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A variety of Pierce diodes formed by a pair of grounded concentric spheres with electrons streaming
radially are investigated with particle-in-cell simulations and analytical models. The electrons flow
parallel or antiparallel to a density gradient in convergent or divergent diodes, respectively. The
existence and stabilityor instability) of laminar steady states with space charge and nonuniform
velocity that are possible for a given set of diode parameters, are crucial to determine the outcome
of the numerical experiments. The dispersion relation for the stability of the initial constant velocity
states and the concomitant energy flow balance are examined in relation to the nonlinear dynamical
evolution. Spherical diodes have properties that are common to a dual pair of diodes with reciprocal
ratios of collector to emitter radii. Stable oscillatory electrostatic states, associated with Hopf
bifurcations, are observed in the simulations. The breakdown of the laminar electron flow has
completely different physical characteristics in divergent and convergent diodes200@
American Institute of Physic§S1070-664X00)01007-7

I. INTRODUCTION companying electron currents are considered in inertial fu-
sion systems with cylindrical and spherical geometries. In

collisionless cold electron beam propagates between an emﬂj_ese configurations the Pierce ins_tability effect is_ relev,_amt.
ter (located atx=0) and a collectofat x=L). Both elec- Similarly, the dynamics of the Pierce process including
trodes are kept at the same potential, which is equivalent tgoundaries with curvature is of interest in ion deposition
an external short circuit. The electrons leave the emitter wittexperiments®~*® Divergent beams between spherical elec-
fixed densityn, and velocityv,,. The behavior of the planar trodes may have a potential for microwave amplificafion.
Pierce diode is basically determined by the dimensionless The knowledge of the Pierce instability for diodes with
Pierce parameter= w,L/v, [w,=(e’ng/em)"% plasma  curvature is not so well advanced as in the planar case. The
frequency. The limit current density for the instability onset |inear stability theory for cylindrical and spherical diodes
is obtained froma= . Systems withe> are unstable. 55 given in Ref. 16. The nonlinear dynamics of cylindrical
Pierce-type instabilities have been invoked in the Comexbierce-type devices has been recently investigated using

of various practical applications and devices such o . .47 .
) . : Partlcle—ln—cell simulationd! In this paper we present a
electron-beam generation, microwave generation and ampli-

fication, thermionic converters, drift tubes, triode lasers, an&tUdy of the n.onli.near evolution of sphe.rical Pier.ce-typ-e
ion-beam neutralization for inertial confinement fusion. A €lectrodes, maintained at the same electric potential, using
survey of the research on planar Pierce diodes can be fouriimerical simulations and analytical models. These systems
in Ref. 1. The classical Pierce diode model has been exhave radial density gradients parallel or antiparallel to the
tended in many aspects and the literature on the subject &lectron flow, depending on whether the emitter focalizes the
vast. Recently, the Pierce diode was considered as a suitatid@am on a collector of smaller radius, or the emitter sends
model for the linear stability of thermionic gas dischargesthe beam outwards to a collector of larger radius. We will
operated at low pressufeThe inclusion of warm plasma focus our attention on radial perturbations of the steady
effects’ as well as the inclusion of the ion dynamithas  giates with constant or with nonuniform velocity. Angle de-

also attracted the attention of researchers. However, tOpICﬁendent perturbations will not be considered in this study. As

like nonlinear steady-state oscillations and chaotic behawot[he numerical experiments show, the instability of the con-

of the system have been developed only in relatively recen _ _ oo
3,5-9 stant velocity radial flow does not necessarily imply the end

times: _ o .
In many electronic devices, thermionic cathodes with®f laminar motion in the diode and the development of a

large curvature are used for practical reastris. fact, elec-  turbulent phase. In fact, the existence and the stakiiity
tronic devices with cylindrical and spherical electrodes werdnstability) with respect to radial perturbations of laminar
called “Pierce electrodes’(see e.g., Ref. 11 Experiments steady states with space char@ad nonuniform velocity
with injection of convergent ion beams neutralized by ac-that are possible for a given set of diode parameters accord-

The “classical Pierce diode” is a plane diode in which a
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ing to the theory, are crucial to determine the final outcome X; > 1 Xj <1
of the numerical experiments. As we shall see, after the lin-
ear instability phase the diode may relax directly to a differ-
ent steady state, characterized by an electrostatic field and .
nonuniform velocity flow, without loss of laminarity during
this evolution. On the other hand, it may also happen that
after a laminar flow disruption the system passes through a
transient disordered stage in the electron phase space, whic
is gradually superseded by a relaxation towards a stable
laminar electrostatic state, where order in phase space is re” ~
covered.

