
Particle simulations of divergent and convergent radial electron flows
in cylindrical Pierce diodes

M. Virgı́nia Alves
Instituto Nacional de Pesquisas Espaciais, P.O. Box 515, 12201-970, Sa˜o Josédos Campos, SP, Brazil

Fausto T. Gratton, Graciela Gnavi, and Cesar H. Moreno
Instituto de Fı´sica del Plasma, CONICET, Departamento de Fı´sica, Facultad de Ciencias
Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabello´n 1, 1428 Buenos Aires,
Argentina

~Received 21 February 1997; accepted 17 April 1997!

A special class of Pierce diodes, that consists of a pair of grounded coaxial cylindrical electrodes,
with electrons streaming radially between them, is studied. The full set of roots of the dispersion
relation of the Pierce instability is obtained by solving the dispersion relation numerically. The
nonlinear behaviour of the system is then investigated using particle simulation. It is shown that the
behaviour of cylindrical systems depends on two nondimensional parameters. Linear and nonlinear
properties are different for convergent and divergent configurations. Several remarkable differences
between cylindrical and planar Pierce diodes are reported. ©1997 American Institute of Physics.
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I. INTRODUCTION

The instability and associated limiting current for a ne
tralized electron beam drifting between planar ground
grids ~Pierce’s diode! has been extensively studied in expe
ments, theory~see Ref. 1 and references therein!, and particle
simulations.2,3 Pierce-like configurations appear in a varie
of plasma systems of current interest, including inertial
sion, collective process accelerators, Q-machines, and
power microwave amplification.

The fact that in a bounded plasma, contrary to what h
pens in an infinite system, a monoenergetic electron be
alone may become unstable when drifting freely betwe
grounded electrodes~excluding any interaction with ions! is
unexpected. It has attracted the attention of researchers
many years. A survey1 of this topic ~dated 1987! covers
about 150 references. By far, the existing literature is
voted to planar diodes.

For a long time~after Pierce’s 1944 paper4! the instabil-
ity properties were known near the threshold only. Assum
linear modes varying as exp(gt), the roots of the dispersion
relation were examined nearg50. Later it was pointed ou
by Pierce himself,5 that the unstable behaviour is related
the existence of bifurcations, i.e., the coexistence of t
equilibrium states of the beam, one being the unpertur
beam state~with constant speed and uniform density! and the
other a new steady state with spatial variations of density
velocity of the beam. The theoretical condition for the ex
tence of marginal states,g50 ~assuming neutrality and fixe
ions! is a5(2n11)p, for n50,1,2,..., wherea, the Pierce
diode parameter, is given bya5vpL/vb (vp is the plasma
frequency computed with the beam density;L is the inter-
electrode distance;vb is the free streaming beam speed!. The
threshold for the first unstable mode corresponds ton50.
For a greater, but close top, the instability was found to be
monotonic in time. The rather complex dispersion relat
was investigated numerically afterwards.6 As a function of
increasinga, a rich sequence of modes was found. Mon
Phys. Plasmas 4 (8), August 1997 1070-664X/97/4(8)/3049/1
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tonically growing and damped modes alternate, first with
cillatory growing solutions~overstability!, then with oscilla-
tory damped modes. Segments ofa values with different
properties were discerned. Monotonically unstable and os
latory growing modes are separated by narrowa intervals,
where only damped and oscillatory damped modes ex
We shall call thesea intervals,stability islands. The full set
of roots of the dispersion relation was then examined in R
7, where the linear theory of the initial value problem for t
Pierce diode was studied in detail. Several other aspe
such as the coupling of the diode with external circuits, w
also studied~see, e.g., literature quoted in Ref. 1!. The set of
roots of the linear dispersion relation, for grounded ele
trodes, was again considered in Refs. 8 and 9, in connec
with studies of nonlinear coupling of modes, bifurcation
solutions, and nonlinear steady states. The possibility of
terministic chaos arising in Pierce diodes was revealed
these works. At the same time, numerical simulations,2,8,10,11

began to provide a comprehensive understanding of the n
linear behaviour of the system, and contributed to the co
ing of age of the subject. Recent literature indicates a per
tent interest in Pierce diodes, and shows new features~Ref.
12 and papers quoted therein! like the subtle effects pro-
duced by a spread in velocity of the electron beam.

The theory of a different type of Pierce diode was r
cently given in Ref. 13 where, departing from the plan
setting, electrons drifting radially in the space between t
coaxial cylindrical grids, both grounded, are considered.
the unperturbed steady state the electrons flow radially wi
constant average velocityv r56vb . The flow is convergent
when the electrons move from the outer cylinder~emitter! to
the inner cylinder~collector!; when the motion is in the op
posite direction, from inner to outer electrode, the flow
divergent. Ions are present to ensure charge neutrality, b
the model the dynamics of the ions is ignored. Thus, with
additional changes of the theory, ions may also be assu
to flow together with the electrons, describing a current f
system if so is desired. For geometrical reasons, both e
30495/$10.00 © 1997 American Institute of Physics
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trons and ions have an unperturbed density distribu
n5A/r in the interelectrode space. This configuration m
be distinguished from the cylindrical waveguide device~also
studied in the context of Pierce diodes, e.g., Ref. 14! where
the beam moves along the axis, and which is akin to a pla
diode with bounded cross section.

Electronic devices with cylindrical and spherical ele
trodes were in fact calledPierce electrodes~for a description
see, for instance, Ref. 15!. For a technological review o
electrodes with different shapes, see Ref. 16. Experim
with electron flows in cylindrical configurations are report
in Ref. 17. Fusion studies have also considered conver
flows of ions and electrons~see, for example, Refs. 18 an
19, for spherical geometry!.

As shown in Ref. 13, a flow directed from an inner t
ward an outer cylindrical electrode~divergent flow! is inter-
esting for microwave signal amplification. Stability of co
vergent flows~from outer to inner grids! is relevant for
inertial confinement schemes that focus a neutralized
beam on a target.20 The co-moving electrons are used
provide charge and current neutralization. At a much sma
beam energy the same configuration is interesting also
ion implantation, or plasma coating experiments.

Compared with the research done on planar Pierce
odes, much less is known about cylindrical Pierce confi
rations. The dispersion relation of linear modes for the
lindrical system was derived in Ref. 13@see Eq. ~16!#.
However, because of its considerable complexity due
terms containing single and double indefinite integrals
products of Bessel functions and exponentials, it canno
solved analytically in general, while the numerical search
roots is not a simple task. Thus Pierce instability was stud
in Ref. 13 only near the marginal states@whereg50; see Eq.
~17!#.

We have recalled some important facts about pla
Pierce diodes, and outlined the research status on cylind
Pierce diodes. The aim of the present paper is to contrib
to the understanding of cylindrical systems in two basic
pects, not examined before. First, we analyze the full se
roots of the dispersion relation of the Pierce instability
solving numerically the dispersion relation. Then, we stu
systematically~for the first time, as far as we know! the
nonlinear behaviour by particle simulation.

While planar diodes depend on a single nondimensio
parameter, the behaviour of cylindrical systems depends
two parameters. In addition, linear and nonlinear proper
are different for convergent and divergent configuratio
Therefore, the description of the results is rather extend
We also give some attention to the role played in the evo
tion of the instability by steady state nonlinear solutions t
bifurcate at the criticalg50 values. Exploring these aspec
we report several remarkable differences between cylindr
and planar Pierce diodes.

