
GO1 
Proceedings of the 5th Interna tional Conference on Inverse Problems in Engineering: Theory and Practice, 
Cambridge, UK, I I-15th July 2005 

APPLICATION OF A NEW MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TO THE 
OPTIMUM DESIGN OF A REMOTE SENSING SATELLITE CONSTELLATION 

R. L. GALSKI', F. L. DE SOUSA' and F. M. RAMOS 3  
Centro de Rastreio e Controle de Satélites (CRC), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos 

Astronautas, 1758, São José dos Campos, SP, 12227-010, Brasil, e-mail: galski@ccs.inpe.br  
2  Divisão de Mecânica Espacial e Controle (DMC), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos 
Astronautas, 1758, São José dos Campos, SP, 12227-010, Brasil, e-mail: fabiano@dem.inpe.br  
3  Laboratório Associado de Computação e Matemática Aplicada (LAC), Instituto Nacional de Pesquisas 
Espaciais (INPE), Av. dos Astronautas, 1758, São José dos Campos, SP, 12227-010, Brasil, 
e-mail: fernando@lac.inpe.br  

Abstract. This paper describes an application of a multi-objective version of the Generalized Extremai Optimi-
zation (GEO) algorithm to the inverse design of a remote sensing satellite constellation. The GEO algorithm is a 
recently proposed global search method [14], [16], based mi a model of natural evolution [1], and specially de-
vised to be used in complex optimization problems. Easy to impleinent, GEO has only one free parameter to 
adjust, does not make use of derivatives and can be applied to constrained or unconstrained problems, non-
convex or even disjoint design spaces, with any combination of continuous, discrete or integer variables. The 
multi-objective version of GEO presented here was developed to generate the Pareto frontier maintaining the 
GEO essence: universality of application and just one algorithm parameter to adjust. The application reported 
concems the optimum design of a small constellation of MAPSAR (Multi-Application Purpose Synthetic Aper-
ture Radar) satellites. The MAPSAR satellite program is a Brazilian-German joint project aimed at the assess-
ment, management and monitoring of Earth' s natural resources [12]. The design procedure is tackled as a multi-
objective optinfization problem, considering two major performance parameters, the average revisit time and the 
maximum revisit time over a region of interest. The revisit time is the metric traditionally used to evaluate 
sparse coverage constellations, e.g., constellations that do not achieve continuous coverage of an arca on the 
Earth's surface. Trade-off studies are carried out for several numbers of satellites in the constellation, in order to 
access the best ratio between performance and cost. 

1. INTRODUCTION 
This paper addresses the optimum design of a satellite constellation for non-contirtuous coverage of a region of interest 

on the Earth's surface. The problem is posed as a two-objective optimization probiem, where the maximum and the aver-
age revisit time over the interest region are the two objectives and some of the satellite ephemeris (inclination, right as-
cension and mean anomaly) are the design variables. 

The constellation is based on the MAPSAR satellite. MAPSAR stands for Multi-Application Pmpose Synthetic Aper-
ture Radar and it is a Brazilian-German joint program, conducted by IIN1PE (National Institute for Space Research) from 
Brazil and DLR (German Aerospace Center), whose aim is to obtain a satellite that allows the assessment, rnanagement 
and monitoring of natural resources [12]. 

The SAR (Synthetic Aperture Radar) sensor allows high-resolution image) ,  independendy of weather or sun light, 
which is parficularly important for regions that have the presence of rain, clouds, haze and smoke, like, for instance, the 
Amazon region. 

The MAPSAR satellite lias its launch foreseen to 2008, in a low-Earth sun-synchronous orbit. In April 2002, a work-
ing group of Brazilian SAR scienfists and potential SAR end-users mel on the campus of INPE (São José dos Campos) 
and it was strongly recommended that a series of such satellites should be built aiming at the operational aspects and the 
program continuity. More than that, the Brazilian and the German requirements specifically conceming disaster monitor-
ing both state as desirable a revisit time lesser than one day [12]. The most recent information about the MAPSAR orbital 
characteristics points to a periodicity (revisit time) of 7 days, which does not match the user requirements for disaster 
monitoring. In this way, the present study of the design of a constellation of MAPSAR satellites can be relevant in the 
near future. 

