

INPE-13260-RPQ/799

ON PROPOSING A MARKUP LANGUAGE FOR STATECHARTS

TO BE USED IN PERFORMANCE EVALUATION

Ana Silvia Martins Serra do Amaral
René Rodrigues Veloso

Nandamudi Lakalapalli Vijaykumar

Relatório Técnico.

INPE
São José dos Campos

2005

ABSTRACT

Statecharts have been originally created to specify complex reactive systems for use in
simulating real-time applications. They are a graceful extension of state transition dia-
grams with notions of hierarchy, concurrency and synchronization. Recently they have
been used for specifying and dealing analytically with performance models in which
a Statecharts representation is converted into a Markov chain from which steady-
state probabilities are obtained. The software system that specifies a reactive system
in Statecharts and generates the performance measures is known as PerformCharts. At
the moment, specification of a reactive system, within PerformCharts, is done in the
main program written in C++ programming language. The objective of this paper is to
propose a markup language based on XML to specify a complex reactive system as well
as to comment procedures used to deal with this language in order to obtain performance
information.

PROPOSTA DE UMA LINGUAGEM DE MARCA ÇAO PARA
STATECHARTS PARA SER USADA EM AVALIAÇAO DE

DESEMPENHO

RESUMO

Statecharts foram, originalmente, criadas para especifica çao de sistemas reativos com-
plexos para uso em simulaçao de aplicaçoes de tempo real. Sao uma elegante extensao
de diagramas de transiçao de estados com noçoes de hierarquia, concorrencia e
sincronismo. Recentemente, tem sido utilizados para especifica çao e tratamento anaĺitico
de modelos de desempenho onde a representaçao Statecharts é convertida numa cadeia de
Markov de onde as probabilidades limite sao obtidas. O software que especifica um
sistema reativo em Statecharts e gera suas medidas de desempenho é chamado de
PerformCharts. A- tualmente, a especificaçao de um sistema reativo, dentro do
PerformCharts, é feita dentro de um programa principal na linguagem C++. O objetivo
deste trabalho é propor uma linguagem de marca çao baseada em XML para a
especificaçao de um sistema complexo reativo como também comentar os procedimentos
para o tratamento dessa linguagem a fim de obter informaçao de desempenho.

CHAPTER 1

INTRODUCTION

In general, behavior of a system can be studied by modeling and evaluating its perfor-

mance. It is possible to detect some bottle-necks during the evaluation process. Modeling

now has become an important area of research as the representation of a given system

allows an insight of system behavior before it is constructed. The scope of this research

work concentrates on systems that are known to be complex as they are reactive. Re-

active systems are those that their behavior changes at a given instant according to a

perturbation. In order to evaluate the performance of a given system, two categories

of solutions are used - simulation and analytical approach. The scope of this paper is

concentrated on solutions via analytical methods based on Markov theory. The first nat-

ural solution of representing a reactive system is state-transition diagrams. This is due

to the fact that Markov chains are usually expressed in these diagrams that consist of

states and transition arcs between states. If the events among the states follow an ex-

ponential distribution, then this structure may be considered as a Markov chain. Once

a system is represented as a Markov chain, by applying appropriate numerical methods

(PHILIPPE et al., 1992) (SILVA, 1992), one can determine the steady-state probabilities

with which performance measures can be obtained. However, the use of state-transition

diagrams may be cumbersome especially when dealing with parallel components as they

may lead to exponential blow-up of the model (DRUSINSKY e HAREL, 1989). The work

described here, PerformCharts, is based on Statecharts representation (HAREL, 1987;

HAREL et al., 1987, 1990; HAREL e NAAMAD, 1996; HAREL e POLITI, 1998) of a

complex reactive system and this representation is converted into a Markov chain (VI-

JAYKUMAR, 1999; VIJAYKUMAR et al., 2002). The procedure exploring Statecharts

in performance evaluation begins with the specification of a reactive system. The main

problem is that so far no user-friendly interface (either graphical or textual) has been

developed for PerformCharts. This means that the specification of a given reactive sys-

tem has to be embedded in the main program where the data structures are constructed

in order to deal with the generation of a Markov chain. Therefore this paper proposes a

markup language, PcML (PerformCharts Markup Language), based on XML (eXtensible

Markup Language) for specifying a complex reactive system. The problem still continues

on how to deal with this markup language so that the software is run in order to generate

performance measures. Two approaches (one based on Java and the other based on perl)

will be commented where the specification written in PcML is converted into the main

program from which the developed software can be run and consequently generating the

performance measures.

5

1.1 OUTLINE

The paper is organized as follows:

• SECTION 2 - Statecharts and their use in Performance Models: provides a

brief description of Statecharts as well as how a Markov chain is generated ;

• SECTION 3 - XML - eXtensible Markup Language: addresses basic concepts

of XML.

• SECTION 4 - PcML - PerformCharts Markup Language: introduces the pro-

posed markup language for PerformCharts .

• SECTION 5 - On dealing with PcML for Performance Evaluation: presents

the Java based as well as perl based approaches in order to generate the main

program.

• SECTION 6 - CONCLUSIONS: comments and future plans are discussed.

6

CHAPTER 2

Statecharts and their use in Performance Models

Statecharts are graphical-oriented and are capable of specifying reactive systems. They

have been originally developed to represent and simulate real time systems (HAREL,

1987). Moreover Statecharts come with a strong formalism (HAREL et al., 1987)

(HAREL e POLITI, 1998) and their visual appeal along with the potential features

enable considering complex logic to represent the behavior of reactive systems. They are

an extension of state-transition diagrams and these diagrams are very much improved

with notions of hierarchy (depth), orthogonality (representation of parallel activities)

and interdependence (broadcast-communication). States are clustered by means of rep-

resenting depth. With this feature it is possible to combine a set of states with common

transitions into a macro-state also known as super-state. Super-states are usually orga-

nized before being refined into further sub-states thus enabling a top down approach.

State refinement can be achieved by means of XOR decomposition and AND decompo-

sition. The former decomposition may be used whenever an encapsulation is required.

When a super-state in a high level of abstraction is active, one (and only one) of its

sub-states is indeed active. The latter approach is used to represent concurrency. In this

case when a super-state is active, all of its sub-states are active. One more type of state

can be mentioned that is BASIC when there are no further refinements from this type

of state. In Statecharts the global state of a given model is referred to as a configuration

that is the active basic states of each orthogonal component. Details of definition of each

element as well as the main features are described in (HAREL, 1987), (HAREL et al.,

1987), (HAREL e NAAMAD, 1996) and (HAREL e POLITI, 1998). By definition, when

modeling a given system, there must always be an initial state also known as default

state in Statecharts. When dealing with orthogonal components, it is more natural to

use initial or default configuration indicating the initial or default states within each

orthogonal component. This is the entry point of the system. Another way to enter a

system is through its history, i.e. when a system is entered the state most recently visited

is activated. In order to indicate that history is to be used instead of entry by default, the

symbol H is provided. It is also possible to use the history all the way down to the lowest

level as defined in the Statecharts formalism (HAREL, 1987). In this case the symbol H*

is used. A brief discussion of events considered for performance evaluation (VIJAYKU-

MAR, 1999) and (VIJAYKUMAR et al., 2002) is in order. Events have been classified

into two categories: internal events and external events. Internal events are those that

take zero time when they are enabled. They are also known as immediate events as the

reaction to these take place immediately. They are triggered automatically by the in-

7

ternal logic of Statecharts, i.e, they do not have to be explicitly stimulated. Statecharts

have such built-in events: true(condition), false(condition), entered(State), exit(State).