The research has revealed that some properties, like the FIG. 1. Set up and geometry of the systems studied in this paper.
states with electrostatic structures towards which the spheri-

cal diodes may relax and the frequency of small oscillations

about these states, are shared by convergent and diverg(ﬂ?won'to'ion drifts and avoids the possibility of electron-
diodes with reciprocal values =R /R, andx’ =1/x; of the 1O stream instabilities. In this paper we focus the attention
1 e | 1

ratio of the collector radiusR,, to the emitter radiusi, . on the electrons in view of the high frequency of their dy-

This dual characteristic is not present in cylindrical diodes NamIcs, and we shall ignore the perturba’gons of'the lons
However, when the initial flow is disrupted and b(_Jcomes(lnflnlte mas$. Thus, under the same restriction this study

turbulent the nonlinear dynamics revealed by the numericaglna%also a%plﬁ toha ca;]se n WQ'Ch Fhe_lonsgl_re” assumed to be
simulations is quite different in divergent or convergent de- Ixed, provided that the lon density is radially varying to

vices. The investigation has also confirmed that sphericaefChleve charge neutrality. In the comoving setup, for geo-

systems are singularized by being stable in the constant Vé]jetncal reasons and because of particle flux conservation

locity configuration for all values of the interelectrode dis- under steady state conditions, both electrons and ions have

tance|R,— R;| when the plasma frequency at the emitter is@n unpezrturbed dgnsity distribution with a _density gradient,
less tharv /2R, . Planar and cylindrical diodes, instead, be-nO:A/r , WhereA is a constanfcomputed with emitter val-

come unstable by increasing the interelectrode separation Hﬁs’ A,__n?R”e’ for ||nstqnc$ ?(;]d ris the rr]adl.al polsmon.d
any injection density. Thus, initially no electric fields exist in the interelectrode

The layout of the paper is as follows. The geometry ofsPace. Figure 1 shows the two basic configurations studied,

the system is presented in Sec. Il. The theoretical concep ith |n<?om|r.19 (—op) OF outgomg_ (-op) raglal vellocna/vod,.
that are necessary to interpret the results of the numeric ence forming 'convergent or divergent ows. In t € diver-
experiments are given in Sec. Ill, which is subdivided into9eNt conflguratlon.the electrons flow against the d?nS'_ty gra-
four parts. In this section we introduce the equations for th lent, conversely N the_convergent setup the_mopon IS par-
fluid model and we examine the existence of alternativea”el_tO the density gradient. This StUdY will bring into light
laminar electrostatic structures and their stability propertie he mfluen_ce of the convergence or dlverg(_ence of the e_Iec-
as a function of the parameters of the diode. A description ofon flow with the _concom|tant pgrallel or antlparallel de|_15|ty
the instability of the initial constant velocity states, and thegrl‘?‘d'ent’ on the linear and nonlinear dynamics of the insta-
connection of the growtfior damping rate of the perturba- M-

tive modes with the net energy outflow from the system is

also given there. The particle-in-cell model is described in!l: THEORY

Sec. IV. The results of numerical simulations for divergent  previous to a description of the simulation results, we

and convergent cases, showing the evolution toward stablgerive in this section several theoretical concepts based on a

electrostatic states and other features worthy of notice, argminar fluid description, which are necessary to conduct and
given in the first two parts of Sec. V. This section also con-interpret the numerical experiments properly.

tains a third part, where physical differences between diver- ]

gent and convergent diodes during the breakdown of thé- The fluid model

laminar flow and the following turbulent stage are high-  The laminar behavior of the system can be treated using

lighted. Finally, our conclusions are presented in Sec. VI. the following model for a monoenergetic bedpold fluid,
pressurelegs

0

n(r) = A2 n(r) = A2

Il. CONFIGURATION OF THE SYSTEM ( d (9) e dp ar?n)  I(r’nv)
—tv—|v=——, + =0,
We consider systems with radial flow through, ot ar m or at ar
grounded, concentric spherical grids, with radi, R;, for P i e
R o 2 2
the emitter and collector electrode, respectively. In the un- E(r E) =— E—(A—r Ne),
0

perturbed steady state, the flow of electrons has a constant
radial velocityv =vy= *v,. We assume that ions are also wheren denotes the number density the radial velocity of
injected into the system with the same speed and are comothe beam, an@ the electric potential. In the Pierce diode the
ing with the electrons, so that charge and current neutralitpoundaries are equipotentials, so thatR.)= ¢(R;)=0.
are both ensured. This basic setup does not show relativEhe remaining boundary conditions am€R.)=*v,, N,
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=A/RZ. This fluid model relies on the assumption of a B

unique value of the radial velocity at each positiorHow- \/\ l[\/
ever, the nonlinear evolution of the system may lead to mul- - § — w ¥ 7
tivalued electron velocities with breakdown of the laminar s R 1
model. Therefore, the fluid treatment will be supplemented F— o
with the particle-in-cell model that adequately describes the
dynamics of the system in phase spacg].

