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A special class of Pierce diodes, that consists of a pair of grounded coaxial cylindrical electrodes,
with electrons streaming radially between them, is studied. The full set of roots of the dispersion
relation of the Pierce instability is obtained by solving the dispersion relation numerically. The
nonlinear behaviour of the system is then investigated using particle simulation. It is shown that the
behaviour of cylindrical systems depends on two nondimensional parameters. Linear and nonlinear
properties are different for convergent and divergent configurations. Several remarkable differences
between cylindrical and planar Pierce diodes are reported19@7 American Institute of Physics.
[S1070-664%97)04807-9

I. INTRODUCTION tonically growing and damped modes alternate, first with os-
cillatory growing solutiongoverstability, then with oscilla-

The instability and associated limiting current for a neu-tory damped modes. Segments @fvalues with different
tralized electron beam drifting between planar groundedroperties were discerned. Monotonically unstable and oscil-
grids (Pierce’s diodghas been extensively studied in experi- latory growing modes are separated by narrevintervals,
ments, theorysee Ref. 1 and references thejeand particle  where only damped and oscillatory damped modes exists.
simulations>® Pierce-like configurations appear in a variety We shall call theser intervals,stability islands The full set
of plasma systems of current interest, including inertial fu-of roots of the dispersion relation was then examined in Ref.
sion, collective process accelerators, Q-machines, and high where the linear theory of the initial value problem for the
power microwave amplification. Pierce diode was studied in detail. Several other aspects,

The fact that in a bounded plasma, contrary to what hapsuch as the coupling of the diode with external circuits, were
pens in an infinite system, a monoenergetic electron beamlso studiedsee, e.g., literature quoted in Rej. The set of
alone may become unstable when drifting freely betweenoots of the linear dispersion relation, for grounded elec-
grounded electrode@xcluding any interaction with iofss  trodes, was again considered in Refs. 8 and 9, in connection
unexpected. It has attracted the attention of researchers owgith studies of nonlinear coupling of modes, bifurcation of
many years. A surveyof this topic (dated 198Y covers solutions, and nonlinear steady states. The possibility of de-
about 150 references. By far, the existing literature is deterministic chaos arising in Pierce diodes was revealed in
voted to planar diodes. these works. At the same time, numerical simulatioh&1!

For a long time(after Pierce’s 1944 pagbrthe instabil-  began to provide a comprehensive understanding of the non-
ity properties were known near the threshold only. Assumindinear behaviour of the system, and contributed to the com-
linear modes varying as exg, the roots of the dispersion ing of age of the subject. Recent literature indicates a persis-
relation were examined near=0. Later it was pointed out tent interest in Pierce diodes, and shows new feat(Res.
by Pierce himself, that the unstable behaviour is related to 12 and papers quoted thergilike the subtle effects pro-
the existence of bifurcations, i.e., the coexistence of twaluced by a spread in velocity of the electron beam.
equilibrium states of the beam, one being the unperturbed The theory of a different type of Pierce diode was re-
beam statéwith constant speed and uniform dengiéymd the  cently given in Ref. 13 where, departing from the planar
other a new steady state with spatial variations of density andetting, electrons drifting radially in the space between two
velocity of the beam. The theoretical condition for the exis-coaxial cylindrical grids, both grounded, are considered. In
tence of marginal stateg= 0 (assuming neutrality and fixed the unperturbed steady state the electrons flow radially with a
ions) is @=(2n+ 1), for n=0,1,2,..., wherey, the Pierce constant average velocity, = *v}. The flow is convergent
diode parameter, is given hy=w/L/v, (w, is the plasma when the electrons move from the outer cylindemitter) to
frequency computed with the beam densityjs the inter-  the inner cylinder(collectop; when the motion is in the op-
electrode distancey, is the free streaming beam spgethe  posite direction, from inner to outer electrode, the flow is
threshold for the first unstable mode correspond®4c0.  divergent. lons are present to ensure charge neutrality, but in
For a greater, but close tar, the instability was found to be the model the dynamics of the ions is ignored. Thus, without
monotonic in time. The rather complex dispersion relationadditional changes of the theory, ions may also be assumed
was investigated numerically afterwatiés a function of  to flow together with the electrons, describing a current free
increasinge, a rich sequence of modes was found. Mono-system if so is desired. For geometrical reasons, both elec-
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trons and ions have an unperturbed density distributior
n=A/r in the interelectrode space. This configuration musi
be distinguished from the cylindrical waveguide deviakso
studied in the context of Pierce diodes, e.g., Rej. WHhere
the beam moves along the axis, and which is akin to a plang
diode with bounded cross section.

Electronic devices with cylindrical and spherical elec-
trodes were in fact calleRierce electrodesfor a description
see, for instance, Ref. L5For a technological review of
electrodes with different shapes, see Ref. 16. Experiment
with electron flows in cylindrical configurations are reported
in Ref. 17. Fusion studies have also considered convergent
flows of ions and electronésee, for example, Refs. 18 and FIG. 1. Setup and geometry of the systems modeled in this paper.
19, for spherical geometyy

As shown in Ref. 13, a flow directed from an inner t0- ¢,ssed in Sec. Il C. A full set of roots of the linear dispersion
ward an outer cylindrical electrodelivergent flow is inter- g|ation, computed numerically, is presented in Sec. IIl for

esting for microwave signal a.mplificat?on.' Stability of con- iyree values of the ratig;= R, /R, of the collector radius
vergent flows(from outer to inner gridsis relevant for Ry gyer the emitter radiusRy). Section IV gives informa-
inertial confinement schemes that focus a neutralized 1080, apout bifurcations of nonlinear steady states, and pre-
beam on a targét. The co-moving electrons are used 10 |iminary indications of their stability. In Sec. V we examine
provide charge and current neutralization. At a much smallefhe nonlinear dynamics of a pseudoplanar system- {.3)
beam energy the same configuration is interesting also fQfecovering the properties of planar Pierce diodes, as a bench-
ion implantation, or plasma coating experiments. mark for the numerical code. In Sec. VI we show particle
Compared with the research done on planar Pierce disimylations of a highly divergent flowx(=100). The non-
odes, much less is known about cylindrical Pierce configufinear behaviour of systems focussed toward the axis is con-
rations. The dispersion relation of linear modes for the cy<xjdered in Sec. VI %, =0.1). Finally we give a general dis-

lindrical system was derived in Ref. 1fdee Eq.(16)].  cussjon of the results and conclusions in Sec. VIII.
However, because of its considerable complexity due to

terms containing single and double indefinite integrals ofy; THEORY AND NUMERICAL CODE
products of Bessel functions and exponentials, it cannot be . . ]
solved analytically in general, while the numerical search for- Configuration and equations of the model
roots is not a simple task. Thus Pierce instability was studied  Figure 1 shows the setup and geometry of the systems
in Ref. 13 only near the marginal stafegherey=0; see Eq. modeled here. The electrodes are coaxial cylinders. Associ-
(17)]. ated with the emitter, an acceleration devig®t shown