The basic element action when used as an event that can influence some other orthogo-

nal component is also considered as an immediate event for the purposes of applications

within performance evaluation. This means that whenever an event is associated as ac-

tion, a reaction to this event is immediate. External events are stochastic events (where

time between their activation and their occurrences follow a stochastic distribution) that

have to be externally stimulated to yield new configurations. In order to make the as-

sociation of a Statecharts model with a Markov chain (which consists of converting the

Statecharts specification into a Markov chain), the only type of events considered are

stochastic events. In particular, for Continuous-Time Markov Chains, this distribution

has to be exponential. Once the model is specified in a Statecharts representation, the

first step is to check which events are to be triggered for the initial configuration deter-

mined by default states of each parallel component. Recalling the categories of events

explained earlier, internal (or immediate) events are the ones that are automatically

triggered by the internal logic of Statecharts. As long as these events are found to be

active for the resulting configurations, reactions continuously take place by changing one

configuration to another until a configuration is reached from which no more internal

events are active to be triggered. The next step is to deal with the stochastic events that

have to be explicitly stimulated. Therefore, the algorithm, based on the resulting con-

figuration from internal events, lists which stochastic events are to be triggered so that

transitions are fired to generate new configurations. By considering each event from the

list, a reaction is performed, yielding a new configuration for each event of this list. Once

a configuration is obtained, internal events, if enabled, are triggered, firing transitions

to yield new configurations. In both the cases, actions also have to be considered if they

are associated with these events in a transition. In this case a reaction occurs whenever

appropriate, based on the action, which is considered as an internal event. This process

continues until all the configurations have been expanded. The result of all this process

is a list of a structure that contains a source configuration, stimulated stochastic event

(along with its rate), and the target configuration. This information is a Markov chain

with which steady-state probabilities can be determined. The whole process through an

example is described in (VIJAYKUMAR et al., 2002).

8

CHAPTER 3

XML - eXtensible Markup Language

XML is a kind of meta language, that is, it is not a programming language and can be

considered as consisting of a set of rules that can be used for formatting texts in order

to structure a given data. The main advantage of XML is that it is extensible, platform-

independent, and it is supported by international efforts for standardization. XML is

similar to HTML by making use of tags and attributes. In HTML, tags and associated

attributes are used to present the text in a certain format by a browser. Whereas in the

case of XML, tags are used to organize a set of data and the interpretation of this data

is entirely left to the application that eventually reads it. Just as an example, while <p>

in HTML indicates a paragraph, in XML it might inform price, parameter, person, etc.

depending on the context. By using regular text format, XML makes it possible for any

reader to look at the text without having to use any program for that purpose, i.e, one

can use any text editor to read XML file. However, XML is strict in the sense that a

forgotten tag or an attribute value without quotes generates an error. XML has a set

of useful modules to accomplish some tasks such as: Xlink allows to add hyperlinks to

an XML file; Xpointer and Xfragments are useful in pointing to parts of an XML doc-

ument; CSS is a style sheet language, just like for HTML, to apply to XML files. XSL

is a language that can describe style sheets to enable to rearrange, add and delete tags

and attributes; DOM allows handling XML files from a programming language; Schemas

assist users to define structures of XML-based formats. The best way to appreciate and

get a feeling of what XML documents look like is with a simple example - a company

that sells products on-line. HTML formatting is used to describe the products; however,

names and addresses of customers, and also prices and discounts are formatted with

XML. A customer is described as:

<customer-details id="AcPharm39156">

<name>Acme Pharmaceuticals Co.</name>

<address country="US">

<street>7301 Smokey Boulevard</street>

<city>Smallville</city>

<state>Indiana</state>

<postal>94571</postal>

</address>

</customer-details>

All the tags must have a matching end within XML syntax. As can be seen from the

example, start and end tags <name> and </name> are used to mark up informa-

9

tion. Information marked by the tags is called an element; elements may be further en-

riched by attaching name-value pairs (for example, country=”US” in the example above)

called attributes. Its syntax is quite simple syntax and can be easily processed by a

machine. Moreover, it is understandable to humans. XML is based on SGML, and has

a lot of similarities when compared to HTML. Detailed information about XML can

be found in (Consortium, 2002c; BATES, 2003; BONNEAU et al., 2003; GRAHAM,

1999; HOLZNER, 1998; MADEN, 2000; MADEN e RAY, 2001; PINNOCK et al., 2001;

ST. LAURENT, 1999; YOUNG, 2001; Iso, 2002).

10

CHAPTER 4

PcML - PerformCharts Markup Language

PcML is a markup language, based on XML, whose tags, attributes and other features

represent the elements used in Statecharts for specifying reactive systems as well as their

use in performance evaluation. A diagram of the PcML is shown in Figure 4.1.

FIGURE 4.1 – PcML Diagram.

In the figure 4.1, one can notice boxes using dotted and solid lines. The former ones are

not required in the specification of some systems while the latter ones are mandatory. This

is because some of the elements from Statecharts are optional, such as: conditions, actions

and probabilities, in contrast to the elements such as: states, events and transitions, that

11

always must be used for specifying a system in Statecharts. For instance, the element

description of info serves merely for documentation purposes while the element States

will be used in the calls of functions in PerformCharts. The boxes connected to other

boxes, with the symbol -> are the elements allowed between the matching start and

end tags. Consider the element Conditions, the tags allowed between it and /Conditions

are: InState, NotCondition and ComposedCondition. In the same way, the elements

ANDCond and ORCond are allowed to be specified within ComposedCondition, and so

on. The 1..8 means that the number of occurrences of such elements must be in the

range of one to infinite. The general structure of a PcML file is shown in Figure 4.2.

