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ABSTRACT 
In this work, we consider the problem of two-impulse orbital transfers between non-coplanar elliptical 
orbits with minimum fuel consumption but with a time limit for this transfer. This time limit imposes 
a new characteristic to the problem that rules out the majority of transfer methods. Then, we used the 
equations presented by Eckel and Vinh, add some new equations to consider cases with different 
geometries, and solved those equations to develop a software for orbital maneuvers. This software can 
be used in the next missions developed by INPE. The original method developed by Eckel and Vinh 
was presented without numerical results. Thus, the modifications considering cases with different 
geometries, the implementation and the solutions using this method are contributions of the present 
work. The software was tested with success. 
 

1- INTRODUCTION 
 

The majority of the spacecraft that have been placed in orbit around the Earth utilize the basic 
concepts of orbital transfers. During the launch, the spacecraft is placed in a parking orbit distinct 
from the final orbit, which the spacecraft was designed. Therefore, to reach the desired final orbit the 
spacecraft must perform orbital transfer maneuvers. Beyond this, the spacecraft orbit must be 
corrected periodically because there are perturbations acting on the spacecraft. In Brazil, we have 
important applications with the launch of the Remote Sensing Satellites RSS1 and RSS2 that belongs 
to the Complete Brazilian Space Mission and with the launch of the China Brazil Earth Resources 
Satellites CBERS1 and CBERS2. 
 
In this work, we consider the problem of two-impulse orbital transfers between non-coplanar elliptical 
orbits with minimum fuel consumption but with a time limit for this transfer. This time limit imposes 
a new characteristic to the problem that rules out the majority of the transfer methods available in the 
literature: Hohmann (1925), Hoelker and Silber (1959), McCue and Bender (1965), Gobetz and Doll 
(1969), Prado (1989), etc. Therefore, the transfer methods must be adapted to this new constraint: 
Wang (1963), Lion and Handelsman (1968), Gross and Prussing (1974), Prussing (1969, 1970), 
Prussing and Chiu (1986), Ivashkin and Skorokhodov (1981), Eckel (1982), Eckel and Vinh (1984) 
Lawden (1993), Taur et al. (1995). Then, we used the equations presented by Eckel and Vinh (1984), 
add some new equations to extend the method to cases with different geometry, and solved those 
equations to develop a software for orbital maneuvers. 
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2- DEFINITION OF THE PROBLEM 
 
The orbital transfer of a spacecraft from an initial orbit to a desired final orbit consists in a change of 
state (position, velocity and mass) of the spacecraft, from initial conditions 0r


, 0v


 and 0m  at time 0t  to 
the final conditions fr

 , fv


 and fm  at time ft  ( 0tt f  ) as shown in Figure 1. The maneuver can be 
classified as: maneuvers partially free, when one or more parameter is free (for example, the time 
spent with the maneuver); or maneuvers completely constrained, when all parameters are constrained. 
In this case the spacecraft performs an orbital transfer maneuver from a specific point in the initial 
orbit to another specific point in the final orbit (for example, rendezvous maneuvers). In this work, 
based in Rocco (1997) we consider the orbital transfer maneuvers partially free, and that the 
spacecraft propulsion system is able to apply an impulsive thrust. Therefore, we have the 
instantaneous variation of the spacecraft velocity. 
 

trust acceleration

 
Fig. 1 – Orbital Transfer. 

 
3- PRESENTATION OF THE METHOD 

 
The bases for this method are the equations presented by Eckel and Vinh (1984), that provides: the 
transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer; or 
minimum time transfer for a prescribed fuel consumption; but in this work we consider only the 
problem with fixed time transfer. The equations were presented in the literature but the method was 
not implemented neither tested by Eckel and Vinh, and it is only valid for a specific geometry. They 
used the plane of the transfer orbit as the reference plane but we decide to use the equatorial plane as 
the reference plane because in this way it is easy to obtain and to apply the results in real applications. 
Using the transfer orbit as the reference plane almost all the results obtained belongs to the same 
specific geometry, so we change the reference system, adding the equations 1 to 6 to consider cases 
with more complex geometry. Thus, the modification, the implementation and the solutions using this 
method are contributions of this work. Therefore, the method was implemented to develop a software 
for orbital maneuvers. By varying the time spent in the maneuver the software developed provides a 
set of results that are the solution of the problem of bi-impulsive optimal orbital transfer with time 
limit. 
 