It is convenient to introduce the following nondimen- K/\ .
sional quantities:u=v/v,, x=r/Rs, ¢=2e¢/mvi, T T
=vpt/Re, v=nr?/A, andE= — e/ dx. The new variables ety tt sobions
is x? times the density normalized to its value at the emitter. ———slabie
The equations can then be writenas -4 ~\ | e \ :

Bt
o d 1 2 ps’ ' 5
(aTﬂ’ax)u_ 2 & @
FIG. 2. Bifurcation diagram of the steady states fp+=10. The electric
J J Ju field at the emitterE, vs u. The shape of the potential in each region and
ﬁ +u 5) v=-— V&, (2 the stability of the branches are also shown.

I(X%E) ) , : - ,

P =2 u%(1—v). (3)  Equation(5) is an Euler equation with solutiong, that are

linear combinations ok andx*2, wherex; ,= —1/2+id,
The boundary conditions for the velocity and the density aravith d=(u?—1/4)2. Applying the conditions for grounded
now expressed ag(1)=+1 andv(1)=1, respectively, and electrodes we find?=1, which is equivalent to
e . . . l _ .

the condition for the electric fields, is fxiEdX—O. While wo=[1/4+(nm/nx)?]¥2 n=1,23; - - ®)
planar Pierce diodes are governed by a single nondimen- 16 )
sional numbere, the behavior of spherical diodes, as re-for N=1,2,3....7 Note thatx; and 1k; give the sameu,
flected in Eqs(1)—(3) and the boundary conditions, dependsVa/Ues. Since the square root(®) must be real, small am-
on two parametersc = R; /R, and u=Rew, /vy, where, plitude solutions exist foru>1/2 only. The sequence of

is the plasma frequency at the emitter density. This is alsG"tical valuesu,u;, s, . . ., inwhose neighborhood con-
true for cylindrical electrode¥. stant and small amplitude modulated velocity steady states

For comparisons with planar devices, typified by the pa_coexist, i_s of great importancg for thg analysis of the stability

rametera, a number,a=|x;— 1|Rewp/vp =X — 1|1, for and nonlinear dynamics of Pierce diodes.

diodes with curvature may be used, instead. The steady state . o

with ug=*1,v,=1, and&,=0, is a basic solution of Eqs. C- Bifurcations and stability

(1)—(3), characterized by constant velocity and no electric  As shown in Ref. 18, in spherical diodes electrostatic

field. structures bifurcate from the simple flows with constant ve-
locity at the critical valuesw,, given by (6) in terms ofX; .
Linear perturbations of the steady states, with a time depen-

B. Electrostatic structures dence ex®T) and amplitudese,, v¢, andu,, satisfy
In general, steady state solutiof@enoted by a subindex d [ ,de; ) d 1

i i i [ - g\ X gy | T2m v, oo UgUi T S5 @n | = —SUy,
0) also include electrostatic structures with nonuniform ve dx dx dx 2

locity and nonzero electric field, given by the following non-

linear equation for the potential,
q P &(UOV]_"' Vou1)=—SV1.

d dQDO 1
—(xz—) =2,u2( - 1) , (4) The steady states and their corresponding perturbations
dx dx V1+¢g were evaluated using numerical codes based on spectral
9
the relationships methods! _ N _
5 A summary of numerical results of the stability analysis
Uoro=1, Ug=e¢ot+1, for a case of divergent beams~=10 andu <5 is presented

and the corresponding boundary conditions. As we shall se Fig- 2. The shape of the potential in each region is shown.
in the simulations, when these states are stable, the systehfi€ first three branches of nonuniform velocity states inter-
tries to evolve towards these configurations. sect the u axis at the critical pointsu;=1.4531, u,