12

<?xml version="1.0" encoding="ISO-8859-1"?>
<PcML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="PcMLschema.xsd" Title="" Date="">

<Info>
<Author>

<Name/>
<Email/>

</Author>
<Description/>

</Info>
<States>

<Root Name="" Type="">
<State Name="" Type="" Default="">

<EMPTY/>
<History/>

</State>
</Root>

</States>
<Conditions>

<InState Name="" State=""/>
<NotCondition Name="" Condition=""/>
<ComposedCondition Name="">

<ANDCond Cond1="" Cond2=""/>
</ComposedCondition>
<ComposedCondition Name="">

<ORCond Cond1="" Cond2=""/>
</ComposedCondition>

</Conditions>
<Actions>

<EventTriggerAction Name="" Event=””/>
</Actions>
<Events>

<TrueCondition Name="" Condition=""/>
<FalseCondition Name="" Condition=""/>
<ExitedState Name="" State=""/>
<EnteredState Name="" State=""/>
<Stochastic Name="" Value=""/>

</Events>
<Probabilities>

<Probability Name="" Value=""/>
</Probabilities>
<Transitions>

<Transition Source="" Event="" Condition="" Probability="" Action="" Destination=""/>
</Transitions>

</PcML>

FIGURE 4.2 – General Structure of a PcML file.

XML 1.0 supplies the Document Type Definition (DTD) mechanism for declaring con-

straints on the use of markup, but automated processing of XML documents requires

13

http://www.w3.org/2001/XMLSchema-instanc
http://www.w3.org/2001/XMLSchema-instance

more rigorous and comprehensive facilities in this area. Requirements are for constraints

on how the component parts of an application fit together, the document structure,

attributes, data-typing, and so on. The XML Schema Working Group is addressing

means for defining the structure, content and semantics of XML documents (Consortium,

2002a). The purpose of a schema is to define and describe a class of XML documents by

using these constructs to constrain and document the meaning, usage and relationships

of their constituent parts: datatypes, elements and their content, attributes and their

values, entities and their contents and notations. Schema constructs may also provide

for the specification of implicit information such as default values. Schemas document

their own meaning, usage, and function. Thus, the XML schema language can be used

to define, describe and catalogue XML vocabularies for classes of XML documents (Con-

sortium, 2002b). For more details about the Schema for PcML, please refer to appendix

A. In order to understand the specification of a reactive system within PcML consider

an example of a System with two machines and a repairer shown in Figure 4.3.

FIGURE 4.3 – Specification of a system with two machines and one repairer.

This system is comprised of two Machines and one Repairer. The component repairer

is responsible for repairing the machines when they fail and a priority is provided to

machine 1 whenever both the machines are down. The behavior of the machines and the

repairer is modeled by the state transition diagram, where the basic states in both the

machines are: W (Waiting), P (Processing) and B (Broken). For the repairer, the basic

states are: R1 (Repairing Machine 1), WRe (Waiting) and R2 (Repairing Machine 2).

14

Transition Source Event Condition Action Destination
1 W1 in(W2) P1
2 P1 gama1 W1
3 P1 beta1 B1
4 B1 a1 W1
5 W2 in(B1) P2
6 P2 gama2 W2
7 P2 beta2 B2
8 B2 a2 W2
9 WRe in(B1) R1

10 R1 Mi1 a1 WRe
11 WRe in(B2)^not in(B1) R2
12 R2 Mi2 a2 WRe

FIGURE 4.4 – Transitions of the system represented in Figure 4.3.

The initial configuration of the system is obtained by taking the default basic states of

each parallel component Machine 1, Machine 2 and Repairer, i.e, (P1,W2,WRe). The

PcML specification of such reactive system is given in the Figure 4.

Once the specification is over, a first reaction is performed by first checking the internal

events. In this example the internal events are: tr[in(W2)], tr[in(B1)], tr[in(B2) ^ not in

(B1)]. The initial configuration has an active state W2, so the internal event tr[in(W2)] is

enabled and the configuration becomes (P1,W2,WRe). Next, the enabled events are the

stochastic ones. In the list, one can notice the stochastic events: gama1 and beta1. In the

case of the event gama1 were enabled, the next configuration would be (W1,W2,WRe)

or, if beta1 were enabled the next configuration would be (B1,W2,WRe). Suppose that

during the process of stimulating the events, a configuration is (B1,B2,WRe). In this

case, the active events are the immediate events provided by tr[in(B1)] and tr[in(B2)

^ not in(B1)]. These are the events that have to be checked and enabled before the

stochastic events.

15

<?xml version="1.0"?>
<PerformCharts title="Standby Redundancy System" date="2002-12-01"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="PcMLschema.xsd">

<Info>

</Info>
<States>

<Author>
<Name>Ana Silvia</Name>
<E-mail>anasil@lac.inpe.br</E-mail>

</Author>

<Root Name="System" Type="AND">
<State Name="Machine 1" Type="XOR" Default="P1">

<State Name="P1" Type="BASIC"/>
<State Name="W1" Type="BASIC"/>
<State Name="B1" Type="BASIC"/>

</State>
<State Name="Machine 2" Type="XOR" Default="W2">

<State Name="P2" Type="BASIC"/>
<State Name="W2" Type="BASIC"/>
<State Name="B2" Type="BASIC"/>

</State>
<State Name="Repairer" Type="XOR" Default="WRe">

<State Name="WRe" Type="BASIC"/>
<State Name="R1" Type="BASIC"/>
<State Name="R2" Type="BASIC"/>

</Root>
</States>
<Conditions>

</State>

<InState Name="C1" State="W2"/>
<InState Name="C2" State="B1"/>
<InState Name="C3" State="B2"/>
<NotCondition Name="C4" Condition="C2"/>
<ComposedCondition Name="C5">

<ANDCOND Cond1="C3" Cond2="C4"/>
</ComposedCondition>

</Conditions>

FIGURE 4.5 – PcML Specification of the system represented in Figure 4.3.
(continue)

16

mailto:anasil@lac.inpe.br
http://www.w3.org/2001/XMLSchema-instance

<Actions>
<EventTriggerAction Name="Eta1M1" Event="a1"/>
<EventTriggerAction Name="Eta1M2" Event="a2"/>

</Actions>
<Events>

<TrueCondition Name="E1" Condition="C1"/>
<TrueCondition Name="E2" Condition="C2"/>
<TrueCondition Name="E3" Condition="C5"/>
<Stochastic Name="Beta1" Value="0.1"/>
<Stochastic Name="Gama1" Value="5.0"/>
<Stochastic Name="Beta2" Value="0.2"/>
<Stochastic Name="Gama2" Value="5.0"/>
<Stochastic Name="Mi1" Value="3.0"/>
<Stochastic Name="Mi2" Value="3.0"/>

</Events>
<Transitions>

<Transition Source="W1" Event="E1" Destination="P1"/>
<Transition Source="P1" Event="Beta1" Destination="B1"/>
<Transition Source="P1" Event="Gama1" Destination="W1"/>
<Transition Source="B1" Event="a1" Destination="W1"/>
<Transition Source="W2" Event="E2" Destination="P2"/>
<Transition Source="P2" Event="Beta2" Destination="B2"/>
<Transition Source="P2" Event="Gama2" Destination="W2"/>
<Transition Source="B2" Event="a2" Destination="W2"/>
<Transition Source="WRe" Event="E2" Destination="R1"/>
<Transition Source="WRe" Event="E3" Destination="R2"/>
<Transition Source="R1" Event="Mi1" Action="Eta1M1" Destination="WRe"/>
<Transition Source="R2" Event="Mi2" Action="Eta1M2" Destination="WRe"/>

</Transitions>
</PerformCharts>

FIGURE 4.5 - (conclusion)

17

18

CHAPTER 5

On dealing with PcML for Performance Evaluation

The software for PerformCharts was developed in C++. As mentioned previously, in

order to compute the performance measures of a given reactive system, it is necessary

to code first the specification of the system itself as a block within PerformCharts’ main

program in C++. In the same main program the second part consists of generating a

Markov chain and finally the third part deals with invoking the methods to determine

the performance measures. The specification part within PerformCharts’ main program

is basically function calls for the creation of the states, conditions, events, actions, tran-

sitions and other elements of a reactive system. The complete main program for the

system represented in Figure 4.3 is shown in Figure 5.1.

