Fechar
Metadados

@MastersThesis{Münchow:2011:EsCaCa,
               author = "M{\"u}nchow, Gabriel Bonow",
                title = "Impacto da assimila{\c{c}}{\~a}o de dados de aeross{\'o}is no 
                         modelo ambiental CCAT-BRAMS: um estudo de caso da campanha CLAIM",
               school = "Instituto Nacional de Pesquisas Espaciais",
                 year = "2011",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2011-02-18",
             keywords = "qu{\'{\i}}mica atmosf{\'e}rica, assimila{\c{c}}{\~a}o 
                         avan{\c{c}}ada de dados, aeross{\'o}is, campanha CLAIM, 
                         atmospheric chemical, aerosols, CLAIM campaign.",
             abstract = "Todos os anos no Brasil central, grandes {\'a}reas de floresta, 
                         cerrado e pasto s{\~a}o queimadas, emitindo aeross{\'o}is de 
                         carbono prim{\'a}rio para a atmosfera, especialmente no final da 
                         esta{\c{c}}{\~a}o seca. Os aeross{\'o}is interferem no 
                         balan{\c{c}}o de radia{\c{c}}{\~a}o, afetando diretamente a 
                         quantidade de radia{\c{c}}{\~a}o refletida e retroespalhada de 
                         volta ao espa{\c{c}}o, a radia{\c{c}}{\~a}o absorvida pela 
                         atmosfera, e tamb{\'e}m a radia{\c{c}}{\~a}o de onda longa. 
                         Al{\'e}m dos efeitos diretos, os aeross{\'o}is afetam a 
                         microf{\'{\i}}sica de nuvens, agindo como n{\'u}cleos de 
                         condensa{\c{c}}{\~a}o, modificando o regime de 
                         precipita{\c{c}}{\~a}o e o albedo da nuvem. Durante a 
                         esta{\c{c}}{\~a}o de queima na Am{\'e}rica do Sul, a qualidade 
                         do ar tamb{\'e}m {\'e} significativamente afetada pelos 
                         aeross{\'o}is, diminuindo a visibilidade e causando 
                         doen{\c{c}}as respirat{\'o}rias devido {\`a}s 
                         part{\'{\i}}culas inal{\'a}veis. Modelos num{\'e}ricos de 
                         transporte qu{\'{\i}}mico da atmosfera podem ser usados para 
                         estudar e prever o comportamento dos aeross{\'o}is e seus 
                         efeitos. As simula{\c{c}}{\~o}es feitas por estes modelos podem 
                         obter melhores resultados atrav{\'e}s de m{\'e}todos de 
                         assimila{\c{c}}{\~a}o de dados, utilizando 
                         observa{\c{c}}{\~o}es dispon{\'{\i}}veis para corrigir as 
                         simula{\c{c}}{\~o}es do modelo. Neste estudo, foi utilizado um 
                         sistema de assimila{\c{c}}{\~a}o baseado no m{\'e}todo 
                         variacional em duas dimens{\~o}es (2D-Var), acoplado ao modelo 
                         \textit{Coupled Chemical-Aerosol-Tracer Transport - Brazilian 
                         developments on the Regional Modeling System} (CCATT-BRAMS). O 
                         sistema 2D-Var foi utilizado para assimilar 
                         observa{\c{c}}{\~o}es de concentra{\c{c}}{\~a}o de massa de 
                         material particulado menor que 2,5\$\mu\$m (PM\$_{2.5}\$). 