Considering the importance of remote disaster monitoring over a scarcely populated region, as is the Brazilian Ama-
zon region, this paper tries to answer what is the best constellation configuration in order to achieve the smallest possible 
revisit time, while keeping one of die satellites in the original sun-synchronous orbit of MAPSAR, to maintain the global 
coverage feature. 

R was pointed out recently diat the maximum and the average revisit time of low-Earth orbit sparse coverage satellite 
constellations are aims that often compete with each other [17]. The revisit time lesser than one day requirement can be 
entirely ftdfilled considering only lhe maximum revisit time as the objective for the optimum design. However, lhe aver-
age revisit time is also important as a performance measure of the constellation. Then, it was decided to consider both as 
objectives by conducting a multiobjective optirnization in order to obtain the Pareto frontier [8]. 



GO1 
2 

In multiobjective optimization problems [8], [18], one wants to optimize (minimize or maximize) simultaneously a set 
of objectives. Normally, for these problems, there is not only one optimal design solution, but a family of compromise 
design solutions, that do not need to be global optima to any individual objective. Following the notion of Pareto optimi-
zation, this family is named the Pareto setor the Pareto optimal set and the corresponding points in the objective space are 
called the Pareto front (or the Pareto frontier) [18]. A feasible point in the objective space belongs to the Pareto frontier if 
none of the objectives can be further improved without worsening any of the other objectives. Any solution from the 
Pareto set can be used and it is a designer's task to choose which one will be implemented, based in the Pareto frontier 
itself or other factors. 

There are, in lhe literature, many numerical techniques developed to deal with multiobjective optimization problems 
[11], [13], [2]. These techniques can be grouped basicafiy into three approaches [5], [3]. 

One approach, referred to as aggregation methods, is to transform the multiobjective into a single-objective problem, 
by combining ali objectives into one single-objective function, also denominated compromise function. The simplest 
example of such methods is the weighted sum approach, where lhe compromise function is a linear combination of the 
objectives. If the designer has the a priori information about which weights must be used, the problem is, in fact, single-
objective and there is no need for finding lhe Pareto frontier. If it is not the case, the Pareto frontier is mapped by solving 
several times the single-objective problem, each time with a different set of weights (coefficients). The designer is free to 
choose the global optánizafion method of its preference to solve the (single) optimization problerns. It is already known 
that this approach has not the ability to capture the entire Pareto frontier for problema with concave Pareto surfaces. It 
should be notic,ed, however, that the assembly of the single-objective function c,an be done by severa! ways, including 
non-linear ones, where the coefficients introduced alter the single-objective function curvature, thus allowing the capture 
of points of the Pareto frontier that could not be c,aptured by the weighted sum approach. Based on this fact, several non-
linear formulas have been developed. Reference [10] lists several aggregating function formulas that have been used so 
far and briefly comments its strengths and weaknesses, while reference [3] does it in a more extensive way but in the 
context of Multiobje,ctive Evolutionary Algorithms (MEAs). 

A second approach, known as Pareto-based approach, uses directly lhe non-dominance as a criterion to guide lhe 
search. Non-dominance is a concept from Pareto optimality. A feasible point in the objective space dorninates others if it 
improves at least one of lhe objectives without worsening any of lhe others. This point is said to be a non-dominated 
point. Considering lhe entire feasible objective space, lhe set of ali non-dominated points fonns lhe Pareto frontier itself. 
By keeping a set of non-dominated points along lhe search, one gets an approxirnation of lhe Pareto Frontier. This ap-
proach was bom inside lhe Multiobjective Evolutionary Algorithrns (MEAs) branch of methods, where lhe non-
dominance criterion was used to define the fitness function for Genetic Algorithms (GAs) [9]. Examples of algoritluns 
based on this approach are the Multiple Objective Genetic Algorithm (MOGA), lhe Non-Dominated Sorting Genetic 
Algorithm (NSGA), and lhe Niched Pareto Genetic Algorithm (NPGA). References [3] and [18] analyze more deeply 
techniques based on this approach. 

