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Abstract. Software testing is an important activity of the software development
process, and automate test data generation contributes to reduce cost and time
efforts. Path testing is a complex problem and metaheuristics have been pro-
posed to deal with it. In this paper, an initial assessment of the efficacy of a re-
cently proposed metaheuristic, the Generalized Extremal Optimization (GEO),
in dealing with such kind of problem is made. Results show that it can be
very competitive with the frequently used Genetic Algorithm (GA) metaheuristic,
while requiring a much lesser effort in parameter setting, making it an alterna-
tive to such method in path testing.
Keywords: Software testing, Automatic test data generation, Evolutionary al-
gorithms, Path testing

Resumo. O teste de software é uma atividade importante do processo de de-
senvolvimento de software, e automatizar a geração de dados de teste contribui
para a redução de esforço de custo e tempo. O teste de caminhos é um problema
complexo e metaheurı́sticas foram propostas para lidar com ele. Neste artigo é
feita uma avaliação inicial da eficácia de uma metaheurı́stica proposta recente-
mente, a Otimização Extrema Generalizada, no tratamento deste tipo de prob-
lema. Os resultados mostram que ela pode ser competitiva com a tão utilizada
metaheurı́stica chamada Algoritmo Genético, exigindo muito menos esforço na
definição dos parâmetros e tornando-a uma alternativa a este método no teste
de caminhos.
Palavras-chave: Testes de software, Geração automática de dados de testes,
Algoritmos evolutivos, Teste de caminhos

1. Introduction

Software testing is a critical element of software quality assurance and represents the
final review of specification, design, and coding [Pressman 1997]. It is also one element
of a broader topic often referred as Verification & Validation (V&V), which is a set of
activities that ensure that the software correctly implements a specific function and it is
traceable to customer requirements. Although V&V encompass a wide range of activities,
software testing provides the last bastion from which quality can be assessed and faults
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can be uncovered [Pressman 1997, Deason et al. 1991], even though being an expensive
phase of software development cycle in terms of effort and cost [Whittaker 2000]. Ideally,
software testing guarantees the absence of faults in the software, but in reality it only
reveals the presence of software faults but never guarantees their absence [Myers 1979].

There are two main testing techniques: white box and black box. The former
considers the internal structure of the software when generating test data while the latter
generates test data for software from its specification [Beizer 1990]. Automating test data
generation is an important step in reducing the cost of software development and mainte-
nance [Mansour and Salame 2004, Pargas et al. 1999, Sthamer 1996] and when automat-
ing, it is important to look at two aspects: the test data generation tool and test adequacy
criterion.

A test data generation tool is responsible for creating test data, while a test
adequacy criterion assures the quality of test cases generated and gives informa-
tion about the end of testing process. Many test data generators have been devel-
oped [Mansour and Salame 2004, Berndt et al. 2003, Pargas et al. 1999, Sthamer 1996,
Korel 1990], each one using different kinds or variations of existing testing techniques.
Test adequacy criterion usually involves coverage analysis, which can be measured based
on different aspects of software like statements, branches, all-uses and paths, for instance
[Beizer 1995].

Path testing searches the program domain for suitable test cases that covers every
possible path in the software under test (SUT) [Sthamer 1996]. However, it is generally
impossible to achieve this goal, for several reasons. First, a program may contain an infi-
nite number of paths when the program has loops [Lin and Yeh 2001, Pargas et al. 1999,
Sthamer 1996]. Second, the number of paths in a program is exponential to the number
of branches in it [Mansour and Salame 2004, Binder 2000] and many of them may be un-
feasible1. Third, the number of test cases is too large, since each path can be covered
by several test cases. For these reasons, the problem of path testing can become a NP-
complete problem2 [Mansour and Salame 2004], making the covering of all possible path
computationally impractical.