Let us consider for the moment the small amplitude ver-— 27742, andu;=4.1236. Stabléfull lines) and unstable

sion of (4), describing states that are close to thg=0 (dotted line$ branches are presented. Fpr<1/2 (not
shown), the constant velocity states are always stable, inde-

solution, . . :
pendent of the value of;. This stability region extends up
i XQ% 4 20 =0 5) to u=wq1. At uq an exchange of stability takes place be-
dx dx | BT tween modes of uniform and nonuniform velocity states. The
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4 Stoady state soltions 1 L
stable |
I <o unatable |

Re(s)
(shuyy

ur-

1

N
w
e
o

FIG. 4. Roots of the dispersion relation for=10 as a function of.: real
FIG. 3. Same as Fig. 2, for the convergent case,0.1. roots, full lines; complex roots, Rs): dotted lines and In®): dashed-
dotted lines.

branch of solutions where the potential has one maximum,

identified by I in Fig. 2, exists for allu>p, and these eigenvalues of the linear perturbations computedfor
configurations are stable. In the interval 24<3.4 anew . .
=10, both for constant velocity states and for nonuniform

. " i )
branch of solutionglabeled II" and II") exists. These non velocity states, are also eigenvalues of the 0.1 case, pro-

linear structures with one maximum and one minimum are . . . . . )
P . vided a dimensionless time variablé|x;— 1|, measured in
unstable. The next branch (Tlland 1lI"), in the interval

) . . units of the transit timer=R|x;— 1|/v,,, is employed. In
3'5<.'““<5'1’ (_:ontalns structures with two minima and O sther words, the computed valuessbk; — 1| are the same in
maximum (IlI"), or two maxima and one minimum (1) . T

: . . the two dual problems. Again, this is a property not observed
of the potential. In this branch, the points;;=3.838, uy2

oo . 7
=4.694, anduy3=4.899, are Hopf bifurcation points where for cylindrical diodes.
pulsating electrostatic structures are viable. For higher values . ,
of u there is a succession of branches in intervals comprisiny- Stability of constant velocity states
the critical valuesu,. All branches, with the exception of The initial states of the diodes are represented by solu-
I", exist for a restricted range @f values. Their presence is tions withu,= *+ 1. A linearization of the set of Eq$1)—(3)
limited by the formation of a virtual cathode at some pointfor perturbations of the constant velocity solutions with a
inside the diode, where—1. Besides the states with one time dependence of the form exf leads to the dispersion
maximum of the potential that exist for>w, and are relation
stable, there is one additional stability region in the interval . . .
o <u<puys (see the lower right-hgnd %orner of Fig), 2 (2+id+9)l,= (1/2-id +s)l,+2is d €1o=0, (7)
corresponding to structures where the potential has twavith the following expressions fdr,l,, andl,:
maxima. 1 (1 “

A similar analysis for the convergent case is presented in | j=—— eSX( x(*3/2+id)f e~ sz(l2-id) 47
Fig. 3, showing a summary of numerical results of stability 2id J 1
analysis forx;=0.1 andu<5. The critical values oj. are X

_X(—3/2+id)f

It is also interesting to note that calculations show that

the same as fox;= 10, according td6).

efszz(l/2+id) dZ) dX,
For a fixedu value, the steady state solutions with non

1
uniform velocity for a convergent diode with ratiq are 1 . 1 ,
equivalent to those for a divergent diode with a raxio |1=f eSx(~3/2+id)g, |2=f eSXx(~3/271d) gy

=1/x;. This duality property of solutions, which amounts to X Xi

an exchange of the roles of emitter and colleq@nd the This equation was derived in Ref. 16, but the roots were
sign of the beam velocilyin the pair of diodes considered, examined only near the critical valugs, given by(6). Here

can be easily shown considering the invariance of(4iq. we solved numerically the dispersion relatign) for the

with respect to a rescaling of the variablavith x/x;. Not-  characteristic values without restrictions. The roots appear
ing, moreover, that for steady states the boundary conditionas an infinite sequence of branches. We can see a typical
u(l)=1 andv(1)=1 at the emitter, imply necessarily the display in Fig. 4, which shows real rootéull lines) and
conditionsu(x;)=1 andv(x;)=1 at the collector. This res- complex onegRe({s): dotted lines and Ing: dashed-dotted
caling is an exclusive feature of the spherical geometry, antines] for x;= 10, a diverging flow case, as functionsof in

does not hold for cylindrical diodes. Nevertheless, it must behe range 6< «<8. For negative values of R®(there appear
noted that the value of the electrical field at the emitter isfive branches which represent damped mogeih Im(s)
different for x;=10 andx;=0.1, as a comparison of Figs. 2 =0]. Each of these branches attains ##0 value atu, to