And file third approach, referred to as non-Pareto approach, fills lhe complementary set, regarding lhe first two ap-
proaches. h groups together ali lhe methods that use neither lhe aggregation approach nor lhe Pareto approach. Examples of 
algorithms based on this approach are lhe Vector Evaluated Genetic Algorithm (VEGA), Lexicographic ordering, Game 
Theory-based GAs. Again, References [3] and [18] analyze more deeply techniques based on this approach. 

According to [18], until 1999 lhe number of published researches about MEAs was around 450 (based on [31). Using 
lhe same source [3], this number is greater than 1,800 now (nov/2004), meaning that in lhe past five years lhe number of 
published researches about MEAs has quadruplicated. II also means a huge expansion in MEAs research field. Most of 
lhe new MEAs produced in this period are special versions of GAs (Genetic Algorithrns), malcing lhe GAs lhe most used 
approach to such class of optimization problems. GAs are very popular optimization algorithms, with widespread usage 
as solvera for a great variety of problema. Almost ali of them share as a characteristic lhe use of at least three algorithm 
parameters (e.g., population size, crossover rate, mutation rate) that must be fine tuned, in order to yield good perform-
ance. The multiobjective versions of GAs, here called M-GAs, usually have at least one more parameter (lhe niching or 
shating pararneter) [8], [18]. 

Like lhe GAs, GEO is a global search method [14], [16]. II is based on a simplified model of natural evolution, which 
was developed to show lhe emergence of Self-Organized Criticality (SOC) in ecosystems [1]. GAs and GEO are spe-
cially indicated to be used in complex opfimization problems. They do not make use of derivatives and can be applied to 
constrained or unconstrained problema, non-convex or even disjoint design spaces, with any combination of continuous, 
discrete or integer variables. 

Unlike lhe GAs, GEO has only one free parameter (r) to adjust, making it easier to be fine tuned. The T parameter al-
lows lhe user to establish lhe determinism degree of lhe search, from a random walk, with where ali moves have lhe 
same probability to happen, to a greedy search, with r-->ce, where lhe best point found at each algorithm iteration is al-
ways used as a move by lhe algorithrn. It has been observed that there exists an optiminn T value for each problem 
(sometimes a range), such that lhe global search efficiency is maximized. Most of the problema dealt with by GEO had 
their optánum z values in lhe 1 — 5 interval [6], [14], [15], [16]. 

The multiobjective version of lhe Generalized Extremai Opfimizafion (GEO), called M-GEO, keeps just lhe r parame-
ter to be adjusted. 
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The rest of the paper is organized as follows: Section 2 exposes with more details the M-GEO algorithin. Section 3 
presents a description of the MAPSAR satellite, while Section 4 gives information about the kind of constellation we 
want to design. In Section 5, the two-objective problem is fommlated, followed, in Section 6, by the results. In Section 7, 
the conclusions are presented. 

2. THE MULTIOIMECTIVE GEO (M-GEO) 
A flowchart of the M-GEO algorithm is presented in Figure 1. It does not make use of any lcind of aggrega-

tion of the objective functions. It belongs to the third approach described in Section 1, the non-Pareto approach. 
In essence, the multi-objective strategy of M-GEO is the strategy of an n-to-one tournament, where, at each 
algoritlun iteration, ali the NFOBJ objective functions compete for the privilege of being used as the fitness 
assignment function and just one is chosen. As the choice is totally random, theoretically, any sequence of 
choices is possible, even those where only one objective fiinction is used as the fitness assignment function 
during the entire search. This randomness allows M-GEO to access the entire Pareto frontier. The expected 
efficiency of the algorithm relies on the selection pressure imposed by the T parameter over ali objective func-
tions, which "pushes" the algorithm movements in the objective space towards the Pareto frontier. In the follow-
ing, the M-GEO steps presented in the flowchart of Figure 1 are described. Regarding the similarity of M-GEO 
and GEO, the second can be obtained from the first just imposing NOBJ=1 in flowchart of Figure 1. In that case, 
step 3 becomes redundant and can be omitted. Besides, allusions to "Pareto frontier" and "Pareto set" can be 
read as "best F(X)" and "X vector that leads to best F(X)", respectively. 