We have recalled some important facts about planaproduces the electron flow. We may assume that a potential
Pierce diodes, and outlined the research status on cylindricaiifference is applied across additional cylindrical electrodes
Pierce diodes. The aim of the present paper is to contributg obtain a radial electron speed such thdt=mv /2. For
to the understanding of cylindrical systems in two basic ascharge neutrality ions may be provided by the residual gas in
pects, not examined before. First, we analyze the full set ofne drifting chamber. When the electrons are comoving with
roots of the dispersion relation of the Pierce instability byinjected ions, to form a charge and current neutralized flow,
solving numerically the dispersion relation. Then, we studya more elaborate apparatus must be envisaged. In any case,
systematically(for the first time, as far as we kngwhe  before the entrance, there is an acceleration stage which is
nonlinear behaviour by particle simulation. not further specified and does not take part in our consider-

While planar diodes depend on a single nondimensionation. After that stage, the emitter electrode setaR, is
parameter, the behaviour of cylindrical systems depends osimply a grounded grid that allows the electrons to enter the
two parameters. In addition, linear and nonlinear propertie$ree drift inter-electrode space. Similarly, the collector set at
are different for convergent and divergent configurationsr =R; is a grounded grid that allows the radial flow to exit
Therefore, the description of the results is rather extendedhe system, toward an absorbing dump, and keeps the poten-
We also give some attention to the role played in the evolutial difference between electrodes equal to zero. In some
tion of the instability by steady state nonlinear solutions thatpractical applications the collector may represent a grounded
bifurcate at the criticaly=0 values. Exploring these aspects, target, but note that we do not take into account here par-
we report several remarkable differences between cylindricdicles reflected back into the system after hitting the target.
and planar Pierce diodes. Reflection, however, may occur inside the drifting space pro-

The layout of the paper is as follows. In Sec. Il we duced by collective effects, such as the formations of virtual
discuss the system configuration, the equations, and theathodes. That kind of reflection is, of course, included in the
simulation code. Specifically, in Sec. Il A the equations ofcode. The figure shows two basic configurations studied,
the model are given, and their dependence on two nondimenwith incoming(i.e., toward the axisor outgoing radial mo-
sional numbers is shown. A brief reminder of the lineartion, hence forming convergent or divergent bundles of elec-
theory is given in Sec. Il B, and the nonlinear code is dis-tron trajectories. We assume here that the trajectories are
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well focussed through the central axis, so that the angulaB. Summary of the linear theory
momentum(or impact parametgrof the particles is zero.

The fi | ind that at the start. and leavi . In Ref. 13 it is shown that linear modes that represent
. 't('a I|gur? asot.remmths ush a ? : ?. S far ,tan e?\;lhng ;‘S\'ﬂ(}?erturbations of constant velocity steady states are ruled by
initial perturbations, the charactenstic teatures ot the Towy, following equations for the nondimensional variable
are: constant radial speed,= *v,, andn=A/r, equal for

, g B " Z=reoE, lenR2:
both species. Therefore, no electric field exists in the inter- €otr /€ NeRe

electrode space. Under experimental conditions, thelénh- Z(x, 7)=4(x)e, (7)
sity distribution is easier to achieve with comoving electron-

ion injection. This case also has the advantage of completely d\?2 u? .

avoiding a possible two stream, electron-ion instability, re- S— &) c+ 7525%0' (8)

lated to a differential speed between species. However, in

view of their large mass, we ignore ion perturbations in thewhere 2u=D, and.7, is a constant to be determinetb-
simulation (ions are kept fixed, withA/r density to give  gether with two additional integration constantsy the
perspicuity to the electron dynamics, and to facilitate com-boundary conditions.

parisons with the theor}? Thus, the results we report are not If a solution for £(x) is known, the velocity and density
sensitive to a particular ion setup, i.e., comoving with elecperturbations are obtained from

trons, or simply as fixed neutralizing background.

The equations of the model, settingy=v,, IO S P

E,=—d¢/dr, and assuming a monoenergetic beam, are 70=|s dx =70 ©
dv dv e d¢ dz
U T o (1) A== g (10

a(rn) d(rnv) o @ where 7= dvlvy, ./ =1 SnIRN, .
at o ) The solution of the homogeneous equatioh, may be
expressed in terms of Bessel and Neumann functions as
d

r
ar

17

or

e
=7 ¢ (NeRem 1), © (0 =eX[C11(2u\X) + €51 (2u\X)],  (1D)

with boundary conditions(R,) = ¢(R;)=0. The beam en- Wherec,,c, are constants. From the solutions of the homo-
ters atr =R, (densityn,, speedv;,) and exits from the sys- geneous equation a particular solutisl of the inhomoge-
tem atr=R; . neous equation can be expressed as

It is important to realize that the model depends on two .
nondlmenS|onaI parameters on_Iy. This can be seen using thﬁp(x)zwsff‘oesx\&( Y2, \/;)f e sUuJ;(2uu)du
following set of nondimensional variablesu=v/vy, 1
x=r/Rs, v=nlng, T=t/7 (where 7=|x;—1|R./vp), .
p=2e¢/mv,?. In numerical experiments we u3e the time -3,2u \/Q)f e s\JuY;(2u \/G)du], (12)
measured in units of the transit time The spatial variable 1
x is usuallyr in units of R., the emitter radius. Eventually,
for some comparisons, we may wish to measuie units of
the interelectrode distancdx;—1|R.. Nondimensional

so that,Z(x) = £+ ;.
The boundary conditions for the Pierce problem are

growth ratedR g(s) derived from theory, are given in units of 7(1)=0, (13)
Re/vy as in Ref. 13(divide by |x;— 1| if transit time units
are preferred (1)=0, (14)
Equations(1)—(3) are then written as follows:
1£(X)
au |x—1| a(u?—o) f dx=0. (15
aT 2 ox @ i
Equations(13) and (14) describe the injection of the unper-
o(xv) +x— 1 axwu) =0 (5)  turbed electron flow at the emitter. The last equation ensures
aT ' X ' that emitter and collector are at the same potential. This set
5 of boundary equations forms an homogeneous linear alge-
i(xﬁ_“’) - D_(l_ X) (6) braic system foic,,c, and.#,. A nontrivial solution exists
X\ dx 2 ' when the determinant of this system is zero.

Carrying through this calculation, one obtains the disper-

Two basic numbers appear in(4)—(8), x and sion equation fos [equation(66) of Ref. 13 as

D=2R.w,/v,. We definew>=e’n,/e;m using ne, the

density at the emitter. Sometimes, for convenience we use 3 (2,)1,—Yq(2u)1;+S€1,=0, (16)
a, the Pierce number, defined as=|x;—1|D/2= rw,, for

cylindrical systems. with
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15 X vergent ong Once the electrons reach the collector they are
Iozf ?Jl(z,u \/Q)f e SUY(2uu)du absorbed, contributing to the external surface ch&tdath
Xi VX ! electrodes are kept at the same potential.

