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Abstract. It is proposed a methodology to reconstruct vertical profiles of the absorption (�)
and scattering (�) coefficients in natural waters from in situ radiance measurements in several
depths and single wavelength. A multi-region (� � ��) approach is employed and these coeffi-
cients are assumed as being constant in each region. The inverse problem is iteratively solved
using the radiative transfer equation as direct model. A former work employed a step-by-step
reconstruction methodology, estimating � and � in an alternate manner (Stephany et al., 2000)
(� � �). In the current work, bio-optical models (Mobley, 1994) are employed to correlate
the chlorophyll concentration to � and �, and thus to the single scattering albedo ��. At every
iteration, the inverse solver generates a candidate solution that is a set of discrete chlorophyll
concentration values for each region. The radiative transfer equation is solved using these val-
ues by the Laplace transform discrete ordinate (LTS� ) method (Barichello and Vilhena, 1993;
Segatto and Vilhena, 1994; Segatto et al., 1999) for 50 polar angles and 174 azimuthal modes.
An objective function is given by the square difference between reconstructed and experimental
radiances at every iteration. In order to compensate the nearly exponential radiance decay with
depth, that unbalances the influence of radiances of different depths, a depth correction factor is
used to adjust radiance values at each level. The referred objective function is minimized by an
Ant Colony System (ACS) (Dorigo et al., 1996) implementation. A new regularization scheme
pre-selects candidate solutions based on their smoothness, in addition to the classical Tikhonov
regularization. This scheme was proposed in a crystal growth inverse problem to reconstruct
the diffusion coefficient (Preto et al., 2004). Another chlorophyll candidate profile is generated
and iterations proceed. Test results show the suitability of the proposed method. As hundreds of
iterations are typically demanded, a parallel implementation of the LTS� method (Souto et al.,
2003) is used and executed in a distributed memory machine.
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1. INTRODUCTION

In the last decades, the development of inversion methodologies for radiative transfer prob-
lems has been an important research topic in many branches of science and engineering (Mc-
Cormick, 1992; Gordon, 2002). The direct or forward radiative transfer problem in hydrologic
optics, in the steady state, involves the determination of the radiance distribution in a body of
water, given the boundary conditions, source term, inherent optical properties (IOPs), as the
absorption� and scattering� coefficients, and the scattering phase function. The corresponding
inverse radiative transfer problem arises when physical properties, internal light sources and/or
boundary conditions must be estimated from radiometric measurements of the underwater light
field. In previous works, we tried to establish a general methodology to separately tackle the
reconstrution of internal sources (Stephany et al., 1998), IOP estimation (Stephany et al., 2000;
Chalhoub and CamposVelho, 2000; Chalhoub et al., 2000; Chalhoub and CamposVelho, 2002),
the identification of boundary conditions (CamposVelho et al., 2002, 2003b; Retamoso et al.,
2002), or even a joint inversion scheme (Stephany et al., 2000). In these works, the inverse
model is an implicit technique for parameter and/or function estimation fromin situ sintetic
radiometric measurements. The algorithm is formulated as a constrained nonlinear optimiza-
tion problem, in which the direct problem is iteratively solved for successive approximations of
the unknown parameters. Iteration proceeds until an objective-function, representing the least-
square fit of model results and experimental data added to a regularization term, converges to a
specified small value. An overview of this technique, as well as a survey of the results, can be
found in CamposVelho et al. (2001) or in CamposVelho et al. (2003a).

This work presents a methodology to reconstruct vertical profiles of the absorption and
scattering coefficients in natural waters fromin situ radiance measurements in several depths
and single wavelength. The inverse problem is iteratively solved using the radiative transfer
equation (RTE) as direct model. A former work (Stephany et al., 2000) employed a step-by-
step reconstruction methodology, estimating� and� in an alternate manner. A deterministic
optimizer was employed to solve the associated inverse problem. In the current work, bio-
optical models (Mobley, 1994) are employed to correlate the chlorophyll concentration to� and
�. At every iteration, the inverse solver generates a candidate solution that is a set of discrete
chlorophyll concentration values. The spatial domain (geometrical depth) is discretized in 10
regions (� � ��). These coefficients and thus the chlorophyll concentration are assumed as
being constant in each region. The dicrete chlorophyll profile is then defined by�� points.

The inverse problem is formulated as an optimization problem and iteratively solved using
the radiative transfer equation as direct model. An objective function is given by the square
difference between computed and experimental radiances at every iteration. However, the radi-
ance values near the surface are much higher than those in deeper water, since radiance value
decays nearly exponentially with depth. A depth correction factor for the radiances was first
proposed by Tao et al. (1994). This work employs a new correction factor based on the mean
radiance at each depth level/region.