Figure 1. The M-GEO algorithm. 

The first step of M-GEO is identical to the first step of GEO: a string of L bits is randomly filled with Os and 
Is. In the second step, ali the L bits are flipped, one at a time, generating L different vectors in the search space, 
Xb, b e {1,2,...,4 "One at a time" means that before the next bit being flipped, the previous one is turned back 
to its original condition. Ali the NFOBJ objective functions are evaluated for ali the Xb vectors, generating L 
objective function vectors of the form [ F I (Xb), F2(Xb),..., FNFOBJ(X.b) ]. Still in the second step, the set contain-
ing the Pareto frontier approximation is created, verified, changed and saved, as necessary. In the third step, an 
objective function among ali NFOBJ is randomly chosen. Once an objective function I, is chosen, the search 
occurs (from the fourth to the seventh box in Figure 1) exactly as it happens in a GEO search, where the T pa-
rameter imposes the selection pressure on the population individuais (the L bits and their L Xb associated vec-
tors), based on their fitness regarding the objective function. One of the individuais is chosen (the associated bit 
is mutated), defining in this way, the movement of the algorithm in the search space. Posing it in a stepwise 
manner, in the fourth step, to each one of the L bits (and their associated Xb vectors) a fitness value is attributed, 
based on the gain or loss the Ic-th objective function has if the respective bit mutates, compared to the best value 
found so far for the I c-th objective function. Mathematically, the fitness value is obtained by calculating the 
difference F = F [,(Xb) — best F i,(X), b e {1,2,...,L}, where "best F I,(X)" is the "best so far" value of F1(X) 
mentioned and it is the best value of F1(X)  found during the search until the previous iteration of the algorithm 
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(steps 2. through 7.). For a minimization problem, negative values of AF mean poorly adapted species (bits), 
because flipping one of these bits leads to better designs. Then, in the fifth step, ali the bits are ranked according 
to their fitness values, from 1 to L, generating a set of couples (b,k), where b is the bit linear position on the 
string and k is its respective rank. The bit with the worst fitness has k=1 and the bit with the best fitness has 
k—L. For minimization problems, the bit with the most negative or with the least positive AF has rank k=1, while 
for maximization problems the bit with the most positive or with the least negative AF has rank k=1. Next, in the 
sixth step, one bit, behosenr is chosen and mutated, according to a probability given by Pk CC k.t. In the present 
version of M-GEO, the task of the sixth step is accomplished by means of tvvo drawings with uniform distribu-
tion. The first drawing chooses a value for k and Pk=  1(c  is calculated. Then, the second drawing retums a value 
within 0-1. If this value is equal or smaller than Pk, the k-th ranked bit is mutated. These two cirawings are re-
peated as many times as needed until one bit is mutated. When a bit is mutated, it tums to be the bchosen  bit and 
the sixth step is done. In the seventh step, the stopping criterion is verified; if it holds the Pareto frontier found is 
retrieved and the algorithm terminates. If does not, the algorithm goes back to the second step and starts another 
iteration of the algorithm. 

3. MAPSAR SATELLITE 
The MAPSAR - Multi-Application Purpose Synthetic Aperture Radar satellite [12] has a Synthetic Aperture Radar 