165% < Fields are calculated on a grid of 200 points using a
—Y,(2u \/Q)f e SUJy(2uu)du, finite-difference Poisson schentequivalent to the flux con-
VX 1 serving methotf). Poisson’s equation is solved in each time

step with the given boundary conditions. The code has been

X

l.— 1e—st 2u%)d described in detail in Refs. 22, 23, 25. All runs were initial-
1 x; \/X 1(ZpNx)dx, ized by prescribing electron spatial distributions which differ
only slightly from the linear equilibrium r{,(r)«<1/r,
18X vp(r)=vy). A background of immobile ions with the same
2= X.ﬁYl(ZM\/;)dX- density profile was assumed. For reference, all runs dis-

cussed in this paper were standardized to involve some

Steady state solutions are determined by taldrdg) in 30000 simulation particle@he precise number varies during

(16). After integrations withs=0 and some algebra we find €ach rup. The input parameters have been determined from
a given value oD that specifies the region of interest for a

Jo(D)Yo(Dx) = Jo(Dxi) Yo(D) =0. (17)  particular value of; . The time step is determined ensuring
that the Courant—Friedrichs—Levy(CFL) condition,

. Lo = < i isfi _6 = i -
(x;,D=2p) such that(17) is satisfied! For these values, ¢ UmaAUAX<T, is ;atlsﬂecf A value vma=3up is as-
sumed, after concluding from a series of numerical experi-

there are steady state solutions with nonuniform veIocity.ments that this is an upper bound for the velocity. This con-
This condition gives, at the same time, the instability thresh- pp Y-

. dition means that no disturbance can propagate more than

olds (equation 67 of Ref. 13 AXx in a time stepAt, and avoids numerical instability

Thus linear instability theory also depends on the two ' '
basic nondimensional parametetsandD (or, alternatively,
«) defined above. For a given speeg and emitter radius
R, there are infinite pairs of value®,, n, such that the
system admits velocity modulated steady states. This equa- The roots of(16) are obtained numerically, following
tion plays the same role as the Pierce conditionseveral branches of the numerical solution. Starting from a
a=(2n+ 1) for planar diodes. In fact, it can be shown that critical pair (x; ,D) corresponding te=0 and fixingx;, D
planar results can be recovered in the limiks=1 and is advanced by steps identifying intervals where the left-hand
D>1. side (LHS) of (16) changes sign. Then a real roots deter-

Classification and understanding of linear and nonlineamined by bisection, and the procedure is repeated along a
behaviour, as we shall see, can be achieved, for a given particular branch. Regarding complex roots, it is observed
through the set of threshold valud,<D,<Ds<--- for  that they appear by coalescence of two real roots, far a
which the eigenfrequency is zero. We shall denote the in- value rather close to the critical one. Given a starting seed for
tervalsO< D <D1,D1<D<D2,D2<D<D3,--asre- (X;,D), the complex plane is searched with variable size
gions 1, 2, 3,... of the parameter space, respectively. Fateps, both in real and imaginary components, looking for
example, given x,=100, we find D;=0.3314, zeros of(16) (standard solver procedures are used, like the
D,=0.6858,... . The system is linearly stable below the firsigradient method and Romberg extrapolationEfficient
threshold, i.e., foD <D4, corresponding to region 1. evaluation of double and simple integrals, and quality of pre-
diction of an approximation of the root for the neRtstep,
are important considerations to alleviate the time-consuming
task of plotting solutions of16).

We have examined the cases=3.1765, which is not

Particle simulation methods have been well establishedar from a planar diode and, as a benchmark for the particle
as an effective technique for studying the nonlinear propereode x;=1.3049, which is closer to it. The numerical experi-
ties of plasma. The simulations presented here were dormments where extended up to region 6. Since we want to give
using the particle-in-cel[PIC) code pPDcC1 (Plasma Device attention to those cases that depart most from the planar, i.e.,
Cylindrical one-dimension#?~24in a workstation version cylindrical diodes withx;>1 and x;<1, where curvature
xPbC1l This PIC code is one-dimensional, radial, electro-plays an important role, a series of numerical experiments
static, and simulates a plasma contained between two coirave been performed witk;=100 andx;=0.1. We now
centric cylinders that can be coupled to an external RLQpresent the full set of roots of the linear dispersion relation
(resistive, inductive, and/or capacitjvesircuit and/or rf  (16), for the values;=0.1, x;=3.1765, andk; = 100.
source, i.e., it is not specialized to the cylindrical Pierce di-  Figure Za) corresponds tx;=0.1, a convergent diode,
ode with radial flow. The original code has been modified inand givesRe(s) as a function ofD. Six nonoscillatory
order to have an initial density that variesrgsc 1/r. During  modes are shown with full lines, corresponding to damped or
the simulations the imposed boundary conditions ensure thamonotonically growing perturbations. Fdd<4.5, region
electrons are injected at a constant rate from the cathodg, the system is stable. Region 2 corresponds to the interval
(inner electrode for a divergent beam, and outer for a con4.5<D<9.2. In this region the diode is unstable. A second

Hence, there exist an infinite number of pairs

lll. SOLUTIONS OF THE LINEAR DISPERSION
RELATION

C. The nonlinear code
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FIG. 3. Roots of the dispersion relation far=3.1765.(a) Re(s) as a

FIG. 2. Roots of the dispersion relation figr=0.1.(a) Re(s) as a function function of D; (b) Im(s) as a function oD.

of D; (b) Im(s) as a function oD.

of region 5, except near the end, where a second stability

damped mode that tends to merge with the unstable modsland is apparent around 228 <23, in connection with
near the end of the interval can also be seen here. Howevahe fifth monotonic mode, which is also stable there. After-
it must be pointed out that for a fixed value bf>0, an  wards, the second oscillatory mode becomes overstable
infinite succession of increasingly damped modes exists. Thagain in the range 237D <26.4 inside region 6, and then
extensions of the five slanted lines after the first mode can bstabilized at last, it sinks with ondulations in tRe(s) <0
found in regions 1 and 2, if we look at sufficiently large halfplane. In the same figure, we can see the beginning of the
negative values dRe(s). The complete succession of modesthird oscillatory mode(dotted ling. Region 6 shows two
for a diode with fixed %;,D), is needed to represent, by oscillatory modes and a monotonic unstable mode, while re-
superposition, the evolution of an arbitrary initial perturba-gion 7 has an overstable mode and two oscillatory damped
tion. modes(besides the infinite set of monotonic damped modes,