At each iteration, the RTE is solved using the candidate set of� and� values by the Laplace
transform discrete ordinate (LTS� ) method (Barichello and Vilhena, 1993; Segatto and Vilhena,
1994; Segatto et al., 1999). The RTE variables are discretized in both the polar and azimuthal
dimensions: 50 polar angles and 174 azimuthal angles were considered. The associated opti-
mization problem is solved by an Ant Colony System (ACS) (Dorigo et al., 1996) implemen-
tation. A recent intrinsic regularization scheme that pre-selects candidate solutions based on
their smoothness is applied, quantified by a Tikhonov norm. This scheme was proposed in a
crystal growth inverse problem to reconstruct the diffusion coefficient (Preto et al., 2004). A
subsequent chlorophyll candidate profile is generated and iterations proceed. As hundreds of



iterations are typically demanded and the direct model demands most of the processing time,
a parallel implementation of the LTS� is used and executed in a distributed memory machine.
The code was parallelized using the Message Passing Interface (MPI) communication library
(Forum, 1994). The parallelization scheme distributes the pre-selected candidate solutions of
the current iteration among the processors. Test results show the suitability of the proposed
method using 5% and 30% noisy data. Reconstructions were performed using the proposed
methodology with no depth correction factor for the radiances and with the new factor. The
reconstructed profiles with the new depth correction factor have good agreement to the exact
curves. Parallel performance was also evaluated.

2. RADIATIVE TRANSFER EQUATION IN HYDROLOGIC OPTICS

The Radiative Transfer Equation (RTE) models the transport of photons through a medium
(Sobolev, 1962). Light intensity is given by a directional quantity, the radianceI, that measures
the rate of energy being transported at a given point and in a given direction. Considering
a horizontal plane, this direction is defined by a polar angle� (relative to the normal of the
plane) and a azimuthal angle� (a possible direction in that plane). At any point of the medium,
light can be absorbed, scattered or transmitted, according to the absorption (�) and scattering (�)
coefficients and to a scattering phase function that models how light is scattered in any direction.
An attenuation coefficient� is defined as� � � � � and the geometrical depth is mapped to a
optical depth� that imbeds�. Assuming a plane-parallel geometry, and a single wavelength,
the unidimensional integral-differential RTE, can be written as:
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where� � 	��� �
 and� � 	�� �

 are the cosine of the incident polar angle� and the incident
azimuthal angle, respectively.����� � ��������� is the single scattering albedo. The scattering
phase function���� ����� ���, gives the scattering beam angular distribution, mapping the inci-
dent beam direction��� �� to the scattered direction���� ���, and the source term is���� �� ��.
The heterogeneous medium, in this case offshore ocean water is then modeled as a set of�
homogeneous finite layers. Boundary conditions are defined between regions, at the surface
(incident light) and the bottom of the water. Each layer is denoted as being a region� of the
multiregion domain:

����� � �� � � �� �� � � � � � (2)

There are several resolution methods, most of them adopting the Chandrasekhar’s decom-
position on the azimuthal angle (Chandrasekhar, 1960) that generates��� integral-differential
equations, each one with no dependence on�. For the discrete ordinate method, the above
equations are approximated by a colocation method, where the� integral is computed by the
Gauss-Legendre quadrature formula. This yields a set of� differential equations for each
azimuthal mode. Each set (discretized RTE) is solved by the LTS� method (Barichello and
Vilhena, 1993; Segatto and Vilhena, 1994; Segatto et al., 1999), that generates a system of
equations of order� � � . For the considered test cases, it was assumed� � ��, � � �� and
� � �� �� � � � � �
� (no azimuthal simmetry on�).



This work employs a bio-optical models to correlate the absorption and scattering coeffi-
cients of each region to the chlorophyll concentration. These coefficients are assumed to be
constant in each region. Therefore discrete values�� and�� can be estimated for each region
from the discrete values��.

Usually, chlorophyll profiles can be represented according Gaussian distributions (Mobley,
1994). A particular profile, corresponding to the Celtic Sea was considered:
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where� is the depth in meters and� is given in�����. This profile can be shown in section
6. of this work, termedexact profile. A bio-optical model was formulated by Morel (1991) for
the absorption coefficient,
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where�� is the pure water absorption and�� is a nondimensional, statistically derived chlorophyll-
specific absorption coefficient, and� is the considered wavelength, while another was��� for-
mulated by Gordon and Morel (1983) for the scattering coefficient,
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The considered Celtic Sea profile refers to a type of water that present a high concentration of
phytoplankton in comparison to organic particles (Morel and Prieur, 1977). The values of��

and�� depend on the wavelength and can be found in tables (Mobley, 1994).