Since it is impossible to cover all paths in a software, the problem of path test-
ing selects a subset of paths to execute and find test data to cover it. Various test
data generation methods have been proposed in the literature; they can be classified in
[Hajnal and Forgács 1998]: random test data generators, symbolic evaluators and func-
tion minimization methods. Random test data generators select test data randomly from
the input variables domain. The symbolic execution methods are static, in the sense that
they analyse a program to obtain a set of symbolic representations of each condition pred-
icate along a selected path. The expressions are obtained by attributing symbolic values
to the input variables. If the predicates are linear, then the solution can be obtained by
using linear programming [McMinn 2004]. Function minimization methods, on the other
hand, are dynamic, since they are based on program execution. They perform an ex-
ploratory search [Korel 1990], in which the selected input variables are modified by an
small amount and submitted to the program.

1A path is unfeasible if there is no input for which the path is covered during program execution.
2The class of all problems that can be solved in polynomial time on a non-deterministic computer, but

merely exponential or worse time on a deterministic computer [NIST 2000].



In such cases the use of metaheuristics3 would be very useful in providing usable
results in a reasonable time. Several metaheuristics have been suggested for path coverage
[Mansour and Salame 2004, Lin and Yeh 2001], besides statement [Pargas et al. 1999]
and branch [Pargas et al. 1999, Sthamer 1996] coverage. One of these methods that have
been used recently for this kind of problem is the Genetic Algorithm (GA).

The GA is a global search metaheuristic proposed originally by Holland
[Holland 1975]. Extensive work has been done on the development of the original al-
gorithm in the last 20 years and it has been applied successfully in many fields of science
and engineering [Deb et al. 2004a, Deb et al. 2004b]. The GA is based on the principles
of Darwin´s theory of natural evolution and belongs to a more general category, the Evo-
lutionary Algorithms (EAs).

Recently, a new evolutionary algorithm was proposed. Called Generalized Ex-
tremal Optimization (GEO) [Sousa et al. 2004a, Sousa et al. 2003, Sousa 2002], it was
originally developed as an improvement of the Extremal Optimization (EO) method
[Boettcher and Percus 2001], which was inspired by the evolutionary model of Bak-
Sneppen [Bak and Sneppen 1993]. GEO was devised to be easily applicable to a broad
class of nonlinear constrained optimization problems, with the presence of any combi-
nation of continuos, discrete and integer variables. It has been applied successfully to
real optimal design problems [Galski et al. 2004, Sousa et al. 2004b, Sousa et al. 2003]
and shown to be competitive to other stochastic methods in benchmark test functions
[Sousa et al. 2003, Sousa 2002]. Having only one free parameter to adjust, it can be eas-
ily set to give its best performance for a given application. This is an a priori advantage
over methods such as the GAs since they have at least three parameters to be set, making
their tuning to a particular application more prone to be computationally expensive and
becoming a problem in itself.

In this work an initial assessment of the efficacy of GEO as a test data generation
tool in a pathwise test data generator for path testing is made. A pathwise test data gen-
erator is a system that tests software using a testing adequacy criterion [Sthamer 1996].
It consists of a program control flow graph construction, path selection and test data gen-
eration tool. The SUT control flow graph is constructed with its edges labeled following
program instrumentation on each SUT branch; a list of SUT’s paths to be covered is ex-
tracted from this graph, and GEO guides its search for test data to cover a specific path
creating new test data from previously ones that were evaluated as good candidates. The
path test problem is transformed in an optimization problem and each test data candidate
is evaluated by a fitness function that reports quantitatively how far the path covered by
this candidate is from the path that needs to be covered. The results obtained with GEO are
compared to results from a Simple Genetic Algorithm (SGA) and with a random search,
called Random-Test.

In the next Section the concept of EAs is introduced, the application of GAs in
software testing is briefed and the GA used in this paper for performance comparison
with GEO described. In Section 3. GEO is presented, and a discussion on the motivation
of applying it to software testing is made. In Section 4. the benchmark test problem is
introduced, together with a description of how it was transformed into an optimization
problem. In Section 5. results are presented and discussed, followed by the conclusions

3A high-level strategy that guides other heuristics in a search for feasible solutions [NIST 2000].



and an outline of future work in Section 6..