Above the limit of region 2, the damped mode of region present in all regions From Fig. 2Zb) it is apparent that
2 becomes a growing one. Very close to this limit, in regionIm(s), the frequency of the oscillatory modes, increases as
3, the two real positive roots coalesce and two complex conb increases.
jugate roots appear d3 increases. The real and imaginary The roots of the dispersion relation for the case
parts of the overstable mode are shown with dashed lines ix;=3.1765, which correspond to a divergent flow, are plotted
Figs. 2a) and 2b), respectively. The oscillatory growing in Figs. 3a) and 3b), and show features similar to the pre-
mode becomes oscillatory damped @t=13.4, where the vious case. We may note, however, that the first oscillatory
ondulating dashed line sinks slowly toward negatiRg(s) mode (dotted ling shows only one unstable range,
values. The oscillatory damped mode coexists with the third<D<11.5, contained in region 3 and remains stable with
nonoscillatory mode that becomes unstabl®at13.8. For increasingD. A stability island is formed after the first os-
13.4<D<13.8 both modes havRe(s)<0 and are stable. cillatory mode becomes damped and up to the start of the
Thus, a small stability island is formed near the end of regiorthird monotonically unstable mode, 1x® <12. The sec-
3, limited by the beginning of region 4. In region 4 the first ond oscillatory modegdashed-dotted lineis overstable in
oscillatory mode rises again to values RE(s)>0, within  region 5, except for a second stability island in the interval
the range 158D <16.0, where it shows a weak instability 19.9<D<20. It has another overstable range for
with very small growth rates. The flow is in any case un-20.9<D<22.9 and becomes oscillatory damped for
stable in region 4 due to the third nonoscillatory mode. D>22.9. The nondimensional growth rates are roughly half

The second oscillatory mode is represented in Fig®. 2 of those of the precedent case.
and 2Zb) by a dashed and dotted line and shows a general Finally, in Figs. 4a) and 4b), we give Re(s) and
behaviour similar to the first one. It is generated again byim(s) for the highly divergent case&;=100. Figure 4c)
coalescence of two real roots, near 18.4, the beginning cdhows a magnified particular: the merging of two real roots
region 5. The second oscillatory mode is overstable in mosto produce the first overstable mode. This effect is similar to
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Qo2 T T , nonuniformo,nr, and¢ # 0, besides the basic uniform so-
ta) . f\,—w.\ lution v=v,,nr=nR., and $=0. These nonuniform ve-
0 Y VA e e locity states, which bifurcate from the basic solution at the
Rels) 4= A critical values, are the linearized version of finite amplitude,
-Qo2} N A steady state, spatially dependent potentials, that are also
compatible with the equations of the model.
-004'y Q'.,, Ti 1 I.IS i The importance of these states is due to the fact that
a2 T : D T numerical experiments show that some of them are
(b) , asymptotic solutions, i.e., perturbations of the initial constant
ok K . speed flow may evolve in time and relax to a nonlinear
/ steady state. For planar diodes the stability of nonlinear
008 n - states is studied in Refs. 8 and 9.
Im(s)r s e The nonlinear states are solutions of
Qo6 II' il' . d d D2 l 1 18
/ . — [— = 0 —
oo4}- X P - dx de(’/j 2\ \1+y ' (18)
’ /
o2k / _‘_,;i . wherey= gq&/(mvﬁ(Z), x=r/Re, with s(1)= y(x)=0. For
R ;. |#|<1 this equation is solved by the Bessel functions
o Lol il L Jo(DVX),Yo(D+X;). Using these solutions and boundary
05 ' 2 conditions it is easy to confirm, also in this way, that the
0005 r — T —T T linear critical states are given by the roots().
 (c) ,/ . The nonlinear steady state equatid®) follows from a
Q004 ,/ | Lagrangian variational principle,
. ,
i / - Xi
Q003}- M PR 5J (X" )dx=0 (19
B P 1
Re(s)} // - 1 )
0002}~ Pl - with
. i - xy'2 D2
0001}~ 0 - LYY )=+ 5 (21— ). (20)
I ]
- o ..
B |
0000 - = == = = = = === B Thus(18) corresponds to
- : 1 8L 4% 4 ( (97> o o1
~-Q00! l Ll | S I ! = ——| —]=0.
067 068 069 070 orl oy ¢y Ix\ oy
0 Introducing, I1= 04194’ =x¢', the canonical momentum
associated with ¢, we obtain the Hamiltonian
FIG. 4. Roots of the dispersion relation fqr=100.(a) Re&(s) as a function T=11 lﬂ' -,
of D; (b) Im(s) as a function oD; (c) detail of (a). 12 2
Q}/25+7(l//—2\/1+l//). (22)

the one indicated when describing FigaB not clear in that. We may note thaf%/2x is the (nondimensional electro-
figure because of the scale. Several features are qualitatively . . ) :
atic energy density of the system, here acting as equivalent

similar to those described in the previous cases. Note, ho Ginetic eneravin a mechanical analo The equivalent
ever, that the stability islands are lost here, as one can realize ~ - 9y X 9y cquiva
. ) ) . nondimensional  potential energy density is

observing the behaviour of the first oscillatory mddashed D2(y— 21+ )12
line) and the third monotonic modgull line) in the range From Hamiltoﬁ’s equations it follows directlv that
D=~1. The first and second oscillatory modes both show a q y
second overstable interval, after the regions 3 and 5, respec- d. 77 112
tively. The nondimensional growth rates are smaller thanin =~ gx ~  2x- (23
the casex;=0.1 roughly by a factor 100. o ) )

The local maxima of the growth rates in each region Therefore.7Z decreases with increasing and vice versa.
considered separately for monotonic and overstable mode¥/0reover, maxima or minima of the electrostatic potential
increase slowly as we move toward regions of higher order?> aré @lso maxima or minima of the Hamiltonia#, con-

This is a general trend present in all threecases studied.  Sidereéd as a function of. _
The mechanical analogue corresponds to the motion of a

particle with variable masg in a one-dimensional potential
well (see Fig. %, where energy, varying according (@3), is

For a pair §; ,D), corresponding to a threshold, the sys- not conserved. Mass is equal to 1 starting at the emitter, then
tem allows another possible linear steady state solution witincreases linearly for diodes with>1, or decreases linearly

IV. NONLINEAR STEADY STATES
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FIG. 5. Equivalent potential/ of the mechanical analogy versus for FIG. 6. Values of the electric field at the emitter, in nondimensional units, as
D=1. a function ofD, for the divergent casg,=100.

for diodes withx;<<1. The fictitious particle is launched at would find solutions with one peak, others withpeaks and
=0, with initial energyl1?/2x—D?/2, and with[I>0 or  n—1 valleys at the loweD values, and a third group with
I1<0, i.e., we may start with a negative or positive electricn valleys andn peaks at the highdd values, and in region
field at the emitter, respectively. After an excursion, with one2n+ 1 solutions with one peak, others withpeaks(valleys
or more passages through=0, the particle may finally and n valleys (peaks at the lowerD values, and a third
reach=0, at the collector X;). Thus ¢ may show one or group withn valleys anch— 1 peaks at the highdd values.
more maxima, depending on the valuesxf,D). Of course, These results have been confirmed numerically up to
the coincidence ofy=0 at the chosen final poin depends  values in region 7 fox;=0.1,100. Results are presented in
on the starting conditions and corresponds to the solution dfigs. 6 and 7 for the divergent and convergent case, respec-
a characteristic value problem. tively. We have plotted the values of the nondimensional

The principal limitation is the natural barrier at electric field at the emitter @R.E,(1)/mv?2 vs D. The first
=—1. This corresponds to the formation of a virtual cath-branch, which corresponds to solutions with only one extre-
ode U=0, v—=). The equations of the model fail at this mum, exists for all values db. In region 1 the solutions are
point. Physically, the system becomes unstable when thigalleys, while in the rest of the regions these solutions are
value is attained by a solution. The mechanical analogy helpgeaks. The value of the electric field at the emitter increases
one to understand qualitatively the behaviour of differentwith D. A new branch corresponding to solutions with two
types of steady states. Solutions may have only one maxpeaks appears in the neighborhoodDsf, another one with
mum of ¢ (one peak one maximum and one minimu@  three peaks in the neighborhood®§, and so on. The low-
peak and a vallgy two maxima(two peaks and a vallgy est and highest value db attainable in each branch are
and so on. Clearly, this depends on the number of oscilladetermined by virtual cathode formation. Examples of these
tions the fictitious particle performs in the potential well,
without touching the barrier.