The layout of the paper is as follows. In Sec. II w
discuss the system configuration, the equations, and
simulation code. Specifically, in Sec. II A the equations
the model are given, and their dependence on two nondim
sional numbers is shown. A brief reminder of the line
theory is given in Sec. II B, and the nonlinear code is d
3050 Phys. Plasmas, Vol. 4, No. 8, August 1997
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cussed in Sec. II C. A full set of roots of the linear dispersio
relation, computed numerically, is presented in Sec. III fo
three values of the ratioxi5Ri /Re , of the collector radius
(Ri) over the emitter radius (Re). Section IV gives informa-
tion about bifurcations of nonlinear steady states, and pr
liminary indications of their stability. In Sec. V we examine
the nonlinear dynamics of a pseudoplanar system (xi.1.3)
recovering the properties of planar Pierce diodes, as a ben
mark for the numerical code. In Sec. VI we show particle
simulations of a highly divergent flow (xi5100). The non-
linear behaviour of systems focussed toward the axis is co
sidered in Sec. VII (xi50.1). Finally we give a general dis-
cussion of the results and conclusions in Sec. VIII.

II. THEORY AND NUMERICAL CODE

A. Configuration and equations of the model

Figure 1 shows the setup and geometry of the system
modeled here. The electrodes are coaxial cylinders. Asso
ated with the emitter, an acceleration device~not shown!
produces the electron flow. We may assume that a potent
difference is applied across additional cylindrical electrode
to obtain a radial electron speed such thateV5mvb

2/2. For
charge neutrality ions may be provided by the residual gas
the drifting chamber. When the electrons are comoving wit
injected ions, to form a charge and current neutralized flow
a more elaborate apparatus must be envisaged. In any ca
before the entrance, there is an acceleration stage which
not further specified and does not take part in our conside
ation. After that stage, the emitter electrode set atr 5Re is
simply a grounded grid that allows the electrons to enter th
free drift inter-electrode space. Similarly, the collector set a
r 5Ri is a grounded grid that allows the radial flow to exit
the system, toward an absorbing dump, and keeps the pot
tial difference between electrodes equal to zero. In som
practical applications the collector may represent a ground
target, but note that we do not take into account here pa
ticles reflected back into the system after hitting the targe
Reflection, however, may occur inside the drifting space pro
duced by collective effects, such as the formations of virtua
cathodes. That kind of reflection is, of course, included in th
code. The figure shows two basic configurations studie
with incoming ~i.e., toward the axis! or outgoing radial mo-
tion, hence forming convergent or divergent bundles of ele
tron trajectories. We assume here that the trajectories a

FIG. 1. Setup and geometry of the systems modeled in this paper.
Alves et al.
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well focussed through the central axis, so that the ang
momentum~or impact parameter! of the particles is zero
The figure also reminds us that at the start, and leaving a
initial perturbations, the characteristic features of the fl
are: constant radial speed,v r56vb , andn5A/r , equal for
both species. Therefore, no electric field exists in the in
electrode space. Under experimental conditions, the 1/r den-
sity distribution is easier to achieve with comoving electro
ion injection. This case also has the advantage of comple
avoiding a possible two stream, electron-ion instability,
lated to a differential speed between species. However
view of their large mass, we ignore ion perturbations in
simulation ~ions are kept fixed, withA/r density! to give
perspicuity to the electron dynamics, and to facilitate co
parisons with the theory.13 Thus, the results we report are n
sensitive to a particular ion setup, i.e., comoving with el
trons, or simply as fixed neutralizing background.

The equations of the model, settingv5v r ,
Er52]f/]r , and assuming a monoenergetic beam, are

]v
]t

1v
]v
]r

5
e

m

]f

]r
, ~1!

]~rn !

]t
1

]~rnv !

]r
50, ~2!

]

]r S r
]f

]r D52
e

e0
~neRe2nr !, ~3!

with boundary conditionsf(Re)5f(Ri)50. The beam en-
ters atr 5Re ~densityne , speedvb) and exits from the sys
tem atr 5Ri .

It is important to realize that the model depends on t
nondimensional parameters only. This can be seen using
following set of nondimensional variables:u5v/vb ,
x5r /Re , n5n/ne , T5t/t ~where t5uxi21uRe /vb),
w52ef/mvb

2. In numerical experiments we useT, the time
measured in units of the transit timet. The spatial variable
x is usuallyr in units of Re , the emitter radius. Eventually
for some comparisons, we may wish to measurer in units of
the interelectrode distanceuxi21uRe . Nondimensional
growth ratesRe(s) derived from theory, are given in units o
Re /vb as in Ref. 13~divide by uxi21u if transit time units
are preferred!.

Equations~1!–~3! are then written as follows:

]u

]T
1

uxi21u
2

]~u22w!

]x
50, ~4!

]~xn!

]T
1uxi21u

]~xnu!

]x
50, ~5!

]

]x S x
]w

]x D52
D2

2
~12nx!. ~6!

Two basic numbers appear in~4!–~6!, xi and
D52Revp /vb . We definevp

25e2ne /e0m using ne , the
density at the emitter. Sometimes, for convenience we
a, the Pierce number, defined asa5uxi21uD/25tvp , for
cylindrical systems.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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B. Summary of the linear theory

In Ref. 13 it is shown that linear modes that repres
perturbations of constant velocity steady states are ruled
the following equations for the nondimensional variab
E[r e0Er /eneRe

2 :

E~x,t![E~x!est, ~7!

S s2
d

dxD
2

E1
m2

x
E5sF 0 , ~8!

where 2m5D, and F 0 is a constant to be determined~to-
gether with two additional integration constants! by the
boundary conditions.

If a solution forE(x) is known, the velocity and density
perturbations are obtained from

V ~x!5S s2
d

dxD E2F 0 , ~9!

N ~x!52
dE

dx
, ~10!

whereV [dv/vb ,N [rdn/Rene .
The solution of the homogeneous equation,Eh , may be

expressed in terms of Bessel and Neumann functions as

Eh~x!5esxAx@c1J1~2mAx!1c2Y1~2mAx!#, ~11!

wherec1 ,c2 are constants. From the solutions of the hom
geneous equation a particular solutionEp of the inhomoge-
neous equation can be expressed as

E p~x!5psF 0esxAxH Y1~2mAx!E
1

x

e2suAuJ1~2mAu!du

2J1~2mAx!E
1

x

e2suAuY1~2mAu!duJ , ~12!

so that,E(x)5Eh1Ep .
The boundary conditions for the Pierce problem are

V ~1!50, ~13!

N ~1!50, ~14!

E
xi

1E~x!

x
dx50. ~15!

Equations~13! and ~14! describe the injection of the unpe
turbed electron flow at the emitter. The last equation ensu
that emitter and collector are at the same potential. This
of boundary equations forms an homogeneous linear a
braic system forc1 ,c2 and F 0. A nontrivial solution exists
when the determinant of this system is zero.

Carrying through this calculation, one obtains the disp
sion equation fors @equation~66! of Ref. 13# as

J0~2m!I 22Y0~2m!I 11sesI 050, ~16!

with
3051Alves et al.
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I 05E
xi

1esx

Ax
J1~2mAx!E

1

x

e2suY0~2mAu!du

2E
xi

1esx

Ax
Y1~2mAx!E

1

x

e2suJ0~2mAu!du,

I 15E
xi

1esx

Ax
J1~2mAx!dx,

I 25E
xi

1esx

Ax
Y1~2mAx!dx.

Steady state solutions are determined by takings50 in
~16!. After integrations withs50 and some algebra we fin

J0~D !Y0~DAxi !2J0~DAxi !Y0~D !50. ~17!

Hence, there exist an infinite number of pa
(xi ,D52m) such that~17! is satisfied.21 For these values
there are steady state solutions with nonuniform veloc
This condition gives, at the same time, the instability thre
olds ~equation 67 of Ref. 13!.