19

#include <iostream.h>
 #include <fstream.h>

 #include "stcht.h"
 #include "graphbas.h"
 #include "graphgen.h"
 #include "mkchain.h"

void main ()
 {

ofstream fout ("c:\\Statecharts\\Stcharts2\\out\\petri1.txt");

Statechart System;

// States
System.createRoot("System",AND);
System.createSonState ("Machine 1",OR,"System");
System.createSonState ("P1",BASIC,"Machine 1");
System.createSonState ("W1",BASIC,"Machine 1");
System.createSonState ("B1",BASIC,"Machine 1");
System.createSonState ("Machine 2",OR,"System");
System.createSonState ("P2",BASIC,"Machine 2");
System.createSonState ("W2",BASIC,"Machine 2");
System.createSonState ("B2",BASIC,"Machine 2");
System.createSonState ("Repairer",OR,"System");
System.createSonState ("WRe",BASIC,"Repairer");
System.createSonState ("R1",BASIC,"Repairer");
System.createSonState ("R2",BASIC,"Repairer");
System.setDefaultEntry ("Machine 1","P1");
System.setDefaultEntry ("Machine 2","W2");
System.setDefaultEntry ("Repairer","WRe");

// Defining Primitive Events right now for all the States. This will avoid
// consistency error because when an action is declared that event
// must have been defined earlier.

// Primitive Events (Stochastic Events and Actions)
System.createPrimEvent ("Beta1",0.1);
System.createPrimEvent ("Gama1",5.0);
System.createPrimEvent ("Beta2",0.2);
System.createPrimEvent ("Gama2",5.0);
System.createPrimEvent ("Mi1",3.0);
System.createPrimEvent ("Mi2",3.0);
System.createPrimEvent("a1");
System.createPrimEvent("a2");

FIGURE 5.1 – Main program in C++ for the System represented in Figure 4.3
(continue)

20

// Conditions
InStateCondition *inC1 = System.createInStateCondition("W2");
InStateCondition *inC2 = System.createInStateCondition("B1");
InStateCondition *inC3 = System.createInStateCondition("B2");
NotCondition *ncC4 = System.createNotCondition(*inC2);
ComposedCondition *ccC5 = System.createComposedCondition(ANDCOND,*inC3,*ncC4);

// Actions
EventTriggeringAction *Eta1M1 = System.createEventTrigAction("a1");
EventTriggeringAction *Eta1M2 = System.createEventTrigAction("a2");

 //Events
TrueCondEvent *tevE1 = System.createTrueCondEvent (*inC1);
TrueCondEvent *tevE2 = System.createTrueCondEvent (*inC2);
TrueCondEvent *tevE3 = System.createTrueCondEvent (*ccC5);

 //Probabilities

// Transitions
Transition *transW1_P1= System.createTransition (*tevE1);
System.addSourceNode (*transW1_P1, "W1");
System.addDestinationNode (*transW1_P1, "P1");

Transition *transP1_B1= System.createTransition ("Beta1");
System.addSourceNode (*transP1_B1, "P1");
System.addDestinationNode (*transP1_B1, "B1");

Transition *transP1_W1= System.createTransition ("Gama1");
System.addSourceNode (*transP1_W1, "P1");
System.addDestinationNode (*transP1_W1, "W1");

Transition *transB1_W1= System.createTransition ("a1");
System.addSourceNode (*transB1_W1, "B1");
System.addDestinationNode (*transB1_W1, "W1");

Transition *transW2_P2= System.createTransition (*tevE2);
System.addSourceNode (*transW2_P2, "W2");
System.addDestinationNode (*transW2_P2, "P2");

Transition *transP2_B2= System.createTransition ("Beta2");
System.addSourceNode (*transP2_B2, "P2");
System.addDestinationNode (*transP2_B2, "B2");

Transition *transP2_W2= System.createTransition ("Gama2");
System.addSourceNode (*transP2_W2, "P2");
System.addDestinationNode (*transP2_W2, "W2");

Transition *transB2_W2= System.createTransition ("a2");
System.addSourceNode (*transB2_W2, "B2");
System.addDestinationNode (*transB2_W2, "W2");

FIGURE 5.1 - (continuation)

(continue)

21

Transition *transWRe_R1= System.createTransition (*tevE2);
System.addSourceNode (*transWRe_R1, "WRe");
System.addDestinationNode (*transWRe_R1, "R1");

Transition *transWRe_R2= System.createTransition (*tevE3);
System.addSourceNode (*transWRe_R2, "WRe");
System.addDestinationNode (*transWRe_R2, "R2");

Transition *transR1_WRe= System.createTransition ("Mi1", *Eta1M1);
System.addSourceNode (*transR1_WRe, "R1");
System.addDestinationNode (*transR1_WRe, "WRe");

Transition *transR2_WRe= System.createTransition ("Mi2", *Eta1M2);
System.addSourceNode (*transR2_WRe, "R2");
System.addDestinationNode (*transR2_WRe, "WRe");

System.printStates(fout);
System.printTransitions (fout);

flush (fout);
GraphBase gb;
GraphGenerator gen;

 //Perform reaction - generate all possible Configurations

gen.generateGraph (System, gb);

gb.printOn (fout);

flush (fout);

//Determine steady-state probabilities

MarkovChainGenerator mk (gb);

mk.generateLimitingProbabilities ();

mk.printLimitProbabilities (fout);

mk.printCompStLimitProb (fout);

 }

FIGURE 5.1 - (conclusion)

22

The main idea here is to take the PcML and convert it into the main program with which

one can link to other classes in order to generate the desired performance measures. As

already mentioned earlier, two approaches have been used in dealing with PcML: Perl

and Java. It is worth stressing that both these languages can deal with XML tags and

therefore these resources have been used.