Given two non-coplanar terminal orbits we desire to obtain a transfer orbit with minimum fuel 
consumption and fixed time transfer. The orbits are specified by their orbital elements, as shown in 
Table 1 (subscript 1: initial orbit; subscript 2: final orbit; no subscript: transfer orbit): 
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Table 1 – Orbital Elements. 
a  Semi-major axis 

e  Eccentricity 

p  Semi-latus rectum 

  Longitude of the periapsis 

i  Inclination 

  Longitude of the ascending node 

M  Mean anomaly 

E  Eccentric anomaly 

  Angle between the planes of the initial and final orbits 

1  True anomaly of the ascending node N  obtained in the plane of the initial orbit 

2  True anomaly of the ascending node N  obtained in the plane of the final orbit 

1I  Location of the first impulse 

2I  Location of the second impulse 

  Transfer angle obtained in the plane of the transfer orbit 

1  Plane change angle result of the first impulse 

2  Plane change angle result of the second impulse 

1V  Velocity increment generated by the first impulse 

2V  Velocity increment generated by the second impulse 

V  Total velocity increment 

T  Time spent in the maneuver 

1  True anomaly of the point 1I  obtained in the plane of initial orbit 

2  True anomaly of the point 2I  obtained in the plane of final orbit 

1r  Distance from point 1I  

2r  Distance from point 2I  

1f  True anomaly of the point 1I  obtained in the plane of the transfer orbit 

2f  True anomaly of the point 2I  obtained in the plane of the transfer orbit 

1x  Radial component of the first impulse 

2x  Radial component of the second impulse 

1y  Transverse component of the first impulse in the plane of the initial orbit 

2y  Transverse component of the second impulse in the plane of the transfer orbit 

1z  Component of the first impulse orthogonal of the initial orbit 

2z  Component of the second impulse orthogonal of the transfer orbit 

ih  Horizontal component of iV  
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Depending on the intersection of the orbital planes, we have four possible geometries for the 
maneuver: 

equatorial plane

ascending node of the final orbit

ascending node of the initial orbit

final orbit

vernal point

initial orbit

 
Fig. 2 – Geometry of the Maneuver When 12    and 12 ii  . 

 

equatorial plane

final orbit

initial orbit

ascending node of the final orbit

ascending node of the initial orbit

vernal point
 

Fig. 3 – Geometry of the Maneuver When 21    and 21 ii  . 
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initial orbit

final orbit

equatorial plane

vernal point

ascending node of the final orbit

ascending node of the initial orbit

 
Fig. 4 – Geometry of the Maneuver When 12    and 21 ii  . 

 

final orbit

initial orbit

equatorial plane

vernal point

ascending node of the initial orbit

ascending node of the final orbit

 
Fig. 5 – Geometry of the Maneuver When 21    and 12 ii  . 
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Depending on the locations of the impulses, we have three possible cases: 
 

transfer orbit

initial orbit

equatorial plane

final orbit

vernal point
ascending node of the initial orbit

ascending node of the final orbit

 
Fig. 6 – Case 1: 1I  before N  and 2I  after N . 

 

initial orbit

transfer orbit

equatorial plane

vernal point

final orbit

ascending node of the final orbit

ascending node of the initial orbit
 

Fig. 7 – Case 2: 1I  and 2I  after N . 
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initial orbit
final orbit

transfer orbit

equatorial plane

vernal point

ascending node of the initial orbit

ascending node of the final orbit

 
Fig. 8 – Case 3: 1I  and 2I  before N . 

 

Combining these three cases with the four possible geometries for the transfer maneuver we have a set 
of twelve cases that can be solved by the software developed. Thus, from the geometry of the 
maneuver we obtain 1 , 2 ,   and the transfer angle : 
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Considering that the spacecraft propulsion system is able to apply an impulsive thrust and that 
maneuver is bi-impulsive, the total velocity increment is: 
 

 FVVV  21  (7) 

 
where   is an arbitrary variable for the transfer. 

 
The time of the transfer is: 
 

  G  (8) 

 
Therefore, the problem is the minimization of V  for a prescribed  . If the transfer time is prescribed 
being equal to a value 0 , we have the constraint relation: 
 

00   (9) 

 
Thus, we have the performance index: 
 

 0  kVJ  (10) 

 
From Eckel and Vinh (1984) we have that the solution of the problem depend on three variables: the 
semi-latus rectum p  of the transfer orbit and the true anomaly 1  and 2  that define the position of 
impulses in the initial and final orbits. Therefore, we have the necessary conditions: 
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By eliminating the Lagrange’s multiplier k  from equations 11 we have the set of two equations: 
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Evaluating the partial derivatives in these equations and doing some simplifications we have the final 
optimal conditions: 
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which utilize the following relations: 
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Therefore, we have an equation system composed by equations 9, 13 and 14. Solving this equation 
system by Newton Raphson Method (cf. Press et al. 1992), we obtain the transfer orbit that performs 
the maneuver spending a minimum fuel consumption but with a specific time. 
 