Thus linear instability theory also depends on the t
basic nondimensional parameters,xi andD ~or, alternatively,
a) defined above. For a given speedvb and emitter radius
Re , there are infinite pairs of valuesRi , ne such that the
system admits velocity modulated steady states. This e
tion plays the same role as the Pierce condit
a5(2n11)p for planar diodes. In fact, it can be shown th
planar results can be recovered in the limitsxi'1 and
D@1.

Classification and understanding of linear and nonlin
behaviour, as we shall see, can be achieved, for a givenxi ,
through the set of threshold valuesD1,D2,D3,••• for
which the eigenfrequencys is zero. We shall denote the in
tervals 0, D , D1,D1 , D , D2,D2 , D , D3,••• as re-
gions 1, 2, 3,... of the parameter space, respectively.
example, given xi5100, we find D150.3314,
D250.6858,... . The system is linearly stable below the fi
threshold, i.e., forD,D1, corresponding to region 1.

C. The nonlinear code

Particle simulation methods have been well establis
as an effective technique for studying the nonlinear prop
ties of plasma. The simulations presented here were d
using the particle-in-cell~PIC! code PDC1 ~Plasma Device
Cylindrical one-dimensional!22–24 in a workstation version
XPDC1. This PIC code is one-dimensional, radial, elect
static, and simulates a plasma contained between two
centric cylinders that can be coupled to an external R
~resistive, inductive, and/or capacitive! circuit and/or rf
source, i.e., it is not specialized to the cylindrical Pierce
ode with radial flow. The original code has been modified
order to have an initial density that varies asn0 } 1/r . During
the simulations the imposed boundary conditions ensure
electrons are injected at a constant rate from the cath
~inner electrode for a divergent beam, and outer for a c
3052 Phys. Plasmas, Vol. 4, No. 8, August 1997
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vergent one!. Once the electrons reach the collector they
absorbed, contributing to the external surface charge.25 Both
electrodes are kept at the same potential.

Fields are calculated on a grid of 200 points using
finite-difference Poisson scheme~equivalent to the flux con-
serving method26!. Poisson’s equation is solved in each tim
step with the given boundary conditions. The code has b
described in detail in Refs. 22, 23, 25. All runs were initia
ized by prescribing electron spatial distributions which diff
only slightly from the linear equilibrium (nb(r )}1/r ,
vb(r )5vb). A background of immobile ions with the sam
density profile was assumed. For reference, all runs
cussed in this paper were standardized to involve so
30000 simulation particles~the precise number varies durin
each run!. The input parameters have been determined fr
a given value ofD that specifies the region of interest for
particular value ofxi . The time step is determined ensurin
that the Courant–Friedrichs–Levy~CFL! condition,
gc5vmaxDt/Dx,1, is satisfied.26 A value vmax53vb is as-
sumed, after concluding from a series of numerical exp
ments that this is an upper bound for the velocity. This co
dition means that no disturbance can propagate more
Dx in a time stepDt, and avoids numerical instability.

III. SOLUTIONS OF THE LINEAR DISPERSION
RELATION

The roots of~16! are obtained numerically, following
several branches of the numerical solution. Starting from
critical pair (xi ,D) corresponding tos50 and fixingxi , D
is advanced by steps identifying intervals where the left-ha
side~LHS! of ~16! changes sign. Then a real roots is deter-
mined by bisection, and the procedure is repeated alon
particular branch. Regarding complex roots, it is observ
that they appear by coalescence of two real roots, for aD
value rather close to the critical one. Given a starting seed
(xi ,D), the complex planes is searched with variable siz
steps, both in real and imaginary components, looking
zeros of~16! ~standard solver procedures are used, like
gradient method and Romberg extrapolations!. Efficient
evaluation of double and simple integrals, and quality of p
diction of an approximation of the root for the nextD step,
are important considerations to alleviate the time-consum
task of plotting solutions of~16!.

We have examined the casesxi53.1765, which is not
far from a planar diode and, as a benchmark for the part
code,xi51.3049, which is closer to it. The numerical expe
ments where extended up to region 6. Since we want to g
attention to those cases that depart most from the planar,
cylindrical diodes withxi@1 and xi!1, where curvature
plays an important role, a series of numerical experime
have been performed withxi5100 andxi50.1. We now
present the full set of roots of the linear dispersion relat
~16!, for the valuesxi50.1, xi53.1765, andxi5100.

Figure 2~a! corresponds toxi50.1, a convergent diode
and givesRe(s) as a function ofD. Six nonoscillatory
modes are shown with full lines, corresponding to damped
monotonically growing perturbations. ForD,4.5, region
1, the system is stable. Region 2 corresponds to the inte
4.5,D,9.2. In this region the diode is unstable. A seco
Alves et al.
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damped mode that tends to merge with the unstable mo
near the end of the interval can also be seen here. Howe
it must be pointed out that for a fixed value ofD.0, an
infinite succession of increasingly damped modes exists. T
extensions of the five slanted lines after the first mode can
found in regions 1 and 2, if we look at sufficiently large
negative values ofRe(s). The complete succession of mode
for a diode with fixed (xi ,D), is needed to represent, by
superposition, the evolution of an arbitrary initial perturba
tion.

Above the limit of region 2, the damped mode of regio
2 becomes a growing one. Very close to this limit, in regio
3, the two real positive roots coalesce and two complex co
jugate roots appear asD increases. The real and imaginar
parts of the overstable mode are shown with dashed lines
Figs. 2~a! and 2~b!, respectively. The oscillatory growing
mode becomes oscillatory damped atD.13.4, where the
ondulating dashed line sinks slowly toward negativeRe(s)
values. The oscillatory damped mode coexists with the th
nonoscillatory mode that becomes unstable atD.13.8. For
13.4,D,13.8 both modes haveRe(s),0 and are stable.
Thus, a small stability island is formed near the end of regi
3, limited by the beginning of region 4. In region 4 the firs
oscillatory mode rises again to values ofRe(s).0, within
the range 15.3,D,16.0, where it shows a weak instability
with very small growth rates. The flow is in any case un
stable in region 4 due to the third nonoscillatory mode.

The second oscillatory mode is represented in Figs. 2~a!
and 2~b! by a dashed and dotted line and shows a gene
behaviour similar to the first one. It is generated again
coalescence of two real roots, near 18.4, the beginning
region 5. The second oscillatory mode is overstable in mo

FIG. 2. Roots of the dispersion relation forxi50.1. ~a! Re(s) as a function
of D; ~b! Im(s) as a function ofD.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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of region 5, except near the end, where a second stabilit
island is apparent around 22.8,D,23, in connection with
the fifth monotonic mode, which is also stable there. After-
wards, the second oscillatory mode becomes overstab
again in the range 23.7,D,26.4 inside region 6, and then
stabilized at last, it sinks with ondulations in theRe(s),0
halfplane. In the same figure, we can see the beginning of th
third oscillatory mode~dotted line!. Region 6 shows two
oscillatory modes and a monotonic unstable mode, while re
gion 7 has an overstable mode and two oscillatory dampe
modes~besides the infinite set of monotonic damped modes
present in all regions!. From Fig. 2~b! it is apparent that
Im(s), the frequency of the oscillatory modes, increases a
D increases.

The roots of the dispersion relation for the case
xi53.1765, which correspond to a divergent flow, are plotted
in Figs. 3~a! and 3~b!, and show features similar to the pre-
vious case. We may note, however, that the first oscillatory
mode ~dotted line! shows only one unstable range,
8,D,11.5, contained in region 3 and remains stable with
increasingD. A stability island is formed after the first os-
cillatory mode becomes damped and up to the start of th
third monotonically unstable mode, 11.5,D,12. The sec-
ond oscillatory mode~dashed-dotted line! is overstable in
region 5, except for a second stability island in the interval
19.9,D,20. It has another overstable range for
20.9,D,22.9 and becomes oscillatory damped for
D.22.9. The nondimensional growth rates are roughly hal
of those of the precedent case.