23

Schema PcMLschema.xsd
Description of the PcML Elements

Elements Simple types
Actions floatProbType
ANDCond floatStateType
Author rootType
ComposedCondition stateType
Conditions

Email

EnteredState

Events

EventTriggerAction

ExitedState

FalseCondition

History

HStar

Info

InState

Name

NotCondition

ORCond

PcML

Probabilities

Probability

Root

State

States

Stochastic

Transition

Transitions

TrueCondition

element Actions

diagram

children EventTriggerAction

used by element
PcML

source <xs:element name="Actions">
<xs:complexType>
<xs:sequence>
<xs:element ref="EventTriggerAction" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Use in PcML
<Actions>

<EventTriggerAction Name=""/>
<EventTriggerAction Name=""/>
.......

24

</Actions>

element ANDCond

diagram

used by element
ComposedCondition

attributes Name

Type
Use
Default
Fixed
Annotation

Cond1
xs:string
required

Cond2
xs:string
required

source <xs:element name="ANDCond">
<xs:complexType>
<xs:attribute name="Cond1" type="xs:string" use="required"/>
<xs:attribute name="Cond2" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

PcML use
<ANDCond Cond1="" Cond2=""/>

element Author

diagram

children Name Email

used by element
Info

source <xs:element name="Author">
<xs:complexType>
<xs:sequence>
<xs:element ref="Name" maxOccurs="unbounded"/>
<xs:element ref="Email" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Use in PcML:
<Author>

<Name/>
<Email/>
........

</Author>

25

<Email/>
........

</Author>

element ComposedCondition

diagram

children ANDCond ORCond

used by element
Conditions

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

source <xs:element name="ComposedCondition">
<xs:complexType>
<xs:choice>
<xs:element ref="ANDCond"/>
<xs:element ref="ORCond"/>

</xs:choice>
<xs:attribute name="Name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

PcML use
<ComposedCondition Name="">

<ANDCond Cond1="" Cond2=""/>
</ComposedCondition>
<ComposedCondition Name="">

<ORCond Cond1="" Cond2=""/>
</ComposedCondition>

element Conditions

diagram

children InState NotCondition ComposedCondition

used by element
PcML

source <xs:element name="Conditions">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref="InState"/>
<xs:element ref="NotCondition"/>

26

<xs:element ref="ComposedCondition"/>
</xs:choice>

</xs:complexType>
</xs:element>

Use in PcML
<Conditions> ... </Conditions>

The Primitive Conditions set defines, basically, the boolean values true and false to b e evaluated during a transition by the
system. In addition, composed conditions also can be used in the specification of a system. The condition types implemented in the
PerformCharts are:

<InState Name="" State=""/> True if a component of a system is in a state specified as parameter.

<NotCondition Name="" Condition=""/> The opposite value of a condition specified as parameter.

<ComposedCondition Name="">..... </ComposedCondition> Composed by more than one conidtion by the logical operator s And and
OR.

element Email

diagram

type restriction of xs:string

used by element
Author

facets pattern
[\p{L}_-]+(\.[\p{L}_-]+)*@[\p{L}_]+(\.[\p{L}_]+)+

source <xs:element name="Email">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[\p{L}_-]+(\.[\p{L}_-]+)*@[\p{L}_]+(\.[\p{L}_]+)+"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

element EnteredState

diagram

used by element
Events

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

State
xs:string
required

source <xs:element name="EnteredState">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="State" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Use in PcML
<EnteredState Name="" State=""/>

27

element Events

diagram

children TrueCondition FalseCondition EnteredState ExitedState Stochastic

used by element
PcML

source <xs:element name="Events">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref="TrueCondition"/>
<xs:element ref="FalseCondition"/>
<xs:element ref="EnteredState"/>
<xs:element ref="ExitedState"/>
<xs:element ref="Stochastic"/>

</xs:choice>
</xs:complexType>

</xs:element>

element EventTriggerAction

diagram

used by element
Actions

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Event
xs:string
required

source <xs:element name="EventTriggerAction">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Event" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

element ExitedState

diagram

28

used by element
Events

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

State
xs:string
required

source <xs:element name="ExitedState">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="State" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Use in PcML

<ExitedState Name="" State=""/>

element FalseCondition

diagram

used by element
Events

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Condition
xs:string
required

source <xs:element name="FalseCondition">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Use in PcML

<FalseCondition Name="" Condition=""/>

element History

diagram

used by element
State

source <xs:element name="History">
<xs:complexType/>

</xs:element>

29

element HStar

diagram

used by element
State

source <xs:element name="HStar">
<xs:complexType/>

</xs:element>

element Info
diagram

children Author Description

used by element
PcML

source <xs:element name="Info">
<xs:complexType>
<xs:sequence>
<xs:element ref="Author" maxOccurs="unbounded"/>
<xs:element name="Description" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Use in PcML:
<Info>

</Info
>

<Author> ... </Author>
<Description> ... </Description>

element Info/Description

diagram

type xs:string

source <xs:element name="Description" type="xs:string" minOccurs="0"/>

Use in PcML
<Description> ... </Description>

element InState

diagram

used by element
Conditions

30

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

State
xs:string
required

source <xs:element name="InState">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="State" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Use in PcML
<InState Name="" State=""/>

element Name

diagram

type xs:string

used by element
Author

source <xs:element name="Name" type="xs:string"/>

element NotCondition

diagram

used by element
Conditions

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Condition
xs:string
required

source <xs:element name="NotCondition">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

element ORCond

diagram

31

used by element
ComposedCondition

attributes Name

Type
Use
Default
Fixed
Annotation

Cond1
xs:string
required

Cond2
xs:string
required

source <xs:element name="ORCond">
<xs:complexType>
<xs:attribute name="Cond1" type="xs:string" use="required"/>
<xs:attribute name="Cond2" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

element PcML

diagram

children Info States Conditions Actions Events Probabilities Transitions

attributes Name

Type
Use
Default
Fixed
Annotation

Title
xs:string
required

Date
xs:date

source <xs:element name="PcML">
<xs:complexType>
<xs:sequence>
<xs:element ref="Info" minOccurs="0"/>
<xs:element ref="States"/>
<xs:element ref="Conditions" minOccurs="0"/>
<xs:element ref="Actions" minOccurs="0"/>
<xs:element ref="Events"/>
<xs:element ref="Probabilities" minOccurs="0"/>
<xs:element ref="Transitions"/>

</xs:sequence>
<xs:attribute name="Title" type="xs:string" use="required"/>
<xs:attribute name="Date" type="xs:date"/>

</xs:complexType>
</xs:element>

32

element Probabilities

diagram

children Probability

used by element
PcML

source <xs:element name="Probabilities">
<xs:complexType>
<xs:sequence>
<xs:element ref="Probability" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Use in PcML
<Probabilities>

<Probability Name="" Value=""/>

</Probabilities>

element Probability

diagram

used by element
Probabilities

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Value
floatProbType
required

source <xs:element name="Probability">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Value" type="floatProbType" use="required"/>

