<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<identifier>8JMKD3MGPDW34R/3UFHMQ8</identifier>
		<repository>sid.inpe.br/mtc-m16d/2019/11.28.12.55</repository>
		<metadatarepository>sid.inpe.br/mtc-m16d/2019/11.28.12.55.20</metadatarepository>
		<site>mtc-m16d.sid.inpe.br 806</site>
		<issn>2179-4847</issn>
		<citationkey>SouzaSantFerr:2019:FeViBa</citationkey>
		<author>Souza, Felipe Carvalho de,</author>
		<author>Santos, Rafael Duarte Coelho dos,</author>
		<author>Ferreira, Karine Reis,</author>
		<group>LABAC-COCTE-INPE-MCTIC-GOV-BR</group>
		<group>LABAC-COCTE-INPE-MCTIC-GOV-BR</group>
		<group>DIDPI-CGOBT-INPE-MCTIC-GOV-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress>felipe.carvalho@inpe.br</electronicmailaddress>
		<electronicmailaddress>rafael.santos@inpe.br</electronicmailaddress>
		<electronicmailaddress>karine.ferreira@inpe.br</electronicmailaddress>
		<title>GGSOM: ferramenta de visualização baseada em mapas auto-organizáveis</title>
		<conferencename>Simpósio Brasileiro de Geoinformática (GEOINFO)</conferencename>
		<year>2019</year>
		<editor>Lisboa Filho, Jugurta,</editor>
		<editor>Monteiro, Antonio Miguel Vieira,</editor>
		<booktitle>Anais do 20º Simpósio Brasileiro de Geoinformática</booktitle>
		<date>11 -13 nov. 2019</date>
		<publisheraddress>São José dos Campos</publisheraddress>
		<publisher>Instituto Nacional de Pesquisas Espaciais (INPE)</publisher>
		<conferencelocation>São José dos Campos</conferencelocation>
		<keywords>geoinformatica.</keywords>
		<abstract>Analysis of multidimensional and time series data is useful and pertinent to several different applications, being a challenge due to the volume and complexity of the data. A possible approach for analysis of this kind of data is to use clustering algorithms to reduce the dimensionality of the data. This paper presents a tool for clustering and visualization of data, called ggsom, which uses a technique for data dimensionality reduction through projection of the data in a smaller number of dimensions by the Kohonens Self-Organizing Map. The tool is evaluated with data from time series of vegetation coverage from Bahia state.</abstract>
		<organization>Instituto Nacional de Pesquisas Espaciais (INPE)</organization>
		<language>pt</language>
		<secondarytype>PRE CN</secondarytype>
		<tertiarytype>abstract</tertiarytype>
		<format>On-line.</format>
		<area>SER</area>
		<size>159 KiB</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>310-312.pdf</targetfile>
		<lastupdate>2019:11.28.12.55.20 sid.inpe.br/mtc-m19@80/2009/08.21.17.02 simone</lastupdate>
		<metadatalastupdate>2020:05.19.18.33.47 sid.inpe.br/mtc-m19@80/2009/08.21.17.02 simone {D 2019}</metadatalastupdate>
		<mirrorrepository>urlib.net/www/2011/03.29.20.55</mirrorrepository>
		<e-mailaddress>daniela.seki@inpe.br</e-mailaddress>
		<username>simone</username>
		<usergroup>daniela.seki@inpe.br</usergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>sid.inpe.br/mtc-m19@80/2009/08.21.17.02</hostcollection>
		<documentstage>not transferred</documentstage>
		<copyright>urlib.net/www/2012/11.12.15.19</copyright>
		<rightsholder>originalauthor yes</rightsholder>
		<readpermission>allow from all</readpermission>
		<nexthigherunit>8JMKD3MGPCW/3EQCCU5</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3ESGTTP</nexthigherunit>
		<lasthostcollection>sid.inpe.br/mtc-m19@80/2009/08.21.17.02</lasthostcollection>
		<url>http://mtc-m16d.sid.inpe.br/rep-/sid.inpe.br/mtc-m16d/2019/11.28.12.55</url>
	</metadata>
</metadatalist>