Finally, in Figs. 4~a! and 4~b!, we give Re(s) and
Im(s) for the highly divergent casexi5100. Figure 4~c!
shows a magnified particular: the merging of two real roots
to produce the first overstable mode. This effect is similar to

FIG. 3. Roots of the dispersion relation forxi53.1765. ~a! Re(s) as a
function of D; ~b! Im(s) as a function ofD.
3053Alves et al.
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the one indicated when describing Fig. 3~a!, not clear in that
figure because of the scale. Several features are qualitativ
similar to those described in the previous cases. Note, ho
ever, that the stability islands are lost here, as one can rea
observing the behaviour of the first oscillatory mode~dashed
line! and the third monotonic mode~full line! in the range
D'1. The first and second oscillatory modes both show
second overstable interval, after the regions 3 and 5, resp
tively. The nondimensional growth rates are smaller than
the casexi50.1 roughly by a factor 100.

The local maxima of the growth rates in each regio
considered separately for monotonic and overstable mod
increase slowly as we move toward regions of higher ord
This is a general trend present in all threexi cases studied.

IV. NONLINEAR STEADY STATES

For a pair (xi ,D), corresponding to a threshold, the sys
tem allows another possible linear steady state solution w

FIG. 4. Roots of the dispersion relation forxi5100.~a! Re(s) as a function
of D; ~b! Im(s) as a function ofD; ~c! detail of ~a!.
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nonuniformv,nr, andf Þ 0, besides the basic uniform so
lution v5vb ,nr5neRe , and f50. These nonuniform ve-
locity states, which bifurcate from the basic solution at t
critical values, are the linearized version of finite amplitud
steady state, spatially dependent potentials, that are
compatible with the equations of the model.

The importance of these states is due to the fact
numerical experiments show that some of them
asymptotic solutions, i.e., perturbations of the initial const
speed flow may evolve in time and relax to a nonline
steady state. For planar diodes the stability of nonlin
states is studied in Refs. 8 and 9.

The nonlinear states are solutions of

d

dxS x
d

dx
c D5

D2

2 S 1

A11c
21D , ~18!

wherec5ef/(mvb
2/2), x5r /Re , with c(1)5c(xi)50. For

ucu!1 this equation is solved by the Bessel functio
J0(DAxi),Y0(DAxi). Using these solutions and bounda
conditions it is easy to confirm, also in this way, that t
linear critical states are given by the roots of~17!.

The nonlinear steady state equation~18! follows from a
Lagrangian variational principle,

dE
1

xi
L~x,c,c8!dx50 ~19!

with

L~x,c,c8!5
xc82

2
1

D2

2
~2A11c2c!. ~20!

Thus ~18! corresponds to

dL

dc
5

]L

]c
2

]

]xS ]L

]c8D50. ~21!

Introducing, P[ ]L/]c85xc8, the canonical momentum
associated with c, we obtain the Hamiltonian
H5Pc82L,

H5
P2

2x
1

D2

2
~c22A11c!. ~22!

We may note thatP2/2x is the ~nondimensional! electro-
static energy density of the system, here acting as equiva
kinetic energy in a mechanical analogy. The equivale
~nondimensional! potential energy density is
D2(c22A11c)/2.

From Hamilton’s equations it follows directly that

dH

dx
52

P2

2x
. ~23!

ThereforeH decreases with increasingx, and vice versa.
Moreover, maxima or minima of the electrostatic potent
c, are also maxima or minima of the HamiltonianH, con-
sidered as a function ofx.

The mechanical analogue corresponds to the motion
particle with variable massx in a one-dimensional potentia
well ~see Fig. 5!, where energy, varying according to~23!, is
not conserved. Mass is equal to 1 starting at the emitter, t
increases linearly for diodes withxi.1, or decreases linearly
Alves et al.
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, as
for diodes withxi,1. The fictitious particle is launched a
c50, with initial energyP2/2x2D2/2, and withP.0 or
P,0, i.e., we may start with a negative or positive elect
field at the emitter, respectively. After an excursion, with o
or more passages throughc50, the particle may finally
reachc50, at the collector (xi). Thusc may show one or
more maxima, depending on the values of (xi ,D). Of course,
the coincidence ofc50 at the chosen final pointxi depends
on the starting conditions and corresponds to the solutio
a characteristic value problem.

The principal limitation is the natural barrier a
c521. This corresponds to the formation of a virtual ca
ode (u50, n→`). The equations of the model fail at th
point. Physically, the system becomes unstable when
value is attained by a solution. The mechanical analogy h
one to understand qualitatively the behaviour of differe
types of steady states. Solutions may have only one m
mum of c ~one peak!, one maximum and one minimum~a
peak and a valley!, two maxima~two peaks and a valley!,
and so on. Clearly, this depends on the number of osc
tions the fictitious particle performs in the potential we
without touching the barrier.

By integration overx, we find H(1).H(xi), when
xi.1, and H(1),H(xi), when xi,1. This implies that,
while in planar diodesuc8u has the same value at emitter a
collector, in cylindrical systems the steady state solutio
must satisfy~taking boundary conditions into account! the
inequalities c8(1)2.xic8(xi)

2, for xi.1, and c8(1)2

,xic8(xi)
2, for xi,1.

For a given value ofxi , nonlinear solutions can be ob
tained with an increasing number of peaks and valleys
D increases. In region 1 there are solutions with one m
mum. In region 2 we find solutions with one maximum, a
solutions with one valley and one peak for higher values
D. Next, in region 3 for the divergent~convergent! case
there are solutions with one peak, others with one valley
one peak for lowerD values, and solutions with two valley
~peaks! and one peak~valley! close to the limit with region
4.

This pattern repeats itself so that in the 2nth region one

FIG. 5. Equivalent potentialV of the mechanical analogy versusc, for
D51.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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would find solutions with one peak, others withn peaks and
n21 valleys at the lowerD values, and a third group with
n valleys andn peaks at the higherD values, and in region
2n11 solutions with one peak, others withn peaks~valleys!
and n valleys ~peaks! at the lowerD values, and a third
group withn valleys andn21 peaks at the higherD values.

These results have been confirmed numerically up toD
values in region 7 forxi50.1,100. Results are presented
Figs. 6 and 7 for the divergent and convergent case, res
tively. We have plotted the values of the nondimensio
electric field at the emitter 2eReEr(1)/mvb

2 vs D. The first
branch, which corresponds to solutions with only one ext
mum, exists for all values ofD. In region 1 the solutions are
valleys, while in the rest of the regions these solutions
peaks. The value of the electric field at the emitter increa
with D. A new branch corresponding to solutions with tw
peaks appears in the neighborhood ofD2, another one with
three peaks in the neighborhood ofD3, and so on. The low-
est and highest value ofD attainable in each branch ar
determined by virtual cathode formation. Examples of the

FIG. 6. Values of the electric field at the emitter, in nondimensional units
a function ofD, for the divergent casexi5100.

FIG. 7. Values of the electric field at the emitter, in nondimensional units
a function ofD, for the convegent casexi50.1.
3055Alves et al.
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limits are presented in Figs. 8 and 9 for the divergent a
convergent cases, respectively.