4- RESULTS 
 
The Figures 9 to 26 present some of the results obtained in Rocco (1997, 1999) with the software 
developed. They not only show the tendency of the parameters, but they quantify the evolution of the 
variables studied. The graphs were obtained through the variation of the total time spent in the 
maneuver. Thus, each point was obtained executing the software to the specific time. The points were 
joined by a line that shows the behavior of that orbital element.  
 
We utilized, as a first example (Figures 9 to 14, 25 and 26), a maneuver of small amplitude between 
an initial orbit with semi-major axis of 12030 km, eccentricity 0.02, inclination 0.00873 rad, longitude 
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of the periapse 3.17649 rad, longitude of the ascending node zero and a final orbit with semi-major 
axis of 11994.7 km, eccentricity 0.016, inclination 0.00602 rad, longitude of the periapse 3.05171 rad, 
longitude of the ascending node 0.15568. This maneuver shows that the method applied here is 
suitable for maneuver of stationkeeeping. In this example we utilized as initial values l  = 12033.55 
km, 1  = 4.03575149 rad, and 2  = 5.94012897 rad. 
 
As a second example (Figures 15 to 24) we utilized, the maneuver between an initial orbit with semi-
major axis of 15000 km, eccentricity 0.05, inclination 0.08726646 rad, longitude of the periapse 
0.52359878 rad, longitude of the ascending node 0.17453293 rad, and a final orbit with semi-major 
axis of 20000 km, eccentricity 0.06, inclination 0.17453293 rad, longitude of the periapse 0.78539816 
rad, longitude of the ascending node 0.34906585 rad. This maneuver shows that the method can be 
applied in transfers involving larger amplitudes. In this example we utilized as initial values l  = 
17500 km, 1  = 0.78539816 rad, and 2  = 1.04719755 rad. 
 
The Figures show the behavior of some orbital elements versus time spent in the maneuver in seconds. 
Figures 9 and 15 show the behavior of the semi-major axis of the transfer orbit in km. Figures 10 and 
16 show the behavior of the eccentricity of the transfer orbit. Figures 11 and 17 show the transfer 
angle in degrees. Figures 12 and 18 show the behavior of the inclination of the transfer orbit in 
degrees. Figures 13 and 19 show the plane change angle resulted from the first and second impulses in 
degrees. Figures 14 and 20 show the velocity increment 1V and 2V , and the total velocity increment V  
in km/s. Figures 21 and 22 show the plane change angle generated by the impulses for the second 
example in more detail. Figures 23 and 25 show de resultant of the plane change ( 21   ), and Figures 
24 and 26 show the total plane change ( 21   ) in degrees for the first and second example, 
respectively. 
 

5- CONCLUSIONS 
 
From the Figures 9 to 26 and from other examples studied in Rocco (1997), we can verify, in a 
general way, that when the maneuver spends less time the semi-major axis and the eccentricity of the 
transfer orbit increases, when the maneuver spends more time the velocity increment decreases and 
the transfer angle increases. These behaviors occur because when the maneuver is performed with less 
time the transfer orbit approaches to a hyperbolic orbit, so the semi-major axis and eccentricity tend to 
increase. When the maneuver is performed with more time the transfer angle can be greater and the 
impulse directions approach to the movement directions. However, the impulse directions never will 
be in the movement directions because we always have a component orthogonal to the orbital plane. 
This component provides a plane change as shown in Figures 13 and 19. We can verify in Figure 13 
that when the maneuver spends less time the plane change angle increases. In the second example, 
shown in Figure 19, this also occur, as we can see in more details in Figures 21, 22, 23 and 24. Figure 
21 and 22 show the plane change angle resulted from the first and second impulse, respectively. In 
these figures it is easy to verify that there is a small variation in the value of the plane change angle 
along the time. In the Figure 21 we have a curve that initially decreases with the time, but around 
2950 seconds the curve turns to increase. However Figure 22 show that the value of the plane change 
angle result of the second impulse has a clear tendency to decrease with the time. Therefore the 
resultant of the plane change, shown in Figure 23 and the total plane change angle, shown in Figure 
24, decrease along the time. In the first example, although the resultant of plane change increases 
along the time, as shown in Figure 25, the total plane change angle, shown in Figure 26, presents the 
same tendency of Figure 24 regarding the second example. The small increase in the value of the total 
plane change angle, observed in the Figure 26 is due to a change of geometry of the maneuver that 
happens about 2600 seconds. Comparing these figures with Figures 14 and 20 is possible to verify that 
for a high plane change there is a high value of the velocity increment. This is expected because 
changes in inclination, in general, spend more fuel. The increase in the plane change angle occur 
because when the time fixed is small the spacecraft have to perform the maneuver very fast, then there 
is a great plane change in the first impulse and another great plane change in the second impulse. But 
the sum of the plane changes angles almost remains constant because the second  impulse undo part of 
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Fig. 9 – Semi-Major Axis vs. Time 

Spent in the Maneuver (1o example). 