2. Evolutionary Algorithms and the Simple Genetic Algorithm

Although the idea of using the principles of natural evolution on problem solving
dates back to the late 1940s, it was during the 1960s that the first evolutionary algo-
rithms, the Evolution Strategies (ES) and the Evolutionary Programming (EP), emerged
[Eiben and Smith 2003]. Together with the GA and the Genetic Programming (GP)
[Koza 1992], they make up the four main branches of the EAs.

The main idea behind the EAs is to evolve a population of individuals (candidate
solutions for the problem) through competition, mating and mutation, so that the average
quality of the population is systematically increased in the direction of the solution of the
problem at hand. The evolutionary process of the candidate solutions is stochastic and
“guided” by the setting of adjustable parameters [Eiben and Smith 2003]. In an analogy
with a natural ecosystem, in a EA different organisms (solutions) coexist and compete.
The more adapted to the design space will be more prone to reproduce and generate
descendants. On the other hand, the worst individuals will have fewer or no offspring. In
an optimization problem, the fitness of each individual is proportional to the value of the
objective (cost) function, also called fitness function.

GAs are probably the most well known and used form of EAs. They have been
used effectively in generating test data to reach a specific coverage criterion. For instance,
Pargas et al. [Pargas et al. 1999] uses a GA to generate test data candidates that reaches
statement and branch coverage; Mansour and Salame [Mansour and Salame 2004] and
Lin and Yeh [Lin and Yeh 2001] applies it in test data generation for path testing; Sthamer
[Sthamer 1996] does a rich study about GAs and its many internal process variations in
his thesis. Moreover, Godefroid and Khurshid [Godefroid and Khurshid 2002] uses GAs
to guide a state-space search toward error states of concurrent reactive systems.

In this work the Simple Genetic Algorithm (SGA), as described by Goldberg
[Goldberg 1989], was used for comparison with GEO. Although there are many GA
implementations with different strategies [Mansour and Salame 2004, Lin and Yeh 2001,
Pargas et al. 1999, Sthamer 1996], the SGA was chosen since it is the standard of its fam-
ily, making it very suitable for the purposes of this initial study. A high level description
of the SGA can be seen in Figure 1 below.

initialize population P
evaluate fitness on each individual in P
repeat
     select parents from P according to selection mechanism
     recombine parents to form new offspring P’ using crossover and mutation
     evaluate fitness of each individual in P’
     P      P’
until stopping condition reached



Figure 1. Pseudo-code for a SGA

In the SGA, each individual of the population, also called chromosome, is repre-
sented by a binary string, which encodes the design variables. The population is initialized



randomly attributing the value ‘0’ or ‘1’ to each bit of each individual. The SGA uses fit-
ness proportional selection, one-point crossover and simple bit-flip mutation in its internal
processes. These major components are described below:

• Selection: The selection of parents for reproduction is done according to a proba-
bility distribution based on the individuals fitness values. A “roulette wheel” with
slots sized according to fitness is used. First, calculate the fitness value fiti for
each chromosome i of the population, where 1 ≤ i ≤ popsize (population size).
Then, find the total fitness of the population TFit, using equation:

TF it =
popsize
∑

i=1

fiti (1)

Calculate the probability of selection pi for each chromosome i, so that pi = fiti
TFit

.
The next step calculates a cumulative probability ki for each chromosome i with
equation:

ki =
i

∑

j=1

pi (2)

The selection process is based on spinning the roullete wheel popsize times, and
each time a parent is selected as follows: generate a random real number r in the
range [0,1]; then select chromosome i such that

i =

{

first chromosome if r < k1,

i-th chromosome where 2 ≤ i ≤ popsize such that ki−1 < r ≤ ki.

(3)
Note that some chromosomes may be selected more than once.

