985 describe the evolution of the shock by
three distinct stages: a rising phase, a peaking phase and a declining phase. We model
the light curve at different frequencies and the resulting conventional flare is qualitatively
in accordance with the Marscher and Gear (1985) model. We show in the fig. 2 the same
light curves as in fig. 1. The overall fit has the reduced χ2 value = 0.15.

CONCLUSION

By using the radio observations of the quasar 3C273 we can explain the behaviour of
this source and we can obtain the properties of the spectral and temporal evolution of a
typical outburst. It is possible to reproduce the several shapes of the radio light curves
with only about 20 outbursts, starting simultaneously at all frequencies. The results
suggest that the outbursts can be related to the VLBI knots. The quasar 3C273 shows
short-term variability, complex temporal behaviour and impulsive events that make this
source unique and very difficult to study. We obtained similar values for most parameters
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when we made a direct comparison with the results obtained by Turler et al. 2000. We
have estimated the value of 2.67 for the index s of the electron energy distribution N (E),
and Turler et al. 2000 found a value of about 2.05 . The k index has a value of about 2.77
here and 3.00 there. The value 2.7 is expected if the jet flow was adiabatic.The r index
found by Turler et al. 2000 was about 0.80 and we obtained a value of about 0.68. This
good value of about 0.68 means that we have a non-conical jet. The b index of about
2.24 obtained in this work is bigger than the value 1.58 obtained by Turler et al. 2000.
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