(SAR) as its payload. The radar antenna has an elliptical parabolic mam reflector with 7.5m length in azimuth and 5m 
width in elevation. The foreseen resolutions are 3m, 10m and 20m. It must be placed into a sun-synchronous orbit 
altitude between 600km and 650km. The most recent information indicates a 7-day cycle with 104 phased orbits 
(606km). After seven days, the cycle repeats itself, with the 105-th orbit being equal to the first one, regarding the 
resulting (ground) track on Earth's surface. The ground tracks are characterized by their fixed longitudes and constant 
inter-distances at lhe equator. The distance between adjacent ground tracks (the inter-track distance) is 385.3km for 
the 7-day cycle and two successive orbits produce ground tracks 2697.4km apart. The resuk is a "closed" (relatively 
to the Earth's surface) orbital grid of 104 orbits/ground tracks. Figure 2 presents a view of the MAPSAR satelfite and 
Figure 3 shows the coverage geometry of its on-board SAR sensor. The image acquisition occurs in a plane, here 
called acquisition plane, which is perpendicular to the satellite Nadir ground track. The sensor is "blind" to a region 
defined by incidence angles (see Figure 3) between 0 °  and 20°, on both sides of the satellite Nadir track. This region, 
called the Nadir Zone, is indicated by a dotted une in Figure 3. The entire access region (thick green lines) is defined 
by incidence angles between 20 °  and 48.1 0, at both sides of the Nadir track. It should be noticed that the SAR ante= 
design allows the sensor to reach instantaneously (swath) only an extent up to 55 km approximately, inside the whole 
access regions of 395 km showed in Figure 3. 

Figure 2. Perspective view of MAPSAR 	Figure 3. Reach (20°  a 48.1 °) of the SAR sensor 
Source: [12]. 	 Source: adapted from [12]. 

4. MAPSAR CONSTELLATION 
It is very common to ch.00se sparse coverage constellation from lhe so-called Walker constellations. Unfortu-

nately, this approach does not allow the establishment of compromise relations between both average and 
maximum revisit time, for constellation design purposes. Besides, Walker constellations impose that only sym-
metric constellations are considered in the search and it has been shown that this frequently prevent reaching the 
optimum constellation design [4], [7]. In the present study, Walker constellations were not used as a priori in-
formation (or imposition) to the design process. 

Recapitulating and complementing the information given in Section 1, the constellation design study is car-
ried out considering 2, 3 and 4 satellites. In ali three cases, it is composed by lhe original MAPSAR satellite 
with its sun-synchronous orbit and 1, 2 or 3 more MAPSAR type satellites. The orbital parameters of the first 
satelfite are fixed and serve as references to configure lhe rest of the constellation. The keplerian elements used 
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for the MAPSAR reference satellite are: semi-major axis (6,989.483Icm); eccentricity (0.0011); inclination 
(97.7722°); right ascension of the ascending node (230.962 °); perigee argument (90 °) and mean anomaly (90 °). 

The design variables for the remaining satellites are: inclination; ascending node right ascension and mean 
anomaly. The others orbital parameters are constant and equal to those of the reference satellite: semi-major axis 
(6,989.4831cm); eccentricity (0.0011) and perigee argument (90 °). 

The search for the constellation optimurn design is done for the numbers of satellites previously mentioned. The 
satellites orbit simulation, with the state vector propagation, is carried out by a computer program developed specifi-
cally to the orbit propagation of multiple satellites. It is based on the orbital dynamics routines (in Fortran) developed 
at INIPE by the orbital dynamics group for the propagation ofjust one satellite. Similarly to what was done in [17], the 
propagation is done considering only the effect of the Earth's gravitational field modeled by a central force field (mass 
point) plus the second zonal harmonic, J 2, which models the poles' fiaMess. 

The region of interest is defined by the point coordinates: longitude (-62°) and latitude (-6°). It is located in 
the central portion of the Brazilian Amazon. Figure 4 shows it at the center of two concentric circles. The coor-
dinates define a target point over which the maximum and the average revisit times are calculated and used as 
objective function values to the optimum constellation design with M-GEO. This calculus must take into ac-
count the image acquisition restrictions imposed by the SAR sensor limitations. 

Figure 4. Visibility circles of the target point (Brazilian Amazon) and three ground tracks examples. 