By integration overx, we find .7Z(1)>.7(x;), when

x;>1, and . 7Z(1)<.77(x;), whenx;<<1. This implies that, 15
while in planar diodes$y’| has the same value at emitter and
collector, in cylindrical systems the steady state solutions 10}
must satisfy(taking boundary conditions into accolurthe s
inequalities ' (1)?>x;4' (%)%, for x;>1, and ¢'(1)? 5} . u
<Xy (x)?, for x;<1. u s
For a given value ok;, nonlinear solutions can be ob- B of
tained with an increasing number of peaks and valleys as s u s
D increases. In region 1 there are solutions with one mini- -5 | ) !
mum. In region 2 we find solutions with one maximum, and
solutions with one valley and one peak for higher values of -10r
D. Next, in region 3 for the divergenfconvergent case
there are solutions with one peak, others with one valley and <15, P 10 12 18 5 26
one peak for loweD values, and solutions with two valleys D
(peaks and one peakvalley) close to the limit with region
4. FIG. 7. Values of the electric field at the emitter, in nondimensional units, as

This pattern repeats itself so that in thetR region one  a function ofD, for the convegent casg=0.1.
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5 . . . . TABLE I. Comparison of critical values for;=1.3049 and the planar case.

D a a (planay
22.0711 3.3647 3.1416
44.1496 6.7306 6.2832
66.2265 10.0962 9.4248
88.3030 13.4618 12.5664
110.3792 16.8273 15.7080
reduces tax=nm, wheren=1,2,3... ., which is the condi-
. . . . tion for zero frequency roots for planar Pierce diodes. Also,
0 20 40 60 80 100 n defines the critical values that mark the boundaries be-

tween regions on the line. The behaviour of the system for

X; near 1 is then expected to show known properties of the
FIG. 8. Plot of the potential versus for x;=100 andD=1.275. For  planar Pierce diodes. In this section we show the results of a
x=33.56 the potential is-0.998(close to virtual cathode formatipn set of simulations of the cylindrical system fey=1.3049.
These numerical experiments are therefore performed as a
denchmark for the code, and are compared with existing par-
ticle simulations in the literature, in particular with Ref. 2.

The indications of stability of the different branches in The linear dispersion relation is similar to figure 1 of Crystal

Figs. 6 and 7 are given empirically, i.e., on the basis of th@nd Kuhn? In fact, we can see in Table | how the critical
observed behaviour in numerical experiments. These stab|Fy values for this cylindrical system are close to those of the

ity properties are consistent as extensions of known resulf!anar case.

for planar diodes, but there are also new features. The COMPUter experiments were prepareda0 with both
branches around the valuesBf, with n odd are similar to 2" €xcess of electrons over ions, i.e., negative initialization,
those found in the planar case. The new branches located ﬁ,pd a defect of electrons, i.e., positive initialization. This

the neighborhood 0B, with n even, tend to thenarginal produces an initial nonzero electric potential. For
modes of the planar cas@ee, Ref. 8 in the limit case D <22.0711(region 1 the simulations show a stable behav-

x;—1. In both situations, there is an exchange of stablllty'our in agreement with linear stability predicted by theory.

between the zero potential solution and the nonuniform onel-he perturbation is found to decrease after a period of ad-
asD passes through,. justment, and vanishes in a few transit times. Crossing the
Considerable insi?ght can be achieved by examining thé'rSt critical value, the predicted linear instability in region 2

simulations, taking into account concepts reported in the lade OPserved, having the following nonlinear characteristics.
two sections. First, for positive initialization we find that the electron flow

does not become turbulent, but stays laminar. The electric
potential increases and approaches an asymptotic steady
state, which is a nonlinear solution with one maximum. The
Whenx;~1 the system is approximately a planar Piercenew state, with nonuniform velocity, appears to be stable in
diode. As noted in Ref. 13 wheqn~1 andD>1, Eq.(17) the simulation. An example of these features is shown in Fig.
10, obtained foD =33.0 which corresponds approximately
to the maximum linear growth rate in the region. Figure
4 , , ‘ , 10(a) shows the initial profile of the potential. Figure (bD
shows the final shape of the potential. Note that the final
amplitude is over two thousand times the initial value. Figure
10(c) represents the asymptotic phase space pi¢after 13
7, 7. transit time@ where we can see the change of the beam
velocity across the diode. Finally, Fig. @) shows the time
evolution of the mid-potentialpotential midway between
emitter and collectgr which grows and approaches a con-
stant value after about 1A No oscillations are observed. In
accordance with the behaviour of the mid-potential, the num-
ber of particles in the simulation decreases, and finally be-
comes constant. Second, for negative initialization, the linear
instability leads to the formation of a virtual cathode. Part of
the electron beam is reflected toward the emitter, and part is
transmitted through the diode. The virtual cathode is alterna-
FIG. 9. Plot of the potential versus for x=0.1 andD=16.7. For tively formed and disintegrated. There is no approach to a
x=0.454 the potential is-0.998(close to virtual cathode formatin steady configuration. There is little particle trapping, so that

limits are presented in Figs. 8 and 9 for the divergent an
convergent cases, respectively.