• Reproduction (Crossover): In one-point (or single) crossover, two chromosomes
selected as potencial parents by selection process exchange substring information
at a random position in the chromosome to produce two new chromosomes.
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parent 1
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Figure 2. One-point (or single) crossover example

Crossover happens according to a crossover probability pc, which is an adjustable
parameter. For each parent selected, generate a random real number r in the range
[0,1]; if r < pc then select the parent for crossover. After that, the selected chro-
mosomes are mated randomly. Then generate a random integer number pos in
the range [1,m-1], where m is the number of bits in a chromosome. This number
pos indicates the crossing point. Each pair of parents generates two new chromo-
somes, called offspring.



• Mutation: Mutation is performed on a bit-by-bit basis. Every bit of every chro-
mosome in the offspring has an equal chance to mutate (change from ‘0’ to ‘1’ or
from ‘1’ to ‘0’), and the mutation occurs according to a mutation probability pm,
which is also an adjustable parameter. To perform mutation, for each chromosome
in the offspring and for each bit within the chromosome, generate a random real
number r in the range [0,1]; if r < pm then mutate the bit.
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0
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Figure 3. Normal mutation example

These major components including the fitness function will evolve chromosomes
to better ones, trying to find a candidate that covers the target path. The crossover process
tries to create better individuals from fitter ones, while mutation introduces diversity into
population, avoiding getting stucked at local optima solutions.

In the following Section the GEO algorithm is described.

3. The Generalized Extremal Optimization Algorithm

The Generalized Extremal Optimization Algorithm (GEO) is a newly proposed meta-
heuristic suitable to tackle complex optimization problems. It was developed as a gener-
alization of the Extremal Optimization (EO) method in such a way that it can be readily
applied to a broad class of problems. Either EO or GEO are based on the simplified evolu-
tionary model of Bak-Sneppen [Bak and Sneppen 1993], which was devised to show the
emergence of Self-Organized Criticality (SOC) in ecosystems. The theory of SOC has
been used to explain the power law signatures that emerge from many complex systems
in such different areas as geology, economy and biology [Bak 1996]. It states that large
interactive systems evolve naturally to a critical state where a single change in one of its
elements generates “avalanches” that can reach any number of elements in the system.
The probability distribution of the sizes s of these avalanches is described by a power law
in the form,

P (s) ≈ s−τ (4)

where τ is a positive parameter. That is, smaller avalanches are more likely to oc-
cur than big ones, but even avalanches as big as the whole system may occur with
a non-negligible probability. This kind of dynamic behavior, according to Bak and
Sneppen [Bak and Sneppen 1993], could explain the bursts of evolutionary activity ob-
served in the fossil record and that has been given the name of punctuated equilibrium
[Gould and Eldredge 1993].

In the Bak-Sneppen model, species are represented in a lattice and, for each of
them, is associated a fitness number in the range [0,1]. The evolution is simulated forcing
the least adapted species, the one with the least fitness, and their neighbors, to change (it
can “evolve” or be “extinct” and replaced by a new one, that has not necessarily a better



fitness). This is done by assigning new fitness numbers, randomly, to these species. This
simulated ecosystem is started with the fitness of the species distributed uniformly in the
range [0,1]. Since the less adapted species are constantly forced to change, the average
fitness value of the ecosystem increases and, eventually, some time after initialization all
species have a fitness number above a “critical level”. However, as even good species
may be forced to change (if they are neighbors of the least adapted one), it happens that
a number of species may fall below the critical level from time to time. That is, the
equilibrium (being above the critical level in “stasis”) of one or more species is punctuated
by avalanches, whose occurrence is described by a power law [Bak and Sneppen 1993].
An optimization heuristic based on the Bak-Sneppen model may evolve solutions quickly,
systematically mutating the worst individuals, preserving at the same time throughout the
search process the possibility of probing different regions of the design space, which is
done via avalanches.