</xs:complexType>
</xs:element>

Use in PcML
<Probability Name="" Value=""/>

element Root

diagram

children State

used by element
States

33

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Type
rootType
required

source <xs:element name="Root">
<xs:complexType>
<xs:sequence>
<xs:element ref="State" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Type" type="rootType" use="required"/>

</xs:complexType>
</xs:element>

element State

diagram

children EMPTY State History HStar

used by elements
Root State

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Type
stateType
required

Default
xs:string

source <xs:element name="State">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="EMPTY">
<xs:complexType/>

</xs:element>
<xs:element ref="State"/>

</xs:choice>
<xs:choice minOccurs="0">
<xs:element ref="History"/>
<xs:element ref="HStar"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Type" type="stateType" use="required"/>
<xs:attribute name="Default" type="xs:string"/>

</xs:complexType>
</xs:element>

34

 element State/EMPTY

diagram

source <xs:element name="EMPTY">
<xs:complexType/>

</xs:element>

 element States

diagram

children Root

used by element
PcML

source <xs:element name="States">
<xs:complexType>
<xs:sequence>
<xs:element ref="Root"/>

</xs:sequence>
</xs:complexType>

</xs:element>

 element Stochastic

diagram

used by element
Events

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Value
floatStateType
required

source <xs:element name="Stochastic">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Value" type="floatStateType" use="required"/>

</xs:complexType>
</xs:element>

element Transition

diagram

used by element
Transitions

35

attributes Name

Type
Use
Default
Fixed
Annotation

Source
xs:string
required

Event
xs:string
required

Condition
xs:string

Probability
xs:string

Action
xs:string

Destination
xs:string
required

source <xs:element name="Transition">
<xs:complexType>
<xs:attribute name="Source" type="xs:string" use="required"/>
<xs:attribute name="Event" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string"/>
<xs:attribute name="Probability" type="xs:string"/>
<xs:attribute name="Action" type="xs:string"/>
<xs:attribute name="Destination" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

element Transitions

diagram

children Transition

used by element
PcML

source <xs:element name="Transitions">
<xs:complexType>
<xs:sequence>
<xs:element ref="Transition" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

element TrueCondition

diagram

used by element
Events

attributes Name

Type
Use
Default
Fixed
Annotation

Name
xs:string
required

Condition
xs:string
required

source <xs:element name="TrueCondition">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

36

 simpleType floatProbType
type restriction of xs:float

used by attribute
Probability/@Value

facets
maxI

nclusive
1.0

0.0
minExclusive

source <xs:simpleType name="floatProbType">
<xs:restriction base="xs:float">
<xs:maxInclusive value="1.0"/>
<xs:minExclusive value="0.0"/>

</xs:restriction>
</xs:simpleType>

simpleType floatStateType
type restriction of xs:float

used by attribute
Stochastic/@Value

facets minExclusive
0.0

source <xs:simpleType name="floatStateType">
<xs:restriction base="xs:float">
<xs:minExclusive value="0.0"/>

</xs:restriction>
</xs:simpleType>

simpleType rootType
type restriction of xs:string

used by attribute
Root/@Type

facets enumeration
AND

enumeration
OR

source <xs:simpleType name="rootType">
<xs:restriction base="xs:string">
<xs:enumeration value="AND"/>
<xs:enumeration value="OR"/>

</xs:restriction>
</xs:simpleType>

37

 simpleType stateType
type restriction of xs:string

used by attribute
State/@Type

facets
enu

meration
BASIC

XOR
enumeration

AND
enumeration

source <xs:simpleType name="stateType">
<xs:restriction base="xs:string">
<xs:enumeration value="BASIC"/>
<xs:enumeration value="XOR"/>
<xs:enumeration value="AND"/>

</xs:restriction>
</xs:simpleType>

38

Both the languages, Perl and Java, can deal with XML tags and these resources have

been used. Both the implementations access and manipulate the PcML document by

means of DOM(Document Object Model)-based parsing. This DOM parser reads an

XML document and creates objects to represent the different parts of that document.

These objects are associated with specific methods and properties, and are used to ma-

nipulate and access information about it. Thus, the entire XML document is represented

as a hierarchy ”tree” of these objects, with the DOM parser providing a simple API

to move between different branches. Once a particular node has been reached, built-in

methods can be used to obtain value of the node, and use it within the script (Icarus,

2002). The DOM specification treats every part of the document as a node consisting of

a type and a value. It supports all the different structures typically found in an XML

document: elements, attributes, namespaces, entities, notations and others. The DOM

specification is designed to be usable with any programming language. Therefore, it at-

tempts to use a common core set of features which are available in all languages: DOM

defines a standard set of interfaces for representing documents, a standard model of how

these objects can be combined, and a standard set of methods for accessing and manip-

ulating them. The DOM specification also attempts to remain neutral in its interface

definitions. DOM is a W3C Recommendation and it is recognized as a Web standard. In

Perl, it is implemented as a package XML::DOM. Thus, both programs read the PcML

file and, according to the rules established in a DTD/Schema, check if it is well formed

if the tags contained in it are valid. Errors are reported if they are found.

Once the PcML specification is converted into a main program, it has to be linked to

the approriate library to generate an executable file of the PerformCharts ready to be

run. Perl code consists in traversing the PcML document searching for given tags with

their values and attributes. Once retrieving these tags along with their corresponding

values and attributes, it writes text lines in the main program file consisting of functions

calls of PerformCharts. Detailed information on how to use XML in Perl, can be found

in (RAY, 2002; RIEHL e STERIN, 2002)

In Java, after the hierarchy tree of nodes/objects is created, the nodes will be searched

by internal methods which use Xpath expressions. Detailed information on how to use

XML in Java and XPath, can be found (MARUYAMA, 2002) and (VELOSO, 2003).

Now, some examples of PcML definitions (for the reactive system in Figure 4.3) and

their corresponding C++ commands are in order.

By specifying the root and a State in PcML as

<Root Name="System" Type="AND">

<State Name="Machine1" Type="XOR" Default="P1">

the following C++ commands are generated:

39

Statechart System;

System.createRoot("System",AND);

System.createSonState ("Machine1",OR,"System");

System.setDefaultEntry ("Machine1","P1");

One can observe that the name assigned to the root state is also assigned to the system

being modeled. The example shown above does not use any entry by History feature.

In the case it were used, a command line similar to System.createHistoryEntry(”State”)

would be generated.

Next, the condition specification in PcML:

<InState Name="C1" State="W2"/>

will generate:

InStateCondition *inC1 = System.createInStateCondition("W2");

Based on the appropriate definitions of the events, function calls have to be gener-

ated in the C++ program. Definition of stochastic events is based on the method cre-

atePrimEvent and its parameters are a string with the event’ s name and a transition

rate. The same method is used without the transition rate for defining an event that will

be used as an action. Just recalling the specification of an action for clarification pur-

poses, in C++, action is first defined as a primitive event but without any value for the

transition rate. Only then, this primitive event is defined as an action through the class

EventTriggerAction. It has the same semantic meaning as pre-defined internal events

(true, false, entered, exited) when considering the dynamics of Statecharts. In the case of

pre-defined internal events they are also identified by names. However, some restrictions

are in order: in case of true and false, if they are related to conditions, these conditions

must have already been defined; when considering entered and exited, they use a state

as their parameter, and the state must have already been defined. The following specifi-

cation in PcML:

<Events>

...