The indications of stability of the different branches
Figs. 6 and 7 are given empirically, i.e., on the basis of
observed behaviour in numerical experiments. These sta
ity properties are consistent as extensions of known res
for planar diodes, but there are also new features.
branches around the values ofDn with n odd are similar to
those found in the planar case. The new branches locate
the neighborhood ofDn with n even, tend to themarginal
modes of the planar case~see, Ref. 8! in the limit case
xi→1. In both situations, there is an exchange of stabi
between the zero potential solution and the nonuniform
asD passes throughDn .

Considerable insight can be achieved by examining
simulations, taking into account concepts reported in the
two sections.

V. PSEUDO-PLANAR DIODES

Whenxi'1 the system is approximately a planar Pier
diode. As noted in Ref. 13 whenxi'1 andD@1, Eq. ~17!

FIG. 8. Plot of the potential versusx for xi5100 andD51.275. For
x533.56 the potential is20.998~close to virtual cathode formation!.

FIG. 9. Plot of the potential versusx for xi50.1 and D516.7. For
x50.454 the potential is20.998~close to virtual cathode formation!.
3056 Phys. Plasmas, Vol. 4, No. 8, August 1997
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reduces toa5np, wheren51,2,3,. . . , which is the condi-
tion for zero frequency roots for planar Pierce diodes. Al
n defines the critical values that mark the boundaries
tween regions on thea line. The behaviour of the system fo
xi near 1 is then expected to show known properties of
planar Pierce diodes. In this section we show the results
set of simulations of the cylindrical system forxi51.3049.
These numerical experiments are therefore performed
benchmark for the code, and are compared with existing p
ticle simulations in the literature, in particular with Ref.
The linear dispersion relation is similar to figure 1 of Crys
and Kuhn.2 In fact, we can see in Table I how the critica
a values for this cylindrical system are close to those of
planar case.

Computer experiments were prepared att50 with both
an excess of electrons over ions, i.e., negative initializati
and a defect of electrons, i.e., positive initialization. Th
produces an initial nonzero electric potential. F
D,22.0711~region 1! the simulations show a stable beha
iour in agreement with linear stability predicted by theor
The perturbation is found to decrease after a period of
justment, and vanishes in a few transit times. Crossing
first critical value, the predicted linear instability in region
is observed, having the following nonlinear characteristi
First, for positive initialization we find that the electron flo
does not become turbulent, but stays laminar. The elec
potential increases and approaches an asymptotic st
state, which is a nonlinear solution with one maximum. T
new state, with nonuniform velocity, appears to be stable
the simulation. An example of these features is shown in F
10, obtained forD533.0 which corresponds approximate
to the maximum linear growth rate in the region. Figu
10~a! shows the initial profile of the potential. Figure 10~b!
shows the final shape of the potential. Note that the fi
amplitude is over two thousand times the initial value. Figu
10~c! represents the asymptotic phase space picture~after 13
t; t: transit time! where we can see the change of the be
velocity across the diode. Finally, Fig. 10~d! shows the time
evolution of the mid-potential~potential midway between
emitter and collector!, which grows and approaches a co
stant value after about 10t. No oscillations are observed. I
accordance with the behaviour of the mid-potential, the nu
ber of particles in the simulation decreases, and finally
comes constant. Second, for negative initialization, the lin
instability leads to the formation of a virtual cathode. Part
the electron beam is reflected toward the emitter, and pa
transmitted through the diode. The virtual cathode is alter
tively formed and disintegrated. There is no approach t
steady configuration. There is little particle trapping, so t

TABLE I. Comparison of critical values forxi51.3049 and the planar case

D a a ~planar!

22.0711 3.3647 3.1416
44.1496 6.7306 6.2832
66.2265 10.0962 9.4248
88.3030 13.4618 12.5664

110.3792 16.8273 15.7080
Alves et al.
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the instability is nonlinearly limited mainly by the formation
of the virtual cathode, which implies an effective reductio
of the interelectrode distance and electron current. Figure
shows the results of negative initialization for the same p
rameters of Fig. 10. In Fig. 11~a! we see the shape of the
~negative! initial potential. Figure 11~b! represents the phase
space att513t where a virtual cathode can be observe
Figure 11~c! gives the time evolution of the mid-potential
showing typical fluctuations of the system. Corresponding
the number of particles of the simulation does not approac
constant value. These features are similar to those reporte
Ref. 2 for region 2 of planar diodes.

Region 3 starts atD544.1496. In this region the time
asymptotic characteristics do not depend on the type of i
tialization ~i.e., positive or negative!. We find formation and
disruption of a virtual cathode, and large amounts of trapp
particles, as seen in the phase space plot of Fig. 12,
t512t andD556. This is similar to figure 16~first bottom
panel! of Ref. 2. In this region the electron flow is always

FIG. 10. Results forxi51.3 in region 2, with positive initialization:~a!
initial potential profile;~b! final potential profile;~c! final phase space;~d!
time evolution of mid-potential.

FIG. 11. Results forxi51.3 in region 2, with negative initialization:~a!
initial potential profile; ~b! final phase space;~c! time evolution of mid-
potential.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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disrupted. The saturation of the linear instability is caused b
virtual cathode formation and trapped particle processes.

For D larger than 66.2265 we enter region 4~not ex-
plored in Ref. 2!. Here again, as in region 2, different behav
iours of the computer experiments are obtained for positiv
and negative initialization. Starting with a positive potentia
at t50, the linear instability which produces departure from
the uniform velocity state is observed. However, the syste
preserves a laminar electron flow and relaxes toward a ne
equilibrium state characterized by an electric potential wit
two maxima. The asymptotic approach to this steady sta
~which is also a nonlinear solution! occurs now with oscilla-
tions ~not present in region 2!. All this can be seen in the
example of Fig. 13 whereD577.0. We do not give here the
initial potential which is similar in shape to Fig. 10~a!. Fig-
ure 13~a! shows the asymptotic potential and Fig. 13~b! the
phase space with the modulation of the velocity fort515t.
Finally, Fig. 13~c! gives the time evolution of the mid-
potential where we observe oscillations about the asympto
steady state. Small amplitude oscillations about the nonun
form equilibrium have an angular frequencyvt53.8. A

FIG. 12. Phase space forxi51.3 in region 3, fort515t.

FIG. 13. Results forxi51.3 in region 4, with positive initialization:~a! final
potential profile;~b! final phase space;~c! time evolution of mid-potential.
3057Alves et al.
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theory of this process for the planar case has been presen
in Refs. 8 and 9. A detailed analysis of the dispersion rela
tion for these modes can be found in Ref. 9~see Eq. 40 and
Fig. 12 in that reference! together with the numerical simu-
lation of the pure oscillatory behaviour~Fig. 14 of the same
reference!. An approximate value of this pure oscillatory
mode (a/p5313/8)9 is 3.7, close to our measured fre-
quency.

For negative initialization the flow is disrupted in a man
ner similar to region 3. This is exemplified in Fig. 14 for the
sameD value as Fig. 13. We show in Fig. 14~a! the phase
space, with a typical vortex and virtual cathode, att513t
and in Fig. 14~b! the corresponding fluctuations of the mid-
potential. The number of particles also has a characteris
unsteady time behaviour.

The nonlinear behaviour reported in Ref. 2 for the plana
diode in regions 1 to 3 has also been found in th
xi51.3049 cylindrical case. Numerical experiments hav
been extended to regions 4 to 6. In region 5 we have o
served a behaviour similar to region 3. In region 6 with pos
tive initialization, the system relaxes to a nonlinear solutio
of the potential with three maxima. For negative initializa
tion in region 6 the electron flow is disrupted. Summing up
the critical values defining the boundaries where the stabili
properties change have been verified.