Based on the Bak-Sneppen model, Boettcher and Percus developed the EO
method to tackle hard problems in combinatorial optimization. In their method,
differently from the GA, the fitness value is associated with the design variable
[Boettcher and Percus 2001]. However, as they pointed out, in some cases this may be-
come an ambiguous or even impossible task. The GEO algorithm was devised to over-
come this problem, so that it could be easily applicable to a broad class of problems, with
any kind of design variable, either continuous, discrete or a combination of them, in a
design space that may be multimodal or even discontinuous and subject to any kind of
constraint.

In GEO each bit is a species, and a string of L bits is considered a population
of species. The string encodes the M design variables. For each of them is associated
a fitness number that is proportional to the gain (or loss) the objective function value
has in mutating (flipping) the bit. Then all bits are ranked from 1, for the least adapted
bit, to L for the best adapted and after this, a bit is mutated according to the probability
distribution P ∝ k−τ , where k is the rank of a selected bit candidate to mutate, and τ a
free control parameter. Making τ → 0 the algorithm becomes a random search, while for
τ → ∞, we have a deterministic search. It has been observed that the best value of τ (the
one that yields the best performance of the algorithm) for a given application generally
lies within a small range, usually between [1,10]. This, added to GEO having only one
free parameter, makes the algorithm easily settable to give its best performance on the
problem that is being tackled. After the bit is mutated, the procedure is repeated until a
given stopping criterion is reached, and the best configuration of bits (the one that gives
the best value for the objective function) found is returned.

In a variation of the canonical GEO described above, the bits are ranked separately
for each substring that encodes each design variable, and N bits, one for each variable,
are flipped at each iteration of the algorithm. The flowchart in Figure 4 shows the main
characteristics of GEO and its variation, GEOvar.

The number of bits needed to represent each design variable depends on the their
range and precision. For continuous variables, the minimum number m of bits necessary



Figure 4. Flowchart of GEO and GEOvar, where *lj is the number of bits of each
variable j, with j = 1, N (from [Sousa et al. 2003])

to achieve a certain precision is given by equation

2m
≥





(

xu
j − xl

j

)

p
+ 1



 (5)

where xl
j and xu

j are the lower and upper bounds, respectively, of the variable j, where
j = 1, N , and p is the desired precision. The real value of each design variable is obtained
with equation

xj = xl
j +

(

xu
j − xl

j

)

·

[

Ij

(2m − 1)

]

(6)



where Ij is the integer number obtained in the transformation of variable j from its binary
form to a decimal representation and m the number of bits necessary to represent j.

In the next Section the case study used to assess the performance of GEO, the
triangle classifier problem, is described.

4. The triangle classifier problem
The Triangle Classifier Program is a benchmark for many researchers in software testing.
It was used by Glenford Myers in his book [Myers 1979] and had been applied to com-
pare different heuristics for test case generation by Michael et al. [Michael et al. 2001],
Wegener et al. [Wegener et al. 2001], Lin and Yeh [Lin and Yeh 2001], Pargas et al.
[Pargas et al. 1999] and Borgelt [Borgelt 1999], as seen on [Berndt et al. 2003]. Its pur-
pose is to classify a triangle as invalid, scalene, isosceles or equilateral, given the length of
the three triangle sides. It is important to mention that this program is used so regurlarly
because even when using a large range of integers, only a few combinations will satisfy
particular branches in code. The program code can be seen in Listing 1.

Listing 1. Instrumented triangle program code, taken from [Lin and Yeh 2001]
and adapted to Java programming language

p u b l i c i n t c l a s s i f y T r i a n g l e ( i n t a , i n t b , i n t c ) {
i n t t r i a n g l e = 0 ; / / B1
i f ( ( a + b > c ) && ( b + c > a ) && ( c + a > b ) ) { / / B1

c o n c a t P a t h ( ” u ” ) ; / / I n s t r .
i f ( ( a ! = b ) && ( b ! = c ) && ( c ! = a ) ) { / / B2

c o n c a t P a t h ( ” y ” ) ; / / I n s t r .
/ / S c a l e n e t r i a n g l e
t r i a n g l e = 1 ; / / B3