The visible passes of a satellite over a ground station are characterized by a set of azimuth and elevation an-
gles, used to point the station antenna into the satellite direction, while the satellite moves ou. The elevation 
angle is the one formed between the local horizontal plane and the une connecting the ground station and the 
satellite. A visible pass occurs whenever the elevation angle is greater than zero. As mentioned in Section 3, the 
whole access region of the MAPSAR sensor is defmed by incidence angles between 20 °  and 48.1 °. For a given 
point, the incidence angle and the elevation angle are quadrant complements, that is, the point with 20° incidence 
angle "sees" the satellite with an elevation angle of 90°-20 °=70°, while the 48.1° point does the same with an 
elevation angle of 90°-48.1°=41.9°. Then, for a point ou Earth's surface which is inside the acquisition plane of 
MAPSAR, if the elevation angle of the MAPSAR satellite at that point is greater than 41.9° and smaller than 
70°, the point is inside the imaging access region of the MAPSAR sensor. In terms of ground tracks, this is 
equivalent to the two concentric visibility circles shown in Figure 4, one with radius of 204 km and other with 
599 km. When the satellite ground track passes inside the outer circle and do not cross the inner circle, an image 
of the target point can be taken, meaning that a revisit has occurred. The image acquisition moment occurs when 
the acquisition plane of Figure 3 contains the target point (circles' center). At that moment, the situation is like 
the one shown in Figure 3. Therefore, if the ground distance between the satellite Nadir track (ground track) and 
the target point is lesser than 204 len, the target point is inside the Nadir Zone and the image can not be made. 
Ou the other hand, if the distance is greater than 204+395= 599 km, the target point is out of range and the mi-
age can not be made either. In Figure 4, the two concentric circles are representative of these restrictions, regard-
ing any satellite (Nadir) ground track. Figure 4 illustrates also three satellite ground tracks that allow the radar 
imaging of the target point. It happens because at the image acquisition moment, indicated by the dotted lines, 
the satellite ground track is inside the outer circle and outside of the inner circle. The arrows indicate the satellite 
movement direction. The "A" labeled ground track is the ascendant part of one of the MAPSAR like reference 
orbits (sun-synchronous), while the "D" labeled is a descendant one. The "E" labeled ground track is the ascen-
dant part of a near-equatorial orbit, with inclination around 10° and other parameters similar to the MAPSAR 
reference orbit. 

During the orbit propagation, the following strategy is used to verify if a revisit has occurred. Ali passes 
whose elevation angles are greater than 41.9 0  are monitored and the corresponding elevation values are stored. 
Immediately after such passes, the maximum elevation value is verified. If it is smaller than 70 °, a revisit is com-
puted. The maximum elevation angle is used because it defines the instant in which the target point is inside the 
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the satellite acquisition plane. In a slightly more detailed manner, at each propagation step the elevation angle of 
the satellite regarding the target point is caIculated. If it goes over 41.9°, the elevation angles of the subsequent 
steps are stored until the end of the pass, that is, until the elevation goes under 41.9° again. When that happens, 
the greatest value of the stored set is retrieved and if it is lesser than 70 °, a revisit is computed with the update of 
the average and maximum revisit times. 

5. MULTIOBJECTIVE OPTIMIZATION PROBLEM FORMULATION 
Mathematically, the problem can be posed as: 

Minimize F(X) = [ F i(X) F2(X) I 	 (1) 
Subject to: XMIN 	X 5- XMAX 

where F 1 (X) is the average revisit time and F2(X) is the maximum revisit time over the target point. 
The objective is to minimize both F 1  (X) and F2(X), getting the Pareto frontier and the respective de-
sign solutions. The design variables are represented by the X vector in the optimization process. The 
vectors XmIN and XmAN contam n the side constraints to each one of the variables, establishing their 
admissible ranges. The number of design variables is different for each one of the three constellation 
sizes (number of satellites on it) under investigation. These constellations, called constellations 1, 2 
and 3 from now on, have the X vector as described on Table 1. 

Table 1. Variables for o timization. 