VI. EFFECTS OF HIGHLY DIVERGENT FLOWS

It is interesting to contrast now the behaviour of cylin-
drical diodes with large surface ratios (xi@1), with the
pseudo-planar case (xi'1) of Sec. V. We studied in detail a
system withxi5100, so that the cylindrical geometry, the
radial density variation, and the divergence of the flow
should have a strong influence. The first six critical value
for D are D150.3314, D250.6858, D351.0377,
D451.3887,D551.7390,D652.0889. We have confirmed
by several computer experiments that the stability properti
of the regions defined by these values change forD below
and above the boundary values.

Region 1 is stable in the simulations as predicted b
theory. We have tried to destabilize the system with larg
~negative or positive! initializations with no consequence.
The threshold of linear instability for this cylindrical diode is
given bya516.4043@p. Therefore, for the same interelec-
trode distance and beam velocity, the current density thres
old at the emitter is 27 times higher than in the planar diod
Results for region 2 are given forD50.5 in Fig. 15. The

FIG. 14. Results forxi51.3 in region 4, with negative initialization:~a! final
phase space;~b! time evolution of mid-potential.
3058 Phys. Plasmas, Vol. 4, No. 8, August 1997
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initial ~positive! potential is presented in Fig. 15~a!. The lin-
ear instability develops and takes the system to a new~non-
uniform! equilibrium shown in Fig. 15~b! at t515t. The
potential maximum~four orders of magnitude larger than the
initial value! is clearly shifted toward the emitter, and the
phase space, Fig. 15~c!, shows a similar asymmetry. The
maximum velocity is nearly two timesvb . We give in Fig.
15~d! the density profile of electrons averaged over two tran
sit times aroundt519t ~solid line!. Note the difference with
the ions~dotted line! showing that the system has a net posi
tive charge throughout. Figure 15~e! gives the time evolution
of the number of particles showing about a 30% decrea
from t50 to equilibrium. Figure 15~f! shows the approach to
the asymptotic equilibrium via the time evolution of the mid-
potential. No oscillations are observed as the constant fin
value is achieved.

The behaviour of the divergent flow withxi5100 in
regions 3 and 5, or in regions 2, 4 and 6 with negative in
tialization, is most unusual. The nonlinear stage shows
strong dynamics, with formation and coexistence of sever
transient and moving virtual cathodes in the interelectrod
space. The accelerating potential of moving virtual cathode
is a phenomenon characteristic of high surface ratio diode
not present at small ones. The formation of several jets
electrons can be observed at a given time at different pos
tions through the system~five can often be seen, with speeds
up to two timesvb). The jets are generated by the moving
virtual cathodes in a kind of ‘‘ejection’’ mode, while parts of
the beam are reflected backward. Remarkably, there is ve
little particle trapping in this regime. The growth of the elec

FIG. 15. Results forxi5100 in region 2, with positive initialization:~a!
initial potential profile;~b! final potential profile;~c! final phase space;~d!
time average of density;~e! time evolution of mid-potential;~f! time evolu-
tion of number of particles.
Alves et al.
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trostatic energy in the instability is limited mainly by con
version to multiple energetic electron jets. The system kee
going in this strongly fluctuating fashion during very lon
simulation runs. Examples of these processes are illustra
in the following.

The electron flow can be disrupted in region 2 whe
negative initialization is used. For the same value
D50.5 this phenomenon is illustrated in Fig. 16. In Fig
16~a! we give the initial potential. A picture of phase space
shown in Fig. 16~b! for t520t, where one can see the re
flected particles but also the formation of a jet of forwar
accelerated particles. The corresponding electric poten
profile is shown in Fig. 16~c! and the fluctuations of the
number of particles around the initial value in Fig. 16~d!.
First appearance of a virtual cathode occurs at abo
t510t. The position of the virtual cathode travels away from
the emitter. The time-varying potential energizes a set
particles. Comparing Fig. 11~b! of the pseudo-planar diode
with the present phase space@Fig. 16~b!# we can perceive the
monotonic deceleration of the beam from emitter to virtu
cathode in the former case, in contrast with deceleration f
lowed by acceleration of the latter. As the virtual cathod
approaches the collector, it fades away, but a new one for
near the emitter and another cycle starts. A signature of
repetition of this process is given by the oscillations show
in Fig. 16~d!. Little particle trapping is observed. From time
to time the collector receives two sets of particles with we
defined energies.

In regions 3 and 5 the system is disrupted by the ins
bility with both kinds of initialization. In Fig. 17~a! we show
the phase space of region 3 fort515t and D50.87. The
initialization potential was positive with a maximum o
about 5 V. A recently formed accelerating virtual cathod
and an old one near the collector are both visible. The tim
history of the mid-potential is shown in Fig. 17~b!. The
phase space forD51.6 ~region 5! is presented in Fig. 17~c!
at t544t. The initialization was positive with a maximum
near 15 V. Several accelerating potentials can be seen. C

FIG. 16. Results forxi5100 in region 2, with negative initialization:~a!
initial potential profile;~b! final phase space;~c! final potential profile;~d!
time evolution of number of particles.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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respondingly, the fluctuations of the mid-potential are given
in Fig. 17~d!.

Region 4 is characterized by the fact that positive initial-
ization leads to a new nonuniform equilibrium state, while
negative initialization produces a disruption of the electron
flow. We show in Fig. 18~a! an example of asymptotic po-
tential with two maxima, forD51.2, attained at time of
order 10t. Correspondingly, Fig. 18~b! shows the phase
space. The time averaged electron density~over the last two
transit times! is represented by a solid line in Fig. 18~c! ~the
dotted line is the ion density!. There is a net positive charge
density with the exception of a region around the minimum
of the electric potential. The mid-potential, Fig. 18~d!, exhib-
its oscillations as the asymptotic state is attained. These o
cillations with frequencyvt53.33 may be associated with
small amplitude perturbations of the nonlinear equilibrium
~not yet analyzed for cylindrical diodes!.

FIG. 17. Results forxi5100 in region 3@~a! and ~b!# and in region 5@~c!
and~d!#: ~a! final space phase;~b! time evolution of mid-potential;~c! final
phase space;~d! time evolution of mid-potential.

FIG. 18. Results forxi5100 in region 4, with positive initialization:~a!
final potential profile;~b! final phase space;~c! time average density;~d!
time evolution of mid-potential.
3059Alves et al.
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VII. STRONGLY FOCUSED BEAMS

As mentioned in the introduction the convergent con
figuration (xi,,1) is the most interesting one for applica-
tions in which ions are neutralized with comoving electrons
We shall describe the main features of this case by compu
experiments for a particular value of the ratioxi50.1, which
corresponds to a strong convergence of the beams.

The first criticalD values forxi50.1 areD154.5232,
D259.1487, D3513.7557, D4518.3569, D5522.9555,
and D6527.5528. Region 1 is stable in computer exper
ments, as in the previous cases studied in Secs. V and
The first threshold of the instability corresponds to
a52.0354, so that for the same interelectrode distance a
velocity of the beams the density current at the emitter fo
this cylindrical case is nearly 2.4 times smaller than in th
planar diode. Simulations show that the second region is li
early unstable. However, a new feature appears in the no
linear evolution of the system. Positive initializations lead t
a new nonuniform equilibrium, as we have also found fo
xi51.3 andxi5100. For negative initialization, instead, we
must distinguish between ‘‘small’’ and ‘‘large’’ initial per-
turbations. For the time being this is only a qualitative cha
acterization of the initial perturbation strength to be dete
mined empirically. For small negative perturbations th
system relaxes to a nonuniform equilibrium and only fo
large negative perturbations is the system disrupted.