2.1 The discrete ordinate equations

Using the addition theorem of the spherical harmonics (Chandrasekhar, 1960), the phase
function can be expressed as
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the radiance and the source term are also expanded as a Fourier decomposition (Chandrasekhar,
1960),
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The substitution of Equations (6)-(7)-(2) in Equation (1) yields
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subjected to the following boundary conditions, for� � ��� �
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and to the interface conditions, for� � �� �� � � � � �� �
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Radiance was decomposed into azimuthal modes, while the phase function was replaced
by the associated Legendre function expansion with�-order of anisotropy.

An approximation of the integral equation (1) is obtained using a quadrature of order
� � � , with nodes���� and weights�!��. The value of� is then discretized in��, with
" � �� �� � � � � � , that are the discrete ordinate directions. The radiate transfer equation is then
expressed as the related discrete ordinate equations, also known as�� equations, given by
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The boundary conditions are
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The scattering angle was then discretized into�� � �� azimuthal modes and� polar angles,
while the domain was split into� homogeneous regions. The integral-differential equation (1)
was rewritten as a set of��� ���� �� ordinary differential equations.

The LTS� method (Barichello and Vilhena, 1993; Segatto and Vilhena, 1994) applies the
Laplace transform on the radiative transfer discrete ordinates equations, given by (11) and (12)

3. INVERSION SCHEME

This work formulates the inverse problem according to an implicit approach, leading to an
optimization problem (Lamm, 1993). the set of parameters to be estimated, is given by�, in
this case, the� discrete values of the chlorophyll concentration� at optical depths� taken at
the interface of the regions. Thus#� � ����� for � � �� �� ���� �� �.

Experimental data are the discrete radiances
���� ��� for � � �� �� ���� � and$ � �� �� ���� � .
The objective function%��� is given by the square difference between experimental and model
radiances plus a regularization term:
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The� discrete values of the concentration are estimated from������� radiance values.����
is the regularization function, that is weighted by a regularization parameter&. For instance,
the 2nd order Tikhonov regularization (Tikhonov and Arsenin, 1977) is defined by
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The regularization term is required for noisy data due to the ill-posedness nature of inverse
problems. Then, small changes in radiance data cause big changes in the concentration profile.
There are some criteria for the choice of&, but an optimal value can be difficult to adjust, as it
requires a choice criteria (Morozov discrepancy principle, L-curve, etc. (CamposVelho et al.,
2002)) that may demand many executions of the inverse solver. A value too small may yield a
profile with fluctuations, while the opposite makes the profile flat.

The influence of radiance data of higher depths can be underestimated since radiances
decrease is nearly exponential with depth. Therefore, a depth correction factor may be used in
the objective function.

It is proposed a new depth correction factor��'��, given by the ratio between the mean
radiance
� related to the polar angle� at each level� and the mean radiance at the surface

�. This is done separately for negative/upward (() and positive/downward (�) polar directions.
The depth correction factor for the regions� � �� 2� ���� �� � is given by:
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For regions� � �� 2� ���� � the depth correction factor is given:
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Thus, the objective function can be written as:
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A previous correction factor was proposed by Tao et al. (1994), where the radiance values
at each level are corrected by

�
��� . In this expression,)� � ���� (r=0,1,...,R), where��

is the depth in meters and� is a scaling factor (in this work,� � 1.5 m). Considering the
adopted plane-parallel geometry, Fig. 1 compares the values of the upward depth-corrected
radiances, while Fig. 2 compares the values of the downward depth-corrected radiances. In
these figures, the radiance decay is shown in function of depth (�) and of the polar angle (�), for
two cases: (a) no depth correction factor, and (b) using the proposed factor. Section 6. presents
the reconstructed profiles for these two alternatives in a particular test case.
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Figure 1: Upward radiance���� �� decay: (a) no depth correction factor, and (b) with the proposed
factor.
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Figure 2: Downward radiance���� �� decay: (a) no depth correction factor, and (b) with the proposed
factor.

4. ANT COLONY SYSTEM

The Ant Colony System (ACS) is a method that employs a meta-heuristic based on the
collective behaviour of ants chosing a path between the nest and the food source (Dorigo et al.,
1996). Each ant marks its path with an amount of pheromone and the marked path is further
employed by other ants as a reference. As an example of this, the sequence in Fig. 3 shows
how ants, trying to go from point A to point E (a), behave when an obstacle is put in the middle
of the original path, blocking the flow of the ants between points B and D (b). Two new paths
are then possible, either going to the left of the obstacle (point H) or to the right (point C). The
shortest path causes a greater amount of pheromone to be deposited by the preceding ants and
thus more and more ants choose this path (c).