 
Fig. 11 – Transfer Angle vs. Time 

Spent in the Maneuver (1o example). 

 
Fig. 13 – Plane Change Angle vs. Time 

Spent in the Maneuver (1o example). 
 

 
Fig. 10 – Eccentricity vs. Time 

Spent in the Maneuver (1o example). 

 
Fig. 12 – Inclination vs. Time 

Spent in the Maneuver (1o example). 

 
Fig. 14 – Velocity Increment vs. Time 
Spent in the Maneuver (1o example). 
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Fig. 15 – Semi-Major Axis vs. Time 
Spent in the Maneuver (2o example). 

 
Fig. 17 – Transfer Angle vs. Time 

Spent in the Maneuver (2o example). 

 
Fig. 19 – Plane Change Angle vs. Time 

Spent in the Maneuver (2o example). 
 

 
Fig. 16 – Eccentricity vs. Time 

Spent in the Maneuver (2o example). 

 
Fig. 18 – Inclination vs. Time 

Spent in the Maneuver (2o example). 

 
Fig. 20 – Velocity Increment vs. Time 
Spent in the Maneuver (2o example). 
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Fig. 21 – Plane Change Angle ( 1 ) vs. Time 

Spent in the Maneuver (2o example). 

 
Fig. 23 – Resultant of the Plane Change vs. 
Time Spent in the Maneuver (2o example). 

 
Fig. 25 – Resultant of the Plane Change vs. 
Time Spent in the Maneuver (1o example). 

 
Fig. 22 – Plane Change Angle ( 2 ) vs. Time 

Spent in the Maneuver (2o example). 

 
Fig. 24 – Total Plane Change Angle vs. 

Time Spent in the Maneuver (2o example). 

 
Fig. 26 – Total Plane Change Angle vs. 

Time Spent in the Maneuver (1o example). 
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the plane change angle result of the first impulse. But the resultant of the plane change is not equal of 
the difference among the inclinations of the initial and final orbits, because these orbits usually do not 
cross because the maneuver does not correct just the difference in inclination, but also correct the 
eccentricity, the longitude of the periapside, the longitude of the ascending node and the semi-major 
axis. Beyond this, we can verify that for the first example the semi-major axis and the eccentricity of 
the transfer orbit, shown in Figures 9 and 10, stabilized quickly. Therefore inclination changes 
prevailed in the maneuver, thus most of the velocity increment applied in the maneuver is owed by the 
plane change. In the second example, the semi-major axis and the eccentricity, shown in Figures 15 
and 16, present a high variation along the time without stabilizing around a value, in this way, the 
changes in the semi-major axis and in the eccentricity dominate the maneuver prevailing in relation 
with inclination changes. But, in both examples the behavior of the velocity increment is the same. 
The velocity increment decreases with time. However, there is a limit that occur when the transfer 
angle is greater than 180º. After this limit the increment velocity increases with time because, in this 
case, the impulse directions departs from the direction of the spacecraft motion. But there is another 
kind of solutions that consider one or more complete revolutions in the transfer orbit before the 
injection in the final orbit, as foreseen in Equation 33. In this kind of solutions the time specified for 
the maneuver can be very high, in fact, this is recommended to cases when the time specified is 
greater than the period of the initial and final orbits. 
 
Besides that, we should advise that the developed program can not supply the solution for all 
combinations of the input parameters. For certain values of time it can be impossible to obtain one 
solution because for a very small or very large values of the time spent in the maneuver the solution 
can not exist, or the numerical algorithms used in the program do not converge for the solution, 
because the initial values used can be too far from the solution. So, it is recommended a physical 
analysis of the problem, that takes into account the periods of the initial and final orbits, to find the 
range of values for the time spent in the maneuver which is possible to accomplish the maneuver. 
 
Another question to be solved is if the solution is a local or global minimum. Up to where we verified, 
the solution obtained seems to be a global minimum because for the same input parameters, but using 
different initial values, it was not possible until the moment, to obtain better results. It is important to 
notice that the software tests automatically all the results, verifying if the maneuver obtained is just a 
mathematical solution or if it can really be implemented. When we use numerical methods there are 
some solutions, which satisfy the equations, however, in practice, they are impossible. Due to this 
fact, all the points shown in the graphs were tested and they represent solutions capable of being 
implemented. Thus, the developed software was tested with success. 
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