                         Estas observa{\c{c}}{\~o}es foram coletadas durante a campanha 
                         \textit{Cloud-Aerosol Interaction Measurements} (CLAIM), 
                         realizada em outubro de 2007, na regi{\~a}o norte do Estado do 
                         Mato Grosso, Brasil. As medidas foram realizadas utilizando o 
                         instrumento DataRAM abordo de uma aeronave que coletou 
                         informa{\c{c}}{\~o}es com uma freq{\"u}{\^e}ncia de 10 
                         segundos e 30 segundos. Durante a campanha, foram realizados 17 
                         v{\^o}os ao todo, dos quais 13 puderam ser utilizados neste 
                         estudo. Os resultados apresentam uma consider{\'a}vel melhora nos 
                         valores de PM\$_{2.5}\$ modelados, aproximando o modelo das 
                         observa{\c{c}}{\~o}es, mesmo assimilando uma 
                         observa{\c{c}}{\~a}o m{\'e}dia por v{\^o}o. Os melhores 
                         resultados foram obtidos com a utiliza{\c{c}}{\~a}o do Erro 
                         Relativo de \textit{Background} igual a 200\%, com um fator de 
                         corre{\c{c}}{\~a}o calculado pela assimila{\c{c}}{\~a}o 
                         adaptado ao tipo de observa{\c{c}}{\~o}es assimiladas, com raios 
                         de influ{\^e}ncia inomog{\^e}neos, calculados individualmente 
                         para cada v{\^o}o, e com um banco de dados observados suavizados, 
                         sem picos singulares de concentra{\c{c}}{\~a}o. Com estas 
                         configura{\c{c}}{\~o}es o sistema de assimila{\c{c}}{\~a}o foi 
                         capaz de aproximar de maneira {\'o}tima as an{\'a}lises {\`a}s 
                         observa{\c{c}}{\~o}es. ABSTRACT: In Central Brazil every year 
                         large areas of forest, cerrado and pasture land are bumed emitting 
                         primary carbonaceous aerosols into the atmosphere, especially in 
                         the end of the dry season. The aerosols interfere with the 
                         radiative budget, affecting directly the amount of solar radiation 
                         that is reflected and scattered back to space, and partly absorbed 
                         by the atmosphere. The long wave terrestrial radiation is also 
                         affected. Aerosols also affect cloud microphysics acting as cloud 
                         condensation nuclei (CCN), modifying precipitation patterns and 
                         cloud albedo. During the South American burning season, aerosols 
                         have a significant impact on local and regional air quality 
                         affecting visibility and human health by particle inhalation 
                         causing pulmonary diseases. Atmospheric chemical numerical models 
                         can be used to study and forecast aerosol behavior and effects. 
                         Better simulations of aerosols by numerical models can be achieved 
                         through data assimilation methods including available aerosol 
                         observations to correct the model simulations. In this study an 
                         assimilation system was used based on a two dimensional 
                         variational data assimilation method (2D- VAR) coupled to the 
                         Coupled Chemical-Aerosol-Tracer Transport - Brazilian developments 
                         on the Regional Modeling System (CCATT-BRAMS). The assimilated 
                         observations are mass concentration (MC) of particular matter 
                         smaller than 2,5\$\mu\$m (PM\$_{2.5}\$). The observations 
                         were collected in October 2007, during the Cloud-\textit{Aeroso}l 
                         Interaction Measurements (CLAIM) campaign, which took place in the 
                         northern region of the state of Mato Grosso, Brazil. The 
                         measurements of PM\$_{2.5}\$were collected by a DataRAM 
                         instrument aboard the aircraft that collected information with a 
                         frequency of 10s or 30s. During the campaign 17 flights were 
                         carried out, 13 of which could be used in this study. The 
                         assimilation system shows a considerable improvement of the 
                         modeled PM\$_{2.5}\$ field, approaching its values to the 
                         observations, as expected, even assimilating an average 
                         observation for each flight. The best guess was obtained using the 
                         Relative Background Error equal to 200\%, the correction factor 
                         calculated by assimilation system adapted to the kind of 
                         assimilated observations, inhomogeneous radii of influence, and 
                         smoothed observational data without outliers. With these 
                         parameters the assimilation system was able to approach, in a 
                         optimal way, the analysis to the observations.",
            committee = "Vila, Daniel Alejandro (presidente) and Herdies, Dirceu Luis 
                         (orientador) and Freitas, Karla Maria Longo de (orientador) and 
                         Hoelzemann, Judith Johanna and Correia, Alexandre Lima",
           copyholder = "SID/SCD",
         englishtitle = "Impact of aerosol data assimilation in the CATT-BRAMS 
                         environmerntal model: a case study with data from CLAIM campaign",
             language = "pt",
                pages = "125",
                  ibi = "8JMKD3MGP7W/39549E8",
                  url = "http://urlib.net/rep/8JMKD3MGP7W/39549E8",
           targetfile = "publicacao.pdf",
        urlaccessdate = "14 dez. 2019"
}


Fechar