and 3 shows. s, respectively, given by6). The instability, Ref)>0, first
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appears fou> w4 . For a value ofu slightly larger thanu, of s, respectively, c.c. denotes the complex conjugate of the
the first and secongeal) branches merge and become a pairpreceding term, with similar expressions farand v. The

of complex conjugate branches which are oscillatory undinearized version of1) and (3), with subindex 1 denoting
stable up tou~5 and oscillatory damped thereafter. The perturbation quantities, is

third branch becomes unstable fer>u3, and meets a

. . J 1 J
fourth branch for a higher value gi, repeating the same (—+u0— u==&, —(x%&)=-2u%v;.
stability pattern of the first and second branches. The nu- a2 28 2 2

merical solutions of7) also show that, for alle, the quantity ~ Using them in(8), we obtain
s|x;—1| has the same values far and 1k; diodes. Thus,

2
Fig. 4 can be applied also to the convergent cgse0.1, ijxi 2 ﬁJr 2M2u2 dx
after rescaling the correspondisgoots. aT )1 2 x2 1t
; i i 2 2u? i xE2 9
E. Energy analysis of the stability of flows with ——uls?| s K U2 —ua | A Z (x?)dx
uniform velocity -0 2 2 1t ), 2 ox '
1

The Pierce diode is an open system and its energy con-

tent varies during unsteady regimes. The instability of con We note now that, whemy=0, we may write gri
. — 2 2_ 2 P
stant velocity states can be analyzed in terms of the ener (2Rey))” exp(pT) and (/JT)E1=2péey, with similar

. ressions fou?. If, in we hav he growth

flow balance of the system. This approach sets out the role @ pressions fou;. T, 1 stgad, e na @70 butthe g 0 t
. . is small over an oscillation periody>>|p|, then by time
the Maxwell radial electric stress power exerted on the elec-

- . 2\ _ 2
tron flow, an effect absent in planar diodes, which acts in?'\éirsa?‘g]rq[h?;/i;soenfhef)(sa;%c:a \r’\éiu?gé? thi|sé|seeXP(l 2‘);2('3
opposite ways in divergent or convergent flows. Usfhg- '

(3) and the boundary conditions, it is easy to verify that obtained, r_eplacmg (REQ))* by [Ey|*. Therefore, in both
cases we find

A R foi £d ®) 42 : P
— | =€°dx= uvEdx. %i
o)1 2 “ s U xz( Eal? 5 lusf? 1 - [ Ml ocugdx
X 1
This equation states that the rate of time variation of the,_ Xi
electrostatic energy of the diode is due to the power deliv- %, ) 4p? )
ered by the electric current to the field. Zf x| |Eq|*+ 7|U1| dx
Computing the produat v £ from (1)—(3) as (10)

2 2

—2u2Eup= ( 2u2— i(xzé’)) (i(u_) +ui<u_) This formula gives the growtkor damping rate as the
X JaT\ 2 ax\ 2 ratio of the difference of the net energy inflow and the power
after some simple manipulations a formula for the change on the radial electric stress com_ponent over 4 times the totgl
the total(electrostatic plus kinetjoenergy,E energy content of the perturbative mode. While the denomi-
e nator is positive definite, the numerator can be positive or

£ ZJ'Xi negative. The last term in the numerator (@) represents

T h

can be derived,

2

x2 u
?524- 2,u,21/ )dX,

2

the power due to the radial electric tension during the expan-
sion or compression of spherical shell volumes, in divergent
or convergent flows, respectively. In divergent diodes,

dE; 5 u?]Xi >1, ug=+1, this term is negative and it always provides a
aT —2u s (9 stabilizing contribution. In convergent diodesy;<1,
! up=—1, the power of the electric stress component gives

The left-hand-side term o) represents the difference be- always a destabilizing contribution, instead. In short, when a

tween the inflow and outflow of kinetic energy through the material volume convected by the flow increases, as it hap-
boundaries of the system. In nondimensional units the inflowens in divergent diodes, perturbative electrostatic energy is
of kinetic energy through the emitter is 1. For divergent di-spent during the expansion. The opposite happens in conver-
odesvu>0 atx;>1, while for convergent diodesu<0 at gent diodes. The numerical experiments reported in Sec. V
xj<<1, so that in both cases we can write give evidence of differences in the evolution of convergent

2 and divergent diodes after a laminar flow breaks down, even
u .