}
e l s e { / / B4

c o n c a t P a t h ( ” v ” ) ; / / I n s t r .
i f ( ( ( a = = b ) && ( b ! = c ) ) | | ( ( b = = c ) && ( c ! = a ) )

| | ( ( c = = a ) && ( a ! = b ) ) ) { / / B4
c o n c a t P a t h ( ” z ” ) ; / / I n s t r .
/ / I s o s c e l e s t r i a n g l e
t r i a n g l e = 2 ; / / B5

}
e l s e { / / B6

c o n c a t P a t h ( ” x ” ) ; / / I n s t r .
/ / E q u i l a t e r a l t r i a n g l e
t r i a n g l e = 3 ; / / B6

}
}

}
e l s e { / / B7

c o n c a t P a t h ( ”w” ) ; / / I n s t r .
/ / Not a t r i a n g l e

}
re turn t r i a n g l e ; / / B8

}

The static structure of a program or procedure can be represented by a control flow
graph (CFG) [Pressman 1997]. A CFG is a representation of a program where contiguous
regions of code without branches, known as basic blocks, are represented as nodes in a
graph and edges between nodes indicate the possible flow of the program. A cycle in
a CFG may imply that there is a loop in the code. In most presentations there are two
specially designated blocks: the entry block, through which control enters into the flow
graph, and the exit block, through which all control flow leaves. The CFG for the triangle
program, with four paths (w, uy, uvz and uvx) is shown in Figure 5.
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Figure 5. At the left, the CFG of the triangle program, where B1 − B8 indicate
the basic blocks and B1 and B8 are the entry and exit block, respectively. At the
right, the core process adopted for test data generation using an EA.

The program code was manually instrumented so it would be able to know the path
covered by each test data candidate generated. Note that each graph edge (that represents
a branch) was labeled following the instrumentation inserted in program code. The most
difficult path for random search is path uvx, because it has to find three equal integer values
in a range of [0, 216-1] values. In order to evaluate a candidate solution, each design
variable value has to be converted to an integer value and will be input to the triangle
program. This program outputs the path that was covered with the test data candidate,
which will be input to the fitness function, which gives feedback to the EA about the
generated test data candidate. The fitness function is described below on next Subsection.

4.1. Fitness function

The fitness function chosen to evaluate each test data candidate was Similarity, proposed
by Lin and Yeh [Lin and Yeh 2001]. This fitness function extends the Hamming Distance4

and has the ability to quantify the distance between two given paths.

Given a target path and a current one, the similarity between them is calculated
from n-order sets of ordered and cascaded branches for each of the paths being com-
pared. After that, for each order, the distance between the set of each path is given by the
symmetric difference between them5. Then, this distance is normalized to become a real
number and the similarity between these n-order sets is found by subtracting the value
1 from this normalized distance. Finally, the total similarity between two paths will be
the sum of the similarities of all n-order sets, each one associated with a weighting factor
which is usually found by experience. For further details, take a look at the work of Lin
and Yeh [Lin and Yeh 2001].

Similarity was chosen for some reasons. First, it is a fitness function specially de-
veloped for path testing. Second, it does not take into account if test data values are
closer to boundaries; even though boundary test data are more likely to reveal faults

4According to the NIST [NIST 2000], the Hamming Distance is the number of bits which differ between
two binary strings.

5The symmetric difference between set α and β is a set containing the elements either in α or β but not
in both (α ⊕ β).



[Clarke 1976], this is not the focus of this work. Third, its implementation is very easy.
Although no real experiment was made with a program with loops, the authors says that
their fitness function deals well with program paths with loops.

In Section 5. below the results are shown and discussed.

5. Results
The comparison among GEO, SGA and Random-Test algorithms was made based on
the number of times each of them found the target path in a predefined set of runs. All
algorithms were implemented in Java, so that it would be easier to integrate GEO in
Eclipse Integrated Development Environment (IDE) on future research developments of
this work.