Constella- 
tion 

X Variable Description Satellite 
Allowable Range 

XMIN "" XMAX 

1 

1 12 Inclination 2 O — 200  
2 n2-ni Right ascension phasing 2 O — 360° 

3  M2-M1 Mean anomaly phasing 2 O — 360° 

2 

1 12 Inclination 2 O — 20° 
2 13  Indination 3 O — 20° 
3 çà2-çli  Right ascension phasing 2 O — 360° 
4 S-23-Q 1  Right ascension phasing 3 O — 360° 
5 M2-M I Mean anomaly phasing 2 O — 3600  
6 M3-M1 Mean anomaly phasing 3 O — 360° 

3 

1 12 Inclination 2 O — 20° 
2 13  Inclination 3 O — 20° 
3 14 Inclination 4 O — 20° 
4 Q2-0i Right ascension phasing 2 O — 3600  
5 03-0 1  Right ascension phasing 3 O — 360° 
6 0.4-Ç21 Right ascension phasing 4 O — 360° 

7  M2-M1 Mean anomaly phasing 2 O — 360° 
8 M3-M 1  Mean anomaly phasing 3 • O — 360° 
9 M4-M 1  Mean anomaly phasing 4 O — 360° 

Note: ÇI I  and M 1  belong to the satellite 1 (reference satellite) and are constants. 

Except for the inclination, all design variables are defined by the difference from the correspondent 
reference orbital parameter of satellite 1. It seems to be helpful to visualize the obtained constella-
tions by directly comparing the angular displacements relatively to the reference satellite. 

For a given X, the respective keplerian elements of ali satellites are calculated and also the corre-
sponding state vectors. The satellite orbits are then propagated for a period of seven days with a step 
of 30 seconds. At the end, the final values for F 1 (X) and F 2(X) are returned (the forward model of the 
problem). The X values are generated by M-GEO, during its search, and then passed to the orbit 
propagation program, which is coupled to M-GEO. All design variables were encoded using 8 bits, 
which means a resolution of 0.078° for the inclination and 1.406° for the other design variables. The 
allowable range for the inclination was shortened from 0-180 0  to 0-20° because, as the target point is 
near equatorial (-6° in Latitude), it was clear that the near equatorial inclination would have better 
performance, in terms of revisit time. 
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6. RESULTS 
The M-GEO algoritlun was run for each Constellation described in the previous Section. For each 

run, 25 different seeds (random X vectors) were used to restart the search. For each seed, 10,000 
evaluations of F(X) = [ F 1 (X) F2(X) ] were allowed and this was used as stopping criterion. During 
ali the time, the Pareto frontier was stored and updated. This way, the search for the Pareto frontier of 
each constellation used 250,000 evaluations of F(X). Different seeds were used ia order to generate 
results that are robust from a statistical viewpoint. For ali three runs s=2 was used. For the "heaviest" 
problem of Constellation 3, the computation time was around 3 days in a Intel Pentium 4 2.6GHz PC 
with 512MB RAM. 

Figures 5 through 7 give the Pareto frontiers for the Constellations 1 to 3, respectively. The points 
of the approximate Pareto frontier obtained with M-GEO are une connected for visualization pur-
poses. For the first Constellation, only five different design solutions were found for the Pareto set, 
leading to a Pareto frontier of four points. For the second Constellation, 26 different design solutions 
were found for the Pareto set, leading to a Pareto frontier with 20 points. For the third Constellation, 
10 different design solutions and Pareto frontier points were found. 

What is readily seen in these figures is that an optimization only of the average revisit time F 1 (X) 
leads to a huge deteriorating of the maximum revisit time F 2 (X). On the other hand, optimization only 
of the maximum revisit time F2(X) leads to a slight worsening of the average revisit time Fi(X). A 
similar behavior was observed in [17], where constellations for sparse global coverage were studied. 
This is an important result, because it suggests that when dealing with single-objective optimization 
of these constelIation types, to use the maximum revisit time as criterion is preferable. 
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In Table 2, the set of solutions (X vectors) found for ali points (values ia bold) of the Pareto frontier of Con-
stellation 1 are presented, while Tables 3 and 4 do the same for Constellations 2 and 3, respectively, but for 
selected points. 