In the ACS optimization method, several generations of ants are produced. For each gener-
ation, a fixed amount of ants ( �) is evaluated. Each ant is associated to a feasible path and this
path represents a candidate solution, being composed of a particular set of edges of the graph
that contains all possible solutions. Each ant is generated by choosing these edges on a prob-
abilistic basis. This approach was succesfully used for the Traveling Salesman Problem (TSP)
and other graph-like problems (Becceneri and Zinober, 2001). The best ant of each generation is
then choosed and it is allowed to mark with pheromone its path. This will influence the creation
of ants in the further generations. The pheromone put by the ants decays due to an evaporation



rate. Finally, at the end of all generations, the best solution is assumed to be achieved.

Figure 3: Ants overcoming an obstacle in the trail - from Dorigo et al. (1996).

A solution is composed of linking * nodes and in order to connect each pair of nodes,
 # discrete values can be choosen. This approach was used to deal with a continuous domain.
Therefore, there are *� # possible paths	$� "
 available. Denoting by+ the pheromone decay
rate and�� the initial amount of pheromone, the amount of pheromone��� at generation, is
given by:

����,� � ��� +�����,� � ��� (20)

In this work,�� is calculated as sugested by Bonabeau et al. (1999) using an evalutation- of
the function to be optimized obtained with a greedy heuristics:

�� � ��� * 	-�� (21)

The probability of a given path	$� "
 be choosed is then
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where. � 	��  #
 and!�� is the visibility/cost of each path, a concept that arises from the TSP,
where the cost is the inverse of the distance of a particular path. The above equation assumes that
all paths are possible for any ant, but the TSP does not allow this assumption. The parameters
/ and� are weights that establish the trade-off between the influence of the pheromone and the
visibility in the probability of each path.

However, there is a further scheme for the choice of a path for a new ant. According to a
roulette, a random number in the range	�� �
 is generated for the new ant and it is compared with
a parameter0� chosen for the problem. If the random number is greater than this parameter, the
path is taken according to���. If not, the most marked path is assigned.

In the current work, a ACS based inverse solver with a recent implicit regularization scheme
(Preto et al., 2004) is proposed and employed without the explicit regularization (& � �). Since
here is ana priori information about the smothness of the solution profile, such knowledge is
included in the generation of the candidate solutions, by means of pre-selecting the smoother
ants.

This information can be used as an alternative for the visibility!�� of each path. First, an
overpopulation of ants is generated, making/ � � and� � � in Equation (22) and after, a



certain fraction containing the smoother ants/paths is selected. Thus the visibility is assumed to
be associated to the smoothness of the path. The criteria choosen to select the paths according
to the their smoothness was precisely the 2nd order Tikhonov norm, that is normally used as
a regularization function. Actually, a kind of pre-regularization is performed, and the usual
regularization term is not required.

It was difficult to find an ACS visibility/cost criteria in this problem since it does not belong
to the TSP class and this issue lead to choice of the smoothness for the path of each ant. It can be
shown that the ACS has poor performance compared to other stochastic optimization algorithms
when no visibility information can be defined. In addition, the proposed strategy leads to a
reduction of the number of evaluations of the objective function and therefore improves the
performance since the direct model demands a significant amount of processing time.

5. PARALLEL IMPLEMENTATION

Since the radiative transfer solver accounts for most of the total processing time, the adopted
parallelization strategy was to use a sequential ACS-based inverse solver and a parallel imple-
mentation of the radiative transfer solver, the LTS� .

A preliminary study of the LTS� solver has led to the chosen parallelization strategy.
The method discretizes polar (� discrete values) and azimuthal angles (� � � discrete val-
ues) for� homogeneous regions and employs the non-discrete optical thickness� , that is the
one-dimensional spatial variable. An immediate analysis would consider parallelization based
on the distribution of these quantities among processors:


 polar angles


 azimuthal angles


 regions


 range of optical thickness inside a region


 a combination of the above in a multidimensional arrangement

The discrete ordinates associated to the polar angles are strongly coupled, as can be ob-
served in the Equation (11). This precludes a parallel implementation that distributes these
values among processors. On the other hand, the azimuthal modes are independent and a paral-
lelization based on assigning different modes to different processors is straightforward and was
employed in this work. Therefore, each� azimuthal-mode system of equations of order���
is solved on a different processor. The third option was not considered as continuity of bound-
ary conditions between adjacent regions forces a sequential computation for the regions. The
same restriction applies to the spatial decomposition of the domain inside each region, related
to the optical thickness� . Finally, a combination of the above decompositions would suffer
these implied limitations.