The Random-Test approach uses random search and selects arbitrarily test data
from the input domain and then these test data are applied to the SUT. Test data generation
is driven by attributing randomly the value ‘0’ or ‘1’ to every bit needed to represent a
test data candidate. Then this candidate is converted to an integer value and is ready to be
applied to the SUT.

Because the performance of either GEO or SGA may vary significantly with the
values of the adjustable parameters, a series of experiments were made with each of the
algorithms to get them properly tuned to the path testing problem being tackled. GEO has
only one adjustable parameter, τ , while SGA has three: mutation (pm) and crossover (pc)
probabilities, and population size (popsize). The tuning experiments conditions were:

• Each experiment is equivalent to a set of 100 runs with a parameter configuration.
• The maximum number of evaluations for Similarity, at each run, were 100000.
• The most difficult path, uvx, was used as target.
• A successful run occurs when the input test data generated covers the target path.
• GEO and GEOvar started from the same randomly generated points.
• For GEO and GEOvar: 0.75 ≤ τ ≤ 10, starting at 0.75, with increments of 0.25

for each experiment.
• For SGA:











100 ≤ popsize ≤ 10000 starting at 100 and with increments of popzise ∗ 10,

0.6 ≤ pc ≤ 1.0 starting at 0.6 and with increments of 0.1,

0.0010 ≤ pm ≤ 0.0205 starting at 0.001 and with increments of 0.0015

It’s easy to see that GEO’s tuning is easier than SGA. The former has 38 different
parameter configurations, while the latter has 210 (3 ∗ 5 ∗ 14). For the SGA experiments,
the number of generations depends on popsize, since the total number of function evalu-
ations at each run (100000) must be the same for all algorithms. Note that Random-Test
algorithm doesn’t require tuning.

All the experiments were made using the type integer, which is represented by
16 bits, and only positive integers were considered. For the triangle program, there are
three design variables, each one in the range [0,65535]. The GEO τ increment of 0.25
was chosed based on previous experiments with it, while the SGA ones were chosed in
order to evaluate in a more refined way its performance regarding the parameters values.

The graph in Figure 6 shows the influence of τ in the performance of GEO. It is
clear from Figure 6 that GEOvar performed better than GEO for this problem. The best



Figure 6. Tuning GEO and GEOvar free parameter τ

τ value for GEO was 3.5 and for GEOvar, 9.0, which makes also clear that better perfor-
mances are achieved with higher values of τ . That is, for this problem the performance of
GEO is increased as it is tuned to be more deterministic, what makes the least adapted bit
of the string be almost always mutated.

The tuning parameters and results for the SGA are shown in Table 1. The best
results were obtained with a popsize of 100 individuals, pc of 1.0 and pm of 0.016, which
yielded 31 successful runs.

Table 1. Tuning SGA’s population size, crossover and mutation probabilities
popsize of 100 popsize size of 1000 popsize of 10000

Crossover probability Crossover probability Crossover probability
Mutation

probability 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

0.0010 0 0 0 0 0 15 17 12 19 12 5 4 6 0 5
0.0025 3 1 4 1 3 15 18 16 17 14 3 8a 7 3 2
0.0040 5 4 6 6 8 21 19 17 17 16 3 2 6 3 0
0.0055 7 9 6 6 8 14 12 22 19 17 2 6 2 2 1
0.0070 8 13 13 10 15 20 22 19 22 14 2 6 5 5 5
0.0085 10 14 15 15 14 14 13 21 18 18 1 3 3 0 0
0.0100 14 12 9 14 17 19 19 25 26 21 1 3 1 1 4
0.0115 18 16 12 17 19 17 30b 20 17 17 3 0 1 1 1
0.0130 16 18 18 19 20 23 21 26 20 20 1 1 0 0 0
0.0145 19 20 15 22 22 26 22 19 15 17 5 2 1 0 0
0.0160 19 17 14 18 31c 21 19 22 26 18 2 1 2 1 1
0.0175 22 13 14 22 24 19 20 17 23 22 0 0 1 1 0
0.0190 13 22 14 23 19 14 20 21 23 22 0 0 0 1 0
0.0205 17 16 17 21 23 15 20 23 19 16 0 0 0 0 0

aBest number of successful runs for popsize of 10000
bBest number of successful runs for popsize of 1000
cBest number of successful runs for popsize of 100



Although the tuning was made using the most difficult path as the target path,
the practical process usually involves choosing an easier one, because it is less time con-
suming. Then the best parameter configuration found can be applied to a more difficult
path. However, it must be noted that for a new problem it may be necessary reset the free
parameters.