We present first an example of positive initialization fo
region 2, corresponding toD57.0 close to the maximum
growth rate. In Fig. 19~a! we show the initial potential. Fig-
ure 19~b! is the asymptotic potential fort'14t. The phase

FIG. 19. Results forxi50.1 in region 2, with positive initialization:~a!
initial potential profile;~b! final potential profile;~c! final phase space;~d!
time evolution of number of particles;~e! time evolution of mid-potential;
~f! time average of density.
3060 Phys. Plasmas, Vol. 4, No. 8, August 1997
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space, at the same time, is in Fig. 19~c!. We may note that
the maximum of the potential as well as the maximum of the
electron speed is here shifted toward the collector, in contras
to the case ofxi5100, where the maxima were shifted to-
ward the emitter. In Figs. 19~d! and 19~e! we can follow the
relaxation to the new equilibrium via the number of particles
and the mid-potential as a function of time, respectively. No
oscillations are observed. Finally, in Fig. 19~f! we give the
time averaged electron density~solid line, averaged over 7
transit times! where the ion density is also given as reference
~dotted line!.

We examine now two negative initializations of different
strength for region 2 and the sameD57. In Fig. 20~a! we
show the initial potential with a maximum amplitude not
exceeding 4.5 V in absolute value. The system evolves to a
nonlinear equilibrium solution for the potential in about
10t as shown in Fig. 20~b!. Note that this is the same poten-
tial reported by Fig. 19~b!. The number of particles and mid-
potential evolutions are quite similar to those reported in
Figs. 19~c! and 19~d!. The same can be said about the
asymptotic phase space. However, if the initial perturbation
is larger, as shown in Fig. 21~a!, where the maximum of
ufu.13 V, the flow is disrupted in about 10t. Figure 21~b!
shows the phase space shortly after the formation of the vir
tual cathode, where reflection of particles and also the trap
ping of another group of particles near the collector can be
seen. Figure 21~c! shows the phase space att.25t and Fig.

FIG. 20. Results forxi50.1 in region 2, with a small negative initialization:
~a! initial potential profile;~b! final potential profile.

FIG. 21. Results forxi50.1 in region 2 with a large negative initialization:
~a! initial potential profile; ~b! phase space just after the virtual cathode
formation; ~c! phase space att525t; ~d! time evolution of mid-potential.
Alves et al.
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21~d! gives the history of the mid-potential. Here the insta
bility is limited mainly by formation of the virtual cathode.

In region 4 this behaviour is more pronounced. For pos
tive initialization the system attains a new nonuniform equi
librium with a two peak potential. The electron flow remains
laminar. Small negative initialization leads to a nonlinea
stable solution, while large negative initialization disrupts
the electron flow. In Fig. 22~a! we show the initial negative
potential with a maximumufu.24 V, for the caseD516
~close to the maximum growth rate of region 4!. Figure 22~b!
shows the asymptotic phase space att.17t, and Fig. 22~c!
the corresponding potential. The approach to the new equ
librium takes place with weakly damped oscillations re
vealed by the mid-potential time variation shown in Fig
22~d!. Measuring the angular frequency of the oscillation
we find vt53.7. These oscillations we ascribe again to
small amplitude perturbations of the nonlinear equilibrium.

We see in Fig. 23~a! the potential corresponding to a

FIG. 22. Results forxi50.1 in region 4, with a small negative initialization:
ufu.24 V: ~a! initial potential profile;~b! phase space att517t; ~c! poten-
tial profile t517t; ~d! time evolution of mid-potential.

FIG. 23. Results forxi50.1 in region 4, with a large negative initialization:
ufu.490 V: ~a! initial potential profile;~b! phase space att58t; ~c! time
evolution of mid-potential.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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larger perturbation~negative initialization! with ufu.490 V
again usingD516. Figure 23~b! shows the phase space at
t.8t. One can observe the virtual cathode and a large num
ber of trapped particles. Figure 23~c! shows the fluctuations
of the mid potential. Thus a larger negative initialization pro
duces the disruption of the system.

The same qualitative behaviour is also found in region 6
We give here examples forD525. Figures 24~a! and 24~b!
show the phase space and corresponding potential with thr
peaks, respectively, after 13t, for a small negative initializa-
tion ~maximum ofufu5177 V!. In Fig. 24~c! we can observe
the oscillations of the mid-potential with an angular fre-
quencyvt53.7, associated as before with perturbations o
the nonlinear state. With a larger negative initialization
~maximum ofufu5358 V! the system is disrupted in about
5t as we can see in the phase space in Fig. 24~d!, where a
virtual cathode has just formed. Figures 24~e!–~f! show the
phase space at later times,t56.1t and t510t, respectively.

Let us return now to regions 3 and 5, which turn to be
unstable for both initializations. As an example of the dis
ruptions we present results for region 3 withD511.5. Fig-
ures 25~a!–~d! show the phase space for times 10, 12, 15 an
20 t, respectively. Note that the first reflection of particles
occurs near the collector but the virtual cathode is forme
near the emitter.

VIII. DISCUSSIONS AND CONCLUSIONS

In this paper we study the electron instability and the
nonlinear behaviour of cylindrical Pierce diodes with radia

FIG. 24. Results forxi50.1 in region 6, with two different negative initial-
ization: ufu.35 V ~a!–~c!, and ufu.359V ~d!–~f!. ~a! Potential profile at
t513t; ~b! phase space att513t; ~c! time evolution of mid-potential;~d!
phase space att.4t; ~e! phase space att.6t; ~f! phase space att.10t.
3061Alves et al.
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flow. The linear properties of these systems depend on tw
parameters,xi and D ~or a). We have given detailed solu-
tions for the linear dispersion relation in the casesxi50.1,
xi53.1765, andxi 5 100. The first and last cases are the
studied in the nonlinear stage with numerical experiment
Critical values ofD, for which s50, given by Eq.~17!,
define regions where the system can be nonlinearly stable
unstable depending on initial conditions of space charge. F
small values ofxi , intervals of stability appear close toD3,
D5, ..., etc.~stability islands!. These small stable regions are
not present in systems with large values ofxi .

We found that the alternating succession of oscillator
unstable and monotonically unstable modes that appear
the system asD increases, is different in systems with
xi,1 andxi.1, compared to the planar case. For instanc
Fig. 4~a!, for xi5100, shows that the coalescence of two
pure imaginary roots into a complex conjugate pair~over-
stable mode! occurs for a value ofD somewhat larger than
D2. Hence, with increasingD a new monotonically unstable
mode appears atD2, and afterwards the overstability appear
inside region 3 as a consequence of the merging of tw
monotonically growing modes. A similar pattern can be see
near D4 , D6 ,..., etc., and it takes place also forxi,1. In
planar diodes the coalescence takes place exactly atD2,
D4,..., etc.

This feature of small amplitude theory is associated wit
changes of stability properties of the nonlinear steady stat
that bifurcate at the criticalD values, with respect to the
behaviour characteristic of planar diodes. In Sec. IV we hav
shown the modifications that the so-calledmarginalstates of
planar systems undergo in cylindrical systems.8,9 In the am-
plitude vsD diagrams of cylindrical diodes, an exchange o
stability of nonlinear steady states, occurs atD2, D4,..., etc.
For xi,1, and with increasingD, we pass from unstable to
stable nonlinear states. Conversely, forxi.1, stable turn into
unstable nonlinear states. These features may have inter
ing consequences in the analysis of bifurcations and chao
behaviour. A deeper investigation of these topics is matt
for future studies.