The related code was optimized and parallelized using calls to the message passing com-
munication library MPI and executed on a distributed memory parallel machine, a cluster com-
posed of 17 microcomputers with AMD Athlon 1.67 GHz processors, connected by a standard
Fast Ethernet network.

An important issue is to maximize the amount of computation done by each processor
and to minimize the amount of communication due to the MPI calls in order to achieve good
performance. The speed-up is defined as the ratio between the sequential and parallel execution
times. A linear speed-up denotes that processing time was decreased by a factor of#when using



# processors and can be thought as a kind of nominal limit. Efficiency is defined as the ration of
the speed-up by# and thus it is� for a linear speed-up. Usually, communication penalties lead
to efficiencies lesser than�.

6. NUMERICAL RESULTS

The inverse solver, based on a ACS implementation, was tested for a multi-region (� � ��)
offshore ocean water radiative transfer problem considering� � �� polar angles and� �
�� �� � � � � �
� (no azimuthal symmetry). Two sets of radiance data were used, corrupted with 5%
and 30% gaussian noise. A parallel implementation of the Laplace transform discrete ordinate
(LTS� ) method was used as direct model.

In the test cases, as mentioned in section 2., synthetic data was used to simulate the experi-
mental values of the Celtic sea. In the case of noisy data, no “classical” regularization was used
(& � �). Instead, the smoothness-based pre-selection was employed in the generation of the
ants. The 2nd order Tikhonov norm was used as smoothness criteria.

Since radiance decay is nearly exponential with depth, the use of a depth correction factor
may be required: radiances near the surface have a greater influence in the objective function
than those at higher depths. A new depth correction factor, shown in Section 3, is proposed to
balance the radiance values.

Similarly to other stochastic optimization algorithms, the tuning of parameters in the ACS
has a big influence in the results. This implementation required adjustment of parameters like+,
the pheromone decay rate and0�, used in the roulette scheme. Other parameters may influence
the quality of the solution, like the the number of # possible paths between each pair of the *
nodes, the number of ants �, or the maximum number of iterations�$,. The adopted values
for these parameters are shown in Table 1. In each generation, of the�� ( �) ants,��� were
pre-selected according to their smoothness.

Table 1: Ant Colony System parameters

seed ns np na mit � ��

33 10 3000 90 500 0.03 0.0

Figs. 4 and 5 shows the reconstructed profile of the chlorophyll concentration, using 5%
noisy data. The exact solution is compared to the estimations performed using the ACS-based
solver employing no depth correction factor, and the proposed factor for the reconstruction
using 5% noisy data. It can be seen that the use of the proposed depth correction factor was
decisive for the quality of the solution.

Table 2 compares the processing time of the sequential version to the parallel version for
different number of processors and considering 500 iteractions/generations of the ACS. The
proposed parallelization strategy, i.e. to use a parallel version of the LTS� method that dis-
tributes azimuthal modes among processors, presented good performance and good scaling up
to 16 processors.

7. FINAL REMARKS

This work presented a new methodology for the estimation of the chlorophyll concentration
vertical profiles in natural waters using radiance data in several depths. Vertical profiles of the
absorption and scattering coefficients can be inferred from the chlorophyll profile by means of
bio-optical models.
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Figure 4: Chlorophyll profile reconstruction using 5% gaussian noisy radiance data with no depth cor-
rection factor and with the proposed correction factor.
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Figure 5: Chlorophyll profile reconstruction using 30% gaussian noisy radiance data with the proposed
depth correction factor.



Table 2: Execution time (hours), speed-up and efficiency of the ACS inverse solver for 500 iterations.

� runtime speed-up efficiency
1 56.05
2 28.31 1.98 0.99
4 14.54 3.86 0.96
8 7.80 7.19 0.90
16 4.42 12.68 0.79

A parallel implementation of the Laplace transform discrete ordinate (LTS� ) method was
used as direct model and the objective function is evaluated by the square difference between
experimental and model radiance data at each level/region. A new depth correction factor is
used for the radiances and a recently proposed pre-regularization scheme filters candidate solu-
tions according to their smoothness. The inverse solver is an implementation of the Ant Colony
System meta-heuristics.

The proposed ACS-based inverse solver yield a good estimation of chlorophyll vertical pro-
files using the new depth correction factor for radiance data for a given test case using radiance
data with 5% and 30% noise. No standard regularization was required in the objective function.
Quality of the reconstructed profiles and performance results are shown.
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