V. PSEUDO-PLANAR DIODES
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FIG. 10. Results fox;=1.3 in region 2, with positive initialization(a) FIG. 12. Phase space far=1.3 in region 3, fort=15r.
initial potential profile;(b) final potential profile;(c) final phase spaceg)

time evolution of mid-potential.

disrupted. The saturation of the linear instability is caused by
the instability is nonlinearly limited mainly by the formation Virtual cathode formation and trapped particle processes.

of the virtual cathode, which implies an effective reduction . or D larger than 66.2265 we enter region(dot ex-
of the interelectrode distance and electron current. Figure 1@10red in Ref. 2. Here again, as in region 2, different behav-

shows the results of negative initialization for the same palCUrs ©of the computer experiments are obtained for positive

rameters of Fig. 10. In Fig. 18 we see the shape of the and negative initialization. Starting with a positive potential

(negative initial potential. Figure 1(b) represents the phase att=0_, the I|near_|nstab|llty which produces departure from
space at=13r where a virtual cathode can be observed.the uniform veloqty state is observed. However, the system
Figure 11c) gives the time evolution of the mid-potential, PreServes a laminar electron flow and relaxes toward a new
showing typical fluctuations of the system. Correspondingly,equ'“br'u_m state characterlged by an electrlc.potentlal with
the number of particles of the simulation does not approach Y0 maxima. The asymptotic approach to this steady state
constant value. These features are similar to those reported §i¥Nich is also a nonlinear solutipccurs now with oscilla-
tions (not present in region)2 All this can be seen in the

Ref. 2 for region 2 of planar diodes. A -
Region 3 starts ab =44.1496. In this region the time example of Fig. 13 wherB=77.0. We do not give here the

asymptotic characteristics do not depend on the type of inil"itial potential which is similar in shape to Fig. &0. Fig-

tialization (i.e., positive or negatiye We find formation and ure 13a) shows the asymptotic potential and Fig.(liSthe

disruption of a virtual cathode, and large amounts of trappecﬁ)hase space with the modulation of the velocity ferl5r.

particles, as seen in the phase space plot of Fig. 12, fgrnally. Fig. 13c) gives the time evolution of the mid-
t=12r andD =56. This is similar to figure 1€first bottom potential where we observe oscillations about the asymptotic

pane) of Ref. 2. In this region the electron flow is always steady state. Small amplitude oscillations about the nonuni-
form equilibrium have an angular frequeneyr=3.8. A
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FIG. 11. Results fox;=1.3 in region 2, with negative initializatior(a)

initial potential profile;(b) final phase spacer) time evolution of mid-

potential.

Phys. Plasmas, Vol. 4, No. 8, August 1997

FIG. 13. Results fok;=1.3 in region 4, with positive initialization(a) final
potential profile;(b) final phase spacég) time evolution of mid-potential.
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theory of this process for the planar case has been present

<n(r)>

in Refs. 8 and 9. A detailed analysis of the dispersion rela %55 Timl ] ® i
tion for these modes can be found in Refiseée Eq. 40 and ,
Fig. 12 in that referengetogether with the numerical simu- 45> 375

(e
lation of the pure oscillatory behaviogFig. 14 of the same

referenceé An approximate value of this pure oscillatory % g
mode (@/7=3+3/8)° is 3.7, close to our measured fre- £ E
quency. © z
For negative initialization the flow is disrupted in a man- 235
ner similar to region 3. This is exemplified in Fig. 14 for the 0 tusl 0493 o tHesl 0.495

sameD value as Fig. 13. We show in Fig. (&} the phase
space, with a typical vortex and virtual cathodet&tl3r  pig 15, Results fox;=100 in region 2, with positive initializationta)
and in Fig. 14b) the corresponding fluctuations of the mid- initial potential profile;(b) final potential profile;(c) final phase spacé)
potential. The number of particles also has a characteristiéme average of densityg) time evolution of mid-potentialf) time evolu-
unsteady time behaviour. tion of number of particles.

The nonlinear behaviour reported in Ref. 2 for the planar
diode in regions 1 to 3 has also been found in the
x;=1.3049 cylindrical case. Numerical experiments havenitial (positive potential is presented in Fig. (. The lin-
been extended to regions 4 to 6. In region 5 we have obear instability develops and takes the system to a (rew-
served a behaviour similar to region 3. In region 6 with posi-uniform) equilibrium shown in Fig. 1&) at t=15r. The
tive initialization, the system relaxes to a nonlinear solutionpotential maximunifour orders of magnitude larger than the
of the potential with three maxima. For negative initializa- initial value) is clearly shifted toward the emitter, and the
tion in region 6 the electron flow is disrupted. Summing up,phase space, Fig. (&, shows a similar asymmetry. The
the critical values defining the boundaries where the stabilitynaximum velocity is nearly two times,. We give in Fig.
properties change have been verified. 15(d) the density profile of electrons averaged over two tran-
sit times around =197 (solid line). Note the difference with
the ions(dotted ling showing that the system has a net posi-
tive charge throughout. Figure (& gives the time evolution

It is interesting to contrast now the behaviour of cylin- of the number of particles showing about a 30% decrease
drical diodes with large surface ratiox;¥1), with the fromt=0 to equilibrium. Figure 18) shows the approach to
pseudo-planar case;&1) of Sec. V. We studied in detail a the asymptotic equilibrium via the time evolution of the mid-
system withx;=100, so that the cylindrical geometry, the potential. No oscillations are observed as the constant final
radial density variation, and the divergence of the flowvalue is achieved.
should have a strong influence. The first six critical values  The behaviour of the divergent flow witk;=100 in
for D are D;=0.3314, D,=0.6858, D;=1.0377, regions 3 and 5, or in regions 2, 4 and 6 with negative ini-
D,=1.3887,D5=1.7390,D5=2.0889. We have confirmed tialization, is most unusual. The nonlinear stage shows a
by several computer experiments that the stability propertiestrong dynamics, with formation and coexistence of several
of the regions defined by these values changeDXdrelow  transient and moving virtual cathodes in the interelectrode
and above the boundary values. space. The accelerating potential of moving virtual cathodes

Region 1 is stable in the simulations as predicted byis a phenomenon characteristic of high surface ratio diodes,
theory. We have tried to destabilize the system with largenot present at small ones. The formation of several jets of
(negative or positive initializations with no consequence. electrons can be observed at a given time at different posi-
The threshold of linear instability for this cylindrical diode is tions through the systeitfive can often be seen, with speeds
given by = 16.4043> 7. Therefore, for the same interelec- up to two timesv). The jets are generated by the moving
trode distance and beam velocity, the current density threshdrtual cathodes in a kind of “ejection” mode, while parts of
old at the emitter is 27 times higher than in the planar diodethe beam are reflected backward. Remarkably, there is very
Results for region 2 are given fad»=0.5 in Fig. 15. The little particle trapping in this regime. The growth of the elec-

VI. EFFECTS OF HIGHLY DIVERGENT FLOWS
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FIG. 16. Results fox;=100 in region 2, with negative initializatior{a)
initial potential profile;(b) final phase spacér) final potential profile;(d)
time evolution of number of particles.