Table 2. Constellation 1 solutions for ali points of the Pareto frontier. 
12 0242 1  1\42-1\41 Fl r 	F2 

3.76 272.5 63.5 
11744.7 49770.0 

3.84 272.5 63.5 

4.16 272.5 77.6 11625.0 49800.0 
4.24 285.2 94.6 11614.4 56010.0 
4.24 285.2 101.6 11611.9 56040.0 

Table 3. Constellation 2 solutions for three points of the Pareto frontier. 
12 13 Q2-1-2[ S23-01 1\42-N41 1\43-1\41 F1 F2 

4.16 4.16 187.8 360.0 328.9 86.1 6437.4 11220.0 
3.92 4.16 211.8 114.4 334.6 83.3 6295.6 30960.0 
4.16 4.16 266.8 276.7 117.2 360.0 6144.7 47940.0 

Table 4 Constellation 3 solutions for four points of the Pareto frontier. 
12 13 14 n2-L-21 n3-ni i.-244-2 1 M2-M1 M3-M1 M4-M1 F1 F2 

4.00 4.08 3.84 355.8 240.0 121.4 168.0 343.1 98.8 4375.4 6240.0 
4.00 4.00 3.69 148.2 64.9 218.8 76.2 88.9 276.7 4374.8 18360.0 
4.00 4.08 3.84 176.5 240.0 111.5 32.5 338.8 121.4 4314.2 24660.0 
4.00 4.00 3.69 148.2 132.7 207.5 76.2 83.3 271.1 4313.4 35670.0 

From Tables 3 and 4 is possible to observe a common pattem, where the satellites are almost uniformly dis-
tributed in , j e {2,3,4}, ia respect to the best value of F2 of the Pareto frontier, while they are much 
closer to each other in respect to the best value of F l . For instance, taking the best in F2 solutions as reference 
and explicating a bit more what was just said, for Constellation 2, with best F 2=11220, it means (123-SIL)-(024 -21) 
= 360.0°-187.8°= 172.2°, which is dose to the uniform distribution of 360°/2=180° for two satellites. For Con-
stellation 3, vvith best F2=6240, it means (02-01)-()3-01) = 355.8 0-240.00= 115.8° 2:4 (513-ni)-(04-01) = 240.0°- 
121.4°= 118.6°==.: (0.4-Q)-(Q2-n1) = 121.4°-355.8° = -234.4° = 325.6° , that is close to the uniforrn distribution 
of 360°13=120° for three satellites. In contrast, now talcing the best ia F 1  solutions, the maximum difference (R-
) 1 )- (S2k-S-2 1 ), VjAc, j and k e {2,3,4} was 9.9° for Constellation 2 and 74.8° for Constellation 3. 

In Figures 8 to 10, curves showing the average behavior (over the 25 seeds) for Best F 1 (X) and for Best F 2(X) 
are plotted for the Constellations 1, 2 and 3. Additionally, the best and the worst seed curves within the 25 are 
also plotted. Loolcing at Figures 8a and 8b, it is possible to consider that for Constellation 1, the average evolu- 
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tion of F 1 (X) and F2(X) practically stabilizes after 6,000 evaluations. The same seems to happen after 7,000 
evaluations for Constellation 2 and after 4,000 for Constellation 3. 
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Figure 10a. F 1 (X) evolution (Constellation 3).  
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7. CONCLUSIONS 
This paper has described an application of a multiobjective version of the GEO algoritlun (M-GEO) to the in-

verse design of a remote sensing constellation based on the MAPSAR satellite. The most important conclusion is 
that the objectives were successfully achieved, with the M-GEO algorithm being able to generate the approxi-
mate Pareto frontier for the problem, obtaining the associated design solutions. The results indicate that with just 
two satellites it is possible to have both global coverage and a maximum revisit time over the target point of 
49770 s, that is, 13.825 hours, less than one day, as aimed for disaster monitoring. Such a good performance 
result was achieved partly due the fact that the target point is near equatorial. Revisit studies over points in 
higher latitudes and for the same number of satellites would certainly yield worst performance results. Addi-
tional studies for target points on higher latitudes and also for regions defmed by a grid of points are being con-
sidered, thus extending the method described herein. 
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