1—|wul > when dualx; and 1%; diodes are compared.

d
d_-|—|ET|:M2

Xi

Thus, the total energy grows in time when the inflow of V. PARTICLE-IN-CELL MODEL

kinetic energy is larger than the outflow, and vice versa. Particle simulation techniques are by now a well estab-
The instability develops when conditions for growth canlished and effective technique for studying the nonlinear
be steadily maintained in time. We show now how these camproperties of plasmas. Unlike the fluid model that is based on
be written in the case of the linear perturbations of constanthe assumption of a unique value of the radial velocity at
velocity statesug=*+1. We set& =E (x)expET)+c.c., every position, particle simulations allow multivalues of ve-
with s=p+iw, wherep, o are the real and imaginary parts locities originated by the overcrossing of different elements.
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The basic concepts involved in particle simulations are 10"
well known? In principle, we follow the movement of a
large number of particles under the action of collectiself-
consistentand externally applied electromagnetic fields. At
time t=0 we know the velocities and positions for each
particle and from these we obtain charge and current densi
ties. These are then used to derive the electromagnetic fielcym3
Using these fields we advance the positions and velocities
and a new cycle starts.

The particle code used here is PD§dlasma device
spherical one dimensiond This code is one-dimensional,
radial, electrostatic, and simulates a plasma contained be
tween concentric spheres. The spherical grids can be couple 0
to an external RLQresistive, inductive, and/or capacitjve A r[m] 1
circuit and/or rf source, i.e., it is not specialized to the prob-
lem treated here. During the simulations the applied bound-
ary conditions ensure that electrons are injected at a constant
rate from the emittefinner electrode for a divergent beam, 1 47-rA(r- Sr) (Faaer)
x;>1, and outer electrode for a convergent beam;1). i1 TV _Virt i
When electrons reach the collector they are absorbed, and Niow  A7A(Tp—T4) M= la
contribute to the external surface chafgeBoth electrodes r; being the position ofth particle. We can now find the
are kept at the same potentigi=0. Fields are calculated on position of the first particle
a grid of 400 points using a finite-difference Poisson scheme
(equivalent to the flux conserving met8d Poisson’s equa- r1=ra+(rp=ra)/(Niota)- (11
tion is solved in each time step with the given boundaryObserve that the last term 1) is a constant that we call
conditions. More details about PDS1 can be obtained |rN . We can now write that;,;=r;+N,, and we have the
Refs. 21-23. posmons of all particles in the S|mulat|ons, for0. It is

The time step is determined by ensuring that theimportant to keep in mind thall,, is the total number of
Courant—Friedrichs—Levy condition,,At/Ax<1 is satis- macroparticlesto be used in the simulation. Results of this
fied. A value ofv .= 3vy, is assumed, after concluding from algorithm are shown in Fig. 5, for,= 10. For reference, all
a series of numerical experiments that this is an upper boundins discussed in this paper were standardized to involve
for the velocity. This condition means that no disturbancesome 70000 simulation particlémacroparticle$, the pre-
can propagate more thakx in a time At, and avoids nu- cise number varying during each run.
merical instabilities. Initial conditions play a very important role in nonlinear

The original code has been modified in order to have arproblems. In the case treated here, the idea is to start the
initial density that varies asy>=1/r2. The algorithm for this  simulation with ne(r,t=0)=n;(r,t=0), which givese(r,t
distribution was obtained as followsee Ref. 20, p. 398  =0)=0, and the electric field at the emittéE,, also zero
We wish to place particles in phase space so as to form axcept for a very small numerical noise. In general, results
densityn(r)=A/r?, from r=r, to r=ry,, A being a con- for the stability of the constant velocity states obtained with
stant. We form acumulative distribution function this initialization agree well with those obtained with fluid
models. However, in some instances, it is necessary to ini-

FIG. 5. Example of initial density profile.