After the tuning process, the best parameter configurations were set in the algo-
rithms trying to find test data to cover each one of the four paths of the triangle program.
The number of experiments made for each algorithm with its best parameter configuration
was 20. As in the tuning process, each experiment had 100 runs and the algorithms were
compared using the average number of successful runs for all the 20 experiments. The
results are shown in Table 2.

Table 2. Average number of successful runs for each algorithm
Target path GEO GEOvar SGA Random-Test

uvx 11 23 19 0
uvz 64 72 99 96
uy 100 100 100 100
w 100 100 100 100

GEOvar clearly outperforms GEO and also the SGA when the target path was the
most difficult one. However, GEO had some difficulty in finding test data when the target
path was uvz, which can be seen by the lower number of successful runs when compared
with SGA and Random-Test algorithms.

As we look to the design space for the triangle program, it’s easy to see that just a
few points at this space yields an equilateral triangle. Also, there are more points yielding
an escalene than the isosceles one. GEO starts its search from a unique point at the design
space, while SGA starts in popsize different points, increasing its chance to find test data
for the path uvz in the beginning of the search earlier than GEO. However, the experiments
showed that even with this disadvantage, GEOvar outperformed SGA while searching for
data to cover the most difficult path.

Another interesting result was the comparison made between the evolution of
GEO and SGA’s best fitness values. GEO has L bits solutions at each iteration, while
the SGA has popsize solutions in each generation. One experiment of those 20 was se-
lected. For each run of these experiments, starting from 0 to 100000 Similarity evaluations
and with increments of 1000, GEO and SGA´s best fitness values were collected. Then,
an average of the 100 runs was made and results are shown in Figure 7.

The SGA average best fitness value increased quickly during the first 32000 Sim-
ilarity evaluations and reached the value of 1.5, due to the fact that almost all the runs at
that point had already found test data yielding the fitness value of 1.5, which is test data
that covers path uvz. After that, path uvx test data started to be found and contributed to
raise the SGA average fitness value until 3.03, with 100000 Similarity evaluations. Note
in the SGA curve that most of the successful runs for it happened in the range of 32000 to
100000 Similarity evaluations. On the other hand, although GEOvar average best fitness
value evolved slowly at the first moment, it had a better number of successful runs. Most
of them also happened in the same range as the SGA, but GEOvar’s increase rate was



Figure 7. Evolution of GEO and SGA´s average best fitness value

clearly superior than SGA’s, as showed by its curve. This higher rate explains the fact that
GEOvar performed better than SGA while finding test data for path uvx. The Figure also
shows that SGA and GEOvar outperformed GEO, confirming data from Table 2.

6. Conclusions
The results showed that the GEO algorithm is very competitive with the SGA for this
initial assessment. GEO’s variation, GEOvar, outperformed SGA while searching for test
data to cover the most difficult path in the triangle problem, proving its efficacy. GEO
had never been used to tackle Software Engineering problems, and its performance as a
test data generation tool for path testing was very good. Its tuning process was extremely
simple, while SGA’s was too much costly.

In future developments of this work it is intended to increase the size of the prob-
lem, applying the same approach for programs with more paths and also including loops.
Moreover, other kinds of fitness functions would be explored, in order to verify its influ-
ence on the performance of GEO. For example, a fitness function that takes into account
the boundaries of the predicates in a path. In future performance evaluations, more sophis-
ticated versions of the GA would be used. Comparison with other popular metaheuristic,
the Simulated Annealing (SA), is also envisioned.
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