<Stochastic Name="Mi1" Value="3.0"/>

...

</Events>

PcML block shows a typical specification of Action.

<Actions>

<EventTriggerAction Name="Eta1M1" Event="a1"/>

...

</Actions>

An example for True Condition Event is shown. Remember that the Condition C1 must

40

have been defined earlier:

<Events>

<TrueCondition Name="E1" Condition="C1"/>

...

</Events>

will generate the following C++ main program lines:

System.createPrimEvent ("Mi1",3.0);

System.createPrimEvent(a1");

EventTriggeringAction *Eta1M1 = System.createEventTrigAction("a1");

TrueCondEvent *tevE1 = System.createTrueCondEvent (*inC1);

In Statecharts any event can be combined with a condition in order to guard the event

meaning that even the event is enabled, it cannot be triggered if the guarding condition

is not satisfied. Therefore, a class ConditionedEvent has been designed to deal with such

situations and this class takes two parameters, one for the event and the second is the

condition. The example shown in the Figure 4.3 has no such events.

ConditionedEvent *cevR1=example.createConditionedEvent (*ncR1, ”Lambda r”);

Here is one example of the creation of a transition, its specification and the C++ line

command:

<Transition Source="W1" Event="E1" Destination="P1"/>

<ransition Source=”R1” Event=”Mi1” Action=”EtaM1” Destination=”Wre”/>

will generate the following lines in the main program:

Transition *transW1_P1 = System.createTransition (*tevE1);

System.addSourceNode (*transW1_P1,"W1");

System.addDestinationNode (*transW1_P1,"P1");

Transition *transR1_WRe= System.createTransition ("Mi1", *Eta1M1);

System.addSourceNode (*transR1_WRe, "R1");

System.addDestinationNode (*transR1_WRe, "WRe");

Finally, the following C++ program lines are the function calls that will generate the

performance evaluation:

GraphBase gb;

GraphGenerator gen;

//Perform reaction - generate all possible Configurations

gen.generateGraph (System, gb);

gb.printOn (fout);

flush (fout);

//Determine steady-state probabilities

MarkovChainGenerator mk (gb);

41

mk.generateLimitingProbabilities ();

mk.printLimitProbabilities (fout);

mk.printCompStLimitProb (fout);

42

CHAPTER 6

Conclusions

6.1 Conclusions

Complex reactive systems are one of a kind where many intricacies have to be represented.

Statecharts have powerful features where it is easier to represent such systems in most

of the cases. In case of performance models, it was possible to associate Statecharts

representation to a mathematical solution, in particular to Markov chains from which

performance measures of a reactive system can be obtained. The question remained was

the interface. A graphical interface is being developed. However, due to the growing use

of interoperability technologies, especially XML, it has been decided to adopt it in the

context of performance evaluation. Thus, by adapting XML to PerformCharts, PcML was

created. The development of such language along with the solution approaches to deal

with it were quite fast and started as a course project. This interface gave a boost to the

use of PerformCharts due to its easiness in specifying a performance model. Future work

related to this project is to develop a web-based PerformCharts where a reactive system

can be delivered in graphical form or in PcML in order to calculate the performance

measurements of the given system. The main idea is to convert the graphical interface to

PcML. However, other approaches of generating the performance measurements without

having to convert into a main program are under consideration.

43

44

REFERENCES

10

INTERNATIONAL ORGANIZATION STANDARDIZATION, ISO 8879:1986, Nov

2002. Standard Generalized Markup Language (SGML)

http://www.iso.ch/cate/d16387.html.

Bates, C. XML in theory & practice. local: [S.l.]: John Wiley Computer, 2003.

10

Bonneau, S.; Williams, k.; Tennison, J. XML design handbook. local:

[S.l.]: Wrox Press LTD., 2003. 10

Consortium, W. W. W. Extensible markup language (XML) 1.0. Available in

http://www.w3.org/XML/Activity, Access in Sept 2002a. 14

——. Extensible markup language (XML) 1.0. Available in

http://www.w3.org/TR/NOTE-xml-schema-req, Access in Nov 2002b. 14

——. Leading the web to its full potential... Available in http://www.w3.org,

Access in Sept 2002c. 10

Drusinsky, D.; Harel, D. Using statecharts for hardware description and

synthesis. In: IEEE Transactions on Computer-Aided Design, v. 8, n. 7,

p. 798–807, 1989. 5

Graham, I. XML specification guide. local: [S.l.]: John Wiley Computer, 1999.

10

Harel, D. Statecharts: a visual formalism for complex systems. Science of

Computer Programming, v. 8, p. 231–274, 1987. 5, 7

Harel, D.; Lachover, H.; Naamad, A.; Pnueli, A.; Politi, M.; Sherman, R.; Shtull-

Trautin, A.; Trakhtenbrot, M. STATEMATE: A working environment for the

development of complex reactive systems. In: IEEE Transactions on Software

Engineering, v. 16, n. 4, p. 403–414, 1990. 5

Harel, D.; Naamad, A. The STATEMATE Semantics of Statecharts. ACM

Transactions on Software Engineering, v. 5, n. 4, p. 293–333, 1996. 5, 7

Harel, D.; Pnueli, A.; Schmit, J.; Sherman, R. On the formal semantics of

Statecharts, 1987. 5, 7

45

http://www.iso.ch/cate/d16387.html
http://www.w3.org/XML/Activity
http://www.w3.org/TR/NOTE-xml-schema-req
http://www.w3.org

Harel, D.; Politi, M. Modeling reactive systems with statecharts: the

statemate spproach. local: [S.l.]: McGraw-Hill, 1998. 5, 7

Holzner, S. XML Complete. local: [S.l.]: McGraw-Hill, 1998. 10

Icarus, M. Using perl with XML. Available in:

http://www.devshed.com/Server_Side/Perl/PerlXML/PerlXML2/print_htm,

Access in Sept 2002. DevShed.com. 39

Maden, C. Creating documents in XML. local: [S.l.]: Oreilly & Associated,

2000. 10

Maden, C.; Ray, E. Learning XML. local: [S.l.]: Oreilly & Associated, 2001. 10

Maruyama, H. XML and Java - developing web application. local: [S.l.]:

Addison Wesley, 2002. 39

Philippe, B.; Saad, Y.; Stewart, W. Numerical methods in Markov chain

modeling. Operations Research, v. 40, n. 6, p. 1156–1179, 1992. 5

Pinnock, J.; Dix, C.; Rafter, J. Beginning XML. Wrox Press, 2001. 10

Ray, E. T. Perl and XML. local: [S.l.]: Oreilly & Associates, Inc., 2002. 39

Riehl, M.; Sterin, I. XML and Perl. local: [S.l.]: Macmillan Computer Pub,

2002. 39

Silva, E.A.S.and Muntz, R. Computational methods to solve Markov Chains:

applications to computing and communication systems, 1992. 5

ST. Laurent, S. Building XML Applications. McGraw-Hill, USA, 1999. 10

Veloso, R. R. Java e XML - guia de consulta rápida. local: Brazil: Novatec

editora, 2003. 39

Vijaykumar, N. Statecharts: Their use in specifying and dealing with

Performance Models. Sao Jośe dos Campos, Brazil. Tese – Aeronautical Institute

of Technology (ITA), 1999. 5, 7

Vijaykumar, N. L.; Carvalho, S.; Abdurahiman, V. On proposing

statecharts to specify performance models. International Transactions in

Operational Research, v. 9, n. 3, p. 321–336, 2002. 5, 7, 8

Young, M. J. XML step by step. Local:USA: Microsoft Press., 2001. 10

46

http://www.devshed.com/Server_Side/Perl/PerlXML/PerlXML2/print_htm

47

APPENDIX A

PcML Schema

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Rener Hehe (RH) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
<xs:element name="PcML">

<xs:complexType>
<xs:sequence>

<xs:element ref="Info" minOccurs="0"/>
<xs:element ref="States"/>
<xs:element ref="Conditions" minOccurs="0"/>
<xs:element ref="Actions" minOccurs="0"/>
<xs:element ref="Events"/>
<xs:element ref="Probabilities" minOccurs="0"/>
<xs:element ref="Transitions"/>

</xs:sequence>
<xs:attribute name="Title" type="xs:string" use="required"/>
<xs:attribute name="Date" type="xs:date"/>

</xs:complexType>
</xs:element>
<xs:element name="Info">

<xs:complexType>
<xs:sequence>
<xs:element ref="Author" maxOccurs="unbounded"/>
<xs:element name="Description" type="xs:string" minOccurs= />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Author">

<xs:complexType>
<xs:sequence>

<xs:element ref="Name" maxOccurs="unbounded"/>
<xs:element ref="Email" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Email">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[\p{L}_-]+(\.[\p{L}_-
]+)*@[\p{L}_]+(\.[\p{L}_]+)+"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="States">

<xs:complexType>
<xs:sequence>

<xs:element ref="Root"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Root">

<xs:complexType>
<xs:sequence>

<xs:element ref="State" maxOccurs="unbounded"/>

</xs:sequence>

48

http://www.xmlspy.com
http://www.w3.org/2001/XMLSchema

<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Type" type="rootType" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="State">

<xs:complexType>
<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="EMPTY">

<xs:complexType/>
</xs:element>
<xs:element ref="State"/>

</xs:choice>
<xs:choice minOccurs="0">

<xs:element ref="History"/>
<xs:element ref="HStar"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Type" type="stateType" use="required"/>
<xs:attribute name="Default" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="History">

<xs:complexType/>
</xs:element>
<xs:element name="HStar">

<xs:complexType/>
</xs:element>
<xs:element name="Conditions">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element ref="InState"/>
<xs:element ref="NotCondition"/>
<xs:element ref="ComposedCondition"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="InState">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="State" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="NotCondition">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="ComposedCondition">

<xs:complexType>
<xs:choice>

<xs:element ref="ANDCond"/>
<xs:element ref="ORCond"/>

</xs:choice>

49

<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="ANDCond">

<xs:complexType>
<xs:attribute name="Cond1" type="xs:string" use="required"/>
<xs:attribute name="Cond2" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="ORCond">

<xs:complexType>
<xs:attribute name="Cond1" type="xs:string" use="required"/>
<xs:attribute name="Cond2" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Actions">

<xs:complexType>
<xs:sequence>

<xs:element ref="EventTriggerAction" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="EventTriggerAction">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Event" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Events">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element ref="TrueCondition"/>
<xs:element ref="FalseCondition"/>
<xs:element ref="EnteredState"/>
<xs:element ref="ExitedState"/>
<xs:element ref="Stochastic"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="TrueCondition">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="FalseCondition">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="EnteredState">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>

50

<xs:attribute name="State" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="ExitedState">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="State" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="Stochastic">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Value" type="floatStateType"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="Probabilities">

<xs:complexType>
<xs:sequence>

<xs:element ref="Probability" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Probability">

<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Value" type="floatProbType"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="Transitions">

<xs:complexType>
<xs:sequence>

<xs:element ref="Transition" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Transition">

<xs:complexType>
<xs:attribute name="Source" type="xs:string" use="required"/>
<xs:attribute name="Event" type="xs:string" use="required"/>
<xs:attribute name="Condition" type="xs:string"/>
<xs:attribute name="Probability" type="xs:string"/>
<xs:attribute name="Action" type="xs:string"/>
<xs:attribute name="Destination" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="floatStateType">

<xs:restriction base="xs:float">
<xs:minExclusive value="0.0"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="floatProbType">

<xs:restriction base="xs:float">
<xs:maxInclusive value="1.0"/>
<xs:minExclusive value="0.0"/>

51

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="stateType">

<xs:restriction base="xs:string">
<xs:enumeration value="BASIC"/>
<xs:enumeration value="XOR"/>
<xs:enumeration value="AND"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="rootType">

<xs:restriction base="xs:string">
<xs:enumeration value="AND"/>
<xs:enumeration value="OR"/>

</xs:restriction>
</xs:simpleType>
</xs:schema>

52

INDEX

C++ Program, 20–22

Conclusions, 43

PcML, 5, 7, 9, 11, 19

PCML Diagram, 11

PCML schema, 52

PcML Schema, 48

PCML schema1, 48

PCML schema2, 49

PCML schema3, 50

PCML schema4, 51

PcML Specification, 16, 17

PCML Structure, 13

System, 14

Transitions table, 15

53

INDEX

C++ Program, 20–22

Conclusions, 43

PcML, 5, 7, 9, 11, 19

PCML Diagram, 11

PCML schema, 52

PcML Schema, 48

PCML schema1, 48

PCML schema2, 49

PCML schema3, 50

PCML schema4, 51

PcML Specification, 16, 17

PCML Structure, 13

System, 14

Transitions table, 15

53

	PÁGINA DE ROSTO
	ABSTRACT
	RESUMO
	CHAPTER 1 INTRODUCTION
	1.1 OUTLINE

	CHAPTER 2 Statecharts and their use in Performance Models
	CHAPTER 3 XML - eXtensible Markup Language
	CHAPTER 4 PcML - PerformCharts Markup Language
	CHAPTER 5 On dealing with PcML for Performance Evaluation
	CHAPTER 6 Conclusions
	6.1 Conclusions

	REFERENCES
	APPENDIX A PcML Schema
	INDEX