_ f[an(r’)dr’ tialize the system with a nonzero potential to reach the de-
N(r)= [en(rydr’”’ sired stable state. In that case the initial perturbation affects
fa the value ofA only, and does not entail a change of the
whereN(r,)=0, N(r,)=1, and density radial dependence, that remaing,16r in the flow
velocity. It is important to emphasize that the perturbation is
dN(r)  n(r) imposed at=0, and leaves the system after one transit time.

dr _f:bn(r’)dr"
: V. NUMERICAL SIMULATION RESULTS
We see that equating(r) to auniform distributionof num-

bersRy, 0<R.<1 will produce ther corresponding to the N this section we present particle si_mulation results ob-
distributionn(r). tained forxi=10,.d|vergent case, and _|ts dual convgrgent

The total number of particles is given by casex;=0.1, for different values oft, testing the theoretical
predictions and stability diagrams of Sec. Ill. Investigations

27 A, for other values ok;, starting close to 1 where the proper-
Niotar= fo jo fr r_zr singdodedr=4mA(r,—ra). ties of the spherical diodes converge to those of planar de-
2 vices, up to values af; much larger and much smaller than
Between one particle and the followilg,,= 1, and we can 1 where curvature effects are relevdtike the ones dis-
write cussed in this sectionhave shown nothing qualitatively dif-
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FIG. 6. Results fox;=10, andu=2.5. (a) Time evolution of the electric ] )
field at the emitter, up to=20r; (b) space profile of potential at=20r. FIG. 7. Results fox;=10, andu=3.4. () Time evolution ofE, up tot
=20r; (b) space profile of potential at=20r.

ferent in matters of bifurcations or dynamics. All numerical
experiments start from the basic constant velocity states, arghows that,(a) an unstable electrostatic structure is ap-
are initialized as described in Sec. IV. proached(b) the laminar flow is disrupted by the formation
of a virtual cathode(c) a transient stage follows in which the
system spontaneously eliminates an excess of electrons and
For x;=10 we started by simulating the system wjth recomposes a laminar flow, arid) finally the diode settles
<1/2. We choseu= 0.4, and several initial perturbations of down to a stable nonuniform velocity state.
space charge witlp# 0. In all cases the simulations have As we increase the value @f, we find similar results.
shown that the system is stable, the perturbations decay, amtew features appear for the cage- 3.4, the upper limit of
a final state withv =v is reached. This is in agreement with the interval. Figure (& shows the time evolution d, up to
the linear stability analysis. 20r. The peaks are related to the virtual cathode formation,
We have verified that the constant velocity states arevhile the minima are related to the presence of a laminar
unstable foru>1.45= u, . For u larger than the first critical  flow. Figure 7b) shows the space profile of the potential at
value simulations show that the potential approaches the=20r, an unstable solution. Here, the diode shows an in-
electrostatic solution with one maximum corresponding totermittent sequence of disruptions and recoveries of the lami-
the branch T of Fig. 2. The same figure indicates that for nar flow, which does not seem to stop.
values ofu in the interval 2.4 u<3.4, branch I, it should We have also simulated values pf close to the Hopf
be possible to observe two different behaviors, depending ohifurcation points. We present now results for three different
the value ofE,. We have done simulations for several val- values ofu: 4.5, uy,, and 4.8. Figure 8 describes the dy-
ues ofw in this interval. As an example, we show results for namics of the system fox=4.5. For this value ofu there
wn=2.5. The system departs from the uniform velocity con-are no stable laminar flows and the dynamics becomes more
figuration and approaches a new stable state with nonuncomplex. Figure 8) shows the time evolution up to 25f
form velocity, independent of the initialization. Figuréab  the electric field at the emitteE(). Nearr=7 a state of type
shows the time evolution d&, up to 20r. It seems that the 11l * is formed as shown in Fig.(B). The system oscillates
system starts evolving towards the unstable state of branahear this unstable state, albeit with increasing amplitude, as
17 of Fig. 2 by increasings, to large positive values. In  shown forEg from t=25r to 46r in Fig. 8(c). The departure
fact, the peak irE, observed at a time=67, is a manifes- of the system from this unstable configuration is illustrated in
tation of a virtual cathode formation. As the system evolvesFig. 8d) where a phase space portraitz,/dt vs Eg, is
in time it relaxes to a stable state witfy=—28.8, and a given for the same time interval of Fig(d. The time evo-
potential with one maximum as shown in Figlbpwhich  lution of E, from t=507 to 75, after the break up of the
corresponds to branch™| Notice that the signs oE, are  laminar behavior is presented in Figeg At that point the
opposite for branch 1l (unstablg¢ and branch T (stable electric field oscillations contain a mixture of frequencies in
solutions, in the interval 24 u<u,=2.7742. Summariz- contrast with the previous situation in the time interval
ing, for this set of parameters the numerical experimen?—307 where a well-defined frequency was observed. The