. ) . . . respondingly, the fluctuations of the mid-potential are given
trostatic energy in the instability is limited mainly by con- ;, Fig. 17(d).
version to multiple energetic electron jets. The system keeps  pagion 4 is characterized by the fact that positive initial-
going in this strongly fluctuating fashion during very 1ong i, a4ion ‘leads to a new nonuniform equilibrium state, while

simulation runs. Examples of these processes are illustratgdjaive initialization produces a disruption of the electron

in the following. ) . ) flow. We show in Fig. 188 an example of asymptotic po-
The electron flow can be disrupted in region 2 wheneptia| with two maxima, ford=1.2, attained at time of
negative initialization is used. For the same value Oforder 1G-. Correspondingly, Fig. 18) shows the phase
D=0.5 th!s pher!omenon IS 'lllustra_ted in Fig. 16. In F'g_' space. The time averaged electron den@ter the last two
16(a) we give the initial potential. A picture of phase space is; 5 it times is represented by a solid line in Fig. (&8 (the
shown in Fig. 1) for t=20r, where one can see the re- y,eq jine is the ion densityThere is a net positive charge
flected particles _but also the formatlon_ of a jet (_)f forwar(_j density with the exception of a region around the minimum
accelerated particles. The corresponding electric: potentigs e electric potential. The mid-potential, Fig.(§ exhib-
profile is shown in Fig. 1@&) and the fluctuations of the i ygillations as the asymptotic state is attained. These os-
number of particles around the initial value in Fig.(@6  cjjations with frequencywr=3.33 may be associated with

First appearance of a virtual cathode occurs at abouly ) amplitude perturbations of the nonlinear equilibrium
t=10r. The position of the virtual cathode travels away from%not yet analyzed for cylindrical diodes

the emitter. The time-varying potential energizes a set o
particles. Comparing Fig. 1) of the pseudo-planar diode
with the present phase spdédg. 16b)] we can perceive the
monotonic deceleration of the beam from emitter to virtual _ .o 902107
cathode in the former case, in contrast with deceleration fol @ ®)

lowed by acceleration of the latter. As the virtual cathode T f\h
g
>

~
=

approaches the collector, it fades away, but a new one forrr
near the emitter and another cycle starts. A signature of th
repetition of this process is given by the oscillations showr
in Fig. 16d). Little particle trapping is observed. From time 30— e = %% ) 5
to time the collector receives two sets of particles with well
defined energies. 850.0102 2
In regions 3 and 5 the system is disrupted by the insta | @
bility with both kinds of initialization. In Fig. 17) we show
the phase space of region 3 for15r and D=0.87. The
initialization potential was positive with a maximum of
about 5 V. A recently formed accelerating virtual cathode
and an old one near the collector are both visible. The time
history of the mid-potential is shown in Fig. @j. The
phase space de: 1'.6 (rgglon 9is prgsentgd n Fig. I@) FIG. 18. Results fox;=100 in region 4, with positive initialization(a)
att=447. The initialization was positive with @ maximum  fina| potential profile;(b) final phase spacer) time average densityd)
near 15 V. Several accelerating potentials can be seen. Caime evolution of mid-potential.
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space, at the same time, is in Fig.(d9 We may note that
the maximum of the potential as well as the maximum of the
electron speed is here shifted toward the collector, in contrast
to the case ok;=100, where the maxima were shifted to-
ward the emitter. In Figs. 16) and 19e) we can follow the
relaxation to the new equilibrium via the number of particles
and the mid-potential as a function of time, respectively. No
oscillations are observed. Finally, in Fig. (Pwe give the
time averaged electron densitgolid line, averaged over 7
3 e = 03k e E— transit time$ where the ion density is also given as reference
(dotted lins.

We examine now two negative initializations of different
FIG 19. Rgsults fgrxizo._l in regior_1 2, WiFh posjtive initialization(a) strength for region 2 and the sarBe=7. In Fig. 20a) we
initial potential profile;(b) final potential profile;(c) final phase spaced) ... . . . .
time evolution of number of particlegg) time evolution of mid-potential; show the initial potentlal with a maximum amplIIUde not
(f) time average of density. exceeding 4.5 V in absolute value. The system evolves to a

nonlinear equilibrium solution for the potential in about

107 as shown in Fig. 2(). Note that this is the same poten-
VIl. STRONGLY FOCUSED BEAMS tial reported by Fig. 1@). The number of particles and mid-

As mentioned in the introduction the convergent con-potential evolutions are quite similar to those reported in
figuration (;<<1) is the most interesting one for applica- Figs. 19c) and 19d). The same can be said about the
tions in which ions are neutralized with comoving electrons.asymptotic phase space. However, if the initial perturbation
We shall describe the main features of this case by computd$ larger, as shown in Fig. 2d), where the maximum of
experiments for a particular value of the ratie=0.1, which  |#/=13V, the flow is disrupted in about $0Figure 21b)
corresponds to a strong convergence of the beams. shows the phase space shortly after the formation of the vir-
The first criticalD values forx;=0.1 areD;=4.5232, tual cathode, where reflection of particles and also the trap-

D,=9.1487, D;=13.7557, D,=18.3569, D5;=22.9555, ping of another group of particles near the collector can be
and Dg=27.5528. Region 1 is stable in computer experi-Seen. Figure 2t) shows the phase spacetat25r and Fig.
ments, as in the previous cases studied in Secs. V and VI.
The first threshold of the instability corresponds to

©
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a=2.0354, so that for the same interelectrode distance an  °[; T
velocity of the beams the density current at the emitter for _
this cylindrical case is nearly 2.4 times smaller than in the % ]
planar diode. Simulations show that the second regionis lin = <

early unstable. However, a new feature appears in the not \_/\

linear evolution of the system. Positive initializations lead to

»

a new nonuniform equilibrium, as we have also found for ~ ** rlm) ol oot riml o
x;=1.3 andx; =100. For negative initialization, instead, we x107 282107
must distinguish between “small” and “large” initial per- © @
turbations. For the time being this is only a qualitative char- 7 A s
acterization of the initial perturbation strength to be deter- f 7 EE
<

mined empirically. For small negative perturbations the \—’/\

system relaxes to a nonuniform equilibrium and only for

large negative perturbations is the system disrupted. oot T 71 %% e 753
We present first an example of positive initialization for :

region 2, correspondlng t©=7.0 close to the maximum FIG. 21. Results fok;=0.1 in region 2 with a large negative initialization:

growth rate. In Fig. 1@ we show the initial potential. Fig- (5 initial potential profile; (b) phase space just after the virtual cathode
ure 19b) is the asymptotic potential far~147. The phase formation;(c) phase space at=25r; (d) time evolution of mid-potential.

[
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21(d) gives the history of the mid-potential. Here the insta- ) :
bility is limited mainly by formation of the virtual cathode. 0.01 1 (m] 0.1 0.01 1 [m] 0.1
In region 4 this behaviour is more pronounced. For posi-
t,lve, |n|t|a!|zat|on the system at'talns a new nonuniform eca"“'FIG. 24. Results fok;=0.1 in region 6, with two different negative initial-
librium with a two peak potential. The electron flow remains ization: | 4|=35 V (a(c), and|$|=35% (d)~(f). (@) Potential profile at
laminar. Small negative initialization leads to a nonlineart=13r; (b) phase space at=13r; (c) time evolution of mid-potential(d)
stable solution, while large negative initialization disruptsPhase space at=47; (¢) phase space at=67; (f) phase space at=10r.
the electron flow. In Fig. 22) we show the initial negative
potential with a maximum ¢|=24 V, for the caseD =16
(close to the maximum growth rate of region Bigure 22Zb)
shows the asymptotic phase spacé=afi7r, and Fig. 2%c)
the corresponding potential. The approach to the new equ
librium takes place with weakly damped oscillations re-
vealed by the mid-potential time variation shown in Fig.
22(d). Measuring the angular frequency of the oscillations
we find w7=3.7. These oscillations we ascribe again to
small amplitude perturbations of the nonlinear equilibrium.
We see in Fig. 2@&) the potential corresponding to a

G0

larger perturbatiorinegative initializatiop with | ¢|=490 V
again usingD=16. Figure 28) shows the phase space at
t=87. One can observe the virtual cathode and a large num-
ber of trapped particles. Figure @3 shows the fluctuations

of the mid potential. Thus a larger negative initialization pro-
duces the disruption of the system.