FIG. 25. Results forxi50.1 in region 3:~a! phase space att510t; ~b! phase
space att512t; ~c! phase space att515t; ~d! phase space att520t.
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The particle simulations of cylindrical Pierce diode
with radial flow have successfully recovered the predic
linear properties. Results of experiments for the case we h
called pseudo-planar (xi.1.3) are in good agreement wit
the planar simulation features reported in Ref. 2. In regio
a positive initialization relaxes toward a nonlinear stab
state with oscillations close to the new equilibrium. The o
served frequency of oscillation corresponds to that predic
in Ref. 9.

The critical values ofD defining regions with different
stability properties have also been confirmed by numer
experiments forxi5100 andxi50.1.

Table II presents a summary of properties for the ca
studied by particle simulations. Results for each system
given separately for positive~PI! and negative initialization
~NI!. A list of abbreviations, used to describe the observ
effects, is presented below the table. Regions 3 and 5
always unstable for thexi cases tested. In regions 2, 4, and
there is relaxation to nonlinear equilibrium states observe
be stable, for positive initialization whenxi>1, and also for
small negative initialization whenxi50.1.

The strongly divergent case manifests unusual dynam
after destabilization, showing a large number of accelera
particles and time-varying accelerating potentials. This c
is linearly more stable~higher density threshold! than the
other cases, but nonlinearly appears more fragile to disr
tions ~negative initialization!. Conversely, the convergen
case is linearly more unstable~lower density threshold!.
However, in numerical experiments it shows resilience

TABLE II. Main results. S5stable; U5unstable; NLS5nonlinearly stable;
VC5virtual cathode;~N!TP5~no!trapped particles;~N!O5~no!oscillations;
J5jets; N~P!I5negative ~positive! initialization; S~L!NI5small ~large!
negative initialization; #P5number of peaks in the NLS solution.

Regions 1 2 3 4 5 6

1.3
Di5 22.071 44.149 66.226 88.303 110.379
PI→ S NLS U NLS U NLS

1P O,VC 2P O,VC 3P
NO TP O TP O

NI→ S U U U U U
O,VC O,VC O,VC O,VC O,VC
NTP TP TP TP TP

100
Di5 0.331 0.686 1.038 1.289 1.739 2.089
PI→ S NLS U NLS U NLS

1P O,VC 2P O,VC 3P
NO TP,J TP,J O

NI→ S U U U U U
O,VC O,VC O,VC O,VC O,VC
NTP TP,J TP,J TP,J TP,J

0.1
D15 4.523 9.149 13.756 18.357 22.956 27.55
PI→ S NLS U NLS U NLS

or SNI 1P O,VC 2P O,VC 3P
NO TP O TP O

LNI→ S U U U U U
O,VC O,VC O,VC O,VC O,VC
NTP TP TP TP TP
Alves et al.

 license or copyright, see http://pop.aip.org/pop/copyright.jsp



m
ho

st

e-

d
dy

lin
e
i-
o

th
er
ea

na

s-

:
e

ics

n,

.

s

l.

ble

ut.

-

break up with negative initialization in even regions.
Frequency of oscillations about nonlinear equilibriu

states were measured, and they turn out to be close to t
predicted by linearized theory.

Numerical experiments have been carried out in the
bility island of casesxi50.1 andxi53.1765~no such stabil-
ity intervals exist forxi5100). The results show good agre
ment with the linear dispersion relation.

Studies of fine structures of the different regions an
theoretical investigation of the stability of nonlinear stea
states are left for future work.

In summary, we have completed the analysis of the
ear dispersion relation, and presented a survey of nonlin
behaviour with particle simulations for cylindrical Pierce d
odes with radial flow. We hope the predicted properties
cylindrical diodes may interest the experimentalists in
fields of ion deposition, or microwave generation, and p
haps stimulate further theoretical studies of their nonlin
dynamics, akin to those published for planar systems.

ACKNOWLEDGMENTS

G.G. and F.T.G. are members of the Argentine Natio
Research Council~CONICET!. This work was supported by
CONICET Grant No. PID-BID 594/92 on Dynamics of Pla
mas and Fluids and by INFIP-CONICET~Instituto de Fı´sica
del Plasma!.

M.V.A. is grateful to the following Brazilian Agencies
CNPq ~Conselho Nacional de Desenvolvimento Cientifico
Tecnológico!, and FAPESP~Fundac¸ão de Amparo a` Pes-
quisa do Estado de Sa˜o Paulo!.

1S. Kuhn, Proceedings 1987 International Conference Plasma Phys
Kiev, edited by A. G. Sitenko~World Scientific, Singapore, 1987!, Vol. 2,
p. 954.
Phys. Plasmas, Vol. 4, No. 8, August 1997

Downloaded 26 Aug 2005 to 150.163.34.27. Redistribution subject to AIP
se

a-

a

-
ar

f
e
-
r

l

,

2T. L. Crystal and S. Kuhn, Phys. Fluids28, 2116~1985!.
3T. L. Crystal, P. C. Gray, W. S. Lawson, C. K. Birdsall, and S. Kuh
Phys. Fluids B3, 244 ~1991!.

4J. R. Pierce, J. Appl. Phys.15, 721 ~1944!.
5J. R. Pierce, J. Nucl. Energy, Part C2, 135 ~1961!.
6J. R. Cary and D. S. Lemons, J. Appl. Phys.53, 3303~1982!.
7S. Kuhn, Phys. Fluids27, 1821~1984!.
8B. B. Godfrey, Phys. Fluids30, 1553~1987!.
9W. S. Lawson, Phys Fluids B1, 1483~1989!.

10T. M. Burinskaya and A. S. Volokitin, Fiz. Plazmy9, 453 ~1983!; Sov. J.
Plasma Phys.9, 261 ~1983!.

11M. Hörhager and S. Kuhn, Phys. Fluids B2, 2741~1990!.
12H. Matsumoto, H. Yokoyama, and D. Summers, Phys. Plasmas3, 177

~1996!.
13G. Gnavi and F. T. Gratton, Phys. Plasmas1, 3676~1994!.
14A. F. Alexandrov, L. S. Bogdanevich, and A. A. Rukhadze,Principles of

Plasma Electrodynamics~Springer-Verlag, New York, 1984!, p. 332.
15A. D. Dunn, Models of Particles and Moving Media~Academic, New

York, 1971!.
16A. M. Dorodnov and B. A. Petrosov, Sov. Phys. Tech. Phys.26, 304

~1981!.
17A. G. Nikonov, I. M. Roife, Y. M. Svel’ev, and V. I. Engel’ko, Sov. Phys

Tech. Phys.32, 50 ~1987!.
18G. H. Miley, in Current Topics in Astrophysical and Fusion Plasma,

edited by M. Heyn and W. Kerbichler~DBV-Verlag, Graz, Austria, 1992!,
p. 103.

19J. W. Poukey, J. P. Quintenz, and C. L. Olson, Appl. Phys. Lett.38, 20
~1981!.

20J. W. Poukey, J. P. Quintenz, and C. L. Olson, J. Appl. Phys.52, 3016
~1981!.

21M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions
~Dover, New York, 1965!.

22M. V. Alves, M. A. Lieberman, V. Vahedi, and C. K. Birdsall, J. App
Phys.69, 3823~1991!.

23C. K. Birdsall, IEEE Trans. Plasma Sci.19, 65 ~1991!.
24PDC1 ~Plasma Device Cylindrical one-dimensional!, © 1990–1995 Re-

gents of the University of California. Code and documentation availa
electronically via http://ptsg.eecs.berkeley.edu

25J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp
Phys.104, 321 ~1993!.

26C. K. Birdsall and A. B. Langdon,Plasma Physics via Computer Simula
tions ~McGraw-Hill, New York, 1985!.
3063Alves et al.

 license or copyright, see http://pop.aip.org/pop/copyright.jsp