The same qualitative behaviour is also found in region 6.
We give here examples f@ = 25. Figures 2¢) and 24b)
show the phase space and corresponding potential with three
peaks, respectively, after £3for a small negative initializa-
tion (maximum of| ¢| =177 V). In Fig. 24c) we can observe
the oscillations of the mid-potential with an angular fre-

° () ’ quencywr=3.7, associated as before with perturbations of
- 7 the nonlinear state. With a larger negative initialization
5 i (maximum of|¢|=358 V) the system is disrupted in about
A g 57 as we can see in the phase space in Figd)24vhere a

virtual cathode has just formed. Figures(@4-(f) show the
490 = — 9 phase space at later times; 6.17 andt= 107, respectively.

Let us return now to regions 3 and 5, which turn to be
x104 unstable for both initializations. As an example of the dis-
© ruptions we present results for region 3 with=11.5. Fig-

-
-

5 ures 2%a)—(d) show the phase space for times 10, 12, 15 and
€ 20 7, respectively. Note that the first reflection of particles
< occurs near the collector but the virtual cathode is formed
o near the emitter.

0 t[ns] 24.0

VIIl. DISCUSSIONS AND CONCLUSIONS
FIG. 23. Results fox;=0.1 in region 4, with a large negative initialization:

| 6| =490 V: (a) initial potential profile;(b) phase space at=87; (c) time |_n this paper we StUdy th_e ele(_:tron in_Stab”ity_ and t_he
evolution of mid-potential. nonlinear behaviour of cylindrical Pierce diodes with radial
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TABLE Il. Main results. S=stable; U=unstable; NLS-nonlinearly stable;

107 107
N (2) ’ (b) VC=virtual cathode(N)TP=(no)trapped particles(N)O=(no)oscillations;
_ - J=jets; N(P)I=negative (positive initialization; SL)NI=small (large
;i g negative initialization; #Pnumber of peaks in the NLS solution.
S /\_/ 5
/\//\ Regions 1 2 3 4 5 6
-8 9 1.3
0.01 T [m/s] 0.1 0.01 T (m] 0.1 D= 22.071 44149 66.226 88.303 110.379
Pl— S NLS U NLS U NLS
gx107 9 1P o\VvC 2P o\VC 3P
© NO TP o) TP o)
= | 4 \7 - NI— S U U U U U
B A E OvVC OVC OVC OVC OVC
o L >
\Q; - 7(/ NTP TP TP TP TP
\ e . 100
0.01 ] 01 01 1] o1 D= 0.331 0.686 1.038 1.289 1.739 2.089
Pl— S NLS U NLS U NLS
1P o,vC 2P o,vC 3P
FIG. 25. Results fox;=0.1 in region 31a) phase space &t 10r; (b) phase NO TP,J TP,J O
space at=127; (c) phase space at 157; (d) phase space at=20r. NI— S U U U U U

o,vC o,\vC o,vC o,vC o,\vC
NTP TP,J TP,J TP,J TP,J

flow. The linear properties of these systems depend on two 0.1

parametersy; andD (or «). We have given detailed solu- Di= 4523 9149 13756 18357  22.956  27.553
tions for the linear dispersion relation in the cages 0.1, Pl S NLS U NLS N NLS

. or SNI 1P o,VC 2P o,VC 3P
x;=3.1765, andk; = 100. The first and last cases are then NO TP o TP o
studied in the nonlinear stage with numerical experiments. | Nj— s U U u u U
Critical values ofD, for which s=0, given by Eq.(17), ovc oOoVvC OVvC OVvVC  OVC
define regions where the system can be nonlinearly stable or NTP TP ™ TP TP

unstable depending on initial conditions of space charge. For
small values of; , intervals of stability appear close s,
Ds, ..., etc.(stability island$. These small stable regions are
not present in systems with large valuesxpf The particle simulations of cylindrical Pierce diodes
We found that the alternating succession of oscillatorywith radial flow have successfully recovered the predicted
unstable and monotonically unstable modes that appear iinear properties. Results of experiments for the case we have
the system ad increases, is different in systems with called pseudo-planax(=1.3) are in good agreement with
X;<1 andx;>1, compared to the planar case. For instancethe planar simulation features reported in Ref. 2. In region 4
Fig. 4(a), for x;=100, shows that the coalescence of twoa positive initialization relaxes toward a nonlinear stable
pure imaginary roots into a complex conjugate p@ver-  state with oscillations close to the new equilibrium. The ob-
stable modgoccurs for a value oD somewhat larger than served frequency of oscillation corresponds to that predicted
D,. Hence, with increasin® a new monotonically unstable in Ref. 9.
mode appears &5, and afterwards the overstability appears  The critical values oD defining regions with different
inside region 3 as a consequence of the merging of twatability properties have also been confirmed by numerical
monotonically growing modes. A similar pattern can be seerexperiments fox; =100 andx;=0.1.

nearD,4, Dg,..., etc., and it takes place also fer<1l. In Table Il presents a summary of properties for the cases
planar diodes the coalescence takes place exactlp,at studied by particle simulations. Results for each system are
Dy,..., etC. given separately for positivéPl) and negative initialization

This feature of small amplitude theory is associated with(NI). A list of abbreviations, used to describe the observed
changes of stability properties of the nonlinear steady statesffects, is presented below the table. Regions 3 and 5 are
that bifurcate at the criticaD values, with respect to the always unstable for the, cases tested. In regions 2, 4, and 6
behaviour characteristic of planar diodes. In Sec. IV we havéhere is relaxation to nonlinear equilibrium states observed to
shown the modifications that the so-caliedrginalstates of  be stable, for positive initialization wheg=1, and also for
planar systems undergo in cylindrical systéifisn the am-  small negative initialization wher;=0.1.
plitude vsD diagrams of cylindrical diodes, an exchange of = The strongly divergent case manifests unusual dynamics
stability of nonlinear steady states, occurdat D,,..., etc.  after destabilization, showing a large number of accelerated
For x;<1, and with increasin@, we pass from unstable to particles and time-varying accelerating potentials. This case
stable nonlinear states. Conversely,Xpr 1, stable turninto is linearly more stablghigher density thresholdthan the
unstable nonlinear states. These features may have interesther cases, but nonlinearly appears more fragile to disrup-
ing consequences in the analysis of bifurcations and chaotitons (negative initialization Conversely, the convergent
behaviour. A deeper investigation of these topics is mattecase is linearly more unstabldower density thresho)d
for future studies. However, in numerical experiments it shows resilience to
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