A. The divergent case
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FIG. 8. Results fox; = 10 andu=4.5. (a) Time evolution ofE, up tot ) )
=207, (b) potential profile at=20r; (c) time evolution forE, for a later ~ FIG. 10. Results fox; =10 andu = u,;=4.694.(a) Time evolution ofE,
time, 25r<t<46r; (d) the corresponding phase spatg, /dt vs Eq; (€) up tot=24r; (b) time evolution ofE, after stabilization, 123<t<1477.
time evolution forE, for 49r<t<70r; and (f) the corresponding phase
spacedE,/dt vs Eg.
good agreement with the value of Fig. 2. The time evolution
of Eg is presented in Fig.(®) and the corresponding phase
phase space of Fig(8 corresponding to the same time lapse spacedE,/dt vs E,, showing cycles converging to a center,
of Fig. 8e) depicts the complexity of this stage of the evo- is presented in Fig. (). The damping ofE, towards the
lution. The phase space of electronsysr (not shown, for  asymptotic steady state reaching a final value—df3.8 is
this last period indicates intermittent formation of virtual clear.
cathode and generally shows overcrossing of electron mo- According to theory we expect nonlinearly oscillatory
tions. states foru close touy,. In fact, the simulations fop
Whenu=4.8, a stable IIt state is possible in principle. =4.694 confirm this behavior. Figure () gives the time
However, the evolution found by particle simulations de-evolution of Ey up to t=247, where we can see that the
pends on the initial conditions. Stable solutions are found ifvalue of E; goes from a small perturbation to oscillations
we start withn,<<n;, which gives the potential shown in Fig. around a value close t69.0. After a long simulation time an
9(a). After t=257 the observed potential is shown in Fig. interval 123-147r is shown in Fig. 1(c) where one can see
9(b). The shape of the potential is clearly identified with thethat the electric field is still oscillating around the average
steady state solution Il and the average value &; isin ~ —9.0 with a well-defined frequency. The phase space
dE,/dt vs E, (not shown hergeportraits a limit cycle. The
electrons maintain a laminar flow throughout the steady state
023 y @ 4 o) oscillations.

mvg =% B. The convergent case

We consider now the convergent cages<1l. We have
AN selectedx;=0.1, the dual of the previously discussed diver-
0.1 iy 0.1 m] gent case;=10. The linear stability analysis is summarized
in Fig. 3. We have done particle simulations for different
A values ofu, keepingx;=0.1. For values oju<<uq, several
: numerical experiments have been carried out and the initial
; constant velocity states were found to be stable, confirming
PR the predictions of the linear theory.
) o For values ofu in the range 2.4 u<3.4, the simula-
0 Bt T 04 tions show that the evolution of the diode depends on the
FIG. 9. Results fox; = 10 andx=4.8. (a) Initial potential profile; (b) initial conditions. This is illustrated with an example for

potential att=20r; (c) time evolution ofE,, showing damped oscillations; = 2-5. When we start the simulation with(r,t=0) slightly
(d) phase spacalE,/dt vs E,, showing a circle converging to a point. larger tham;(r,t=0), the system becomes unstable and the

LT

Eq(t)
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FIG. 11. Results fox;=0.1, andu= 2.5 with initial condition¢=0.0. (a)
Time evolution of the electric field at the emittéf; goes to a stable value
of Eo=~3.41.(b) Space profile of the potential &&=207.

laminar flow is disrupted. A virtual cathode is formed near

Alves et al.
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FIG. 12. Results fox;=0.1, andu= uy,. Time evolution of the electric
field at the emitter for the interval®) 0<t<20r and(b) 207<t<407. (c)
Space profile of the potential & 407. (d) Spectrum of the electric field at
the emitter, with one characteristic frequendys 1.9x10° Hz, which in
nondimensional units is 0.4.

the time evolution of the electric field at the emitter uptto
=207r. The damping ofEy to the constant value oE,
~4.5, is apparent. Figure U1 shows the potential at
=207, with two maxima as predicted by fluid model. In fact,
Fig. 3 indicates the presence of stable solutions for the region
MH2 < <fy3-

The simulations confirm the theoretical idea embodied in

stead, we start the simulation with,=n; so that the initial

potential profile of Fig. 1&) (x;=0.1) is equal to the poten-

potential is close to zero, the evolution of the system apyig| profile of Fig. 9b) (x;=10) for the same value of.
trated in Fig. 11a) that shows the time evolution of the elec- —,, <3 4 interval where the initial state is unstable and two

tric field at the emitterthe outer electrode for convergent gjectrostatic state@ne, I, stable, the other, TI, unstable
beams$. The electric field at the emitter approaches asymp-

totically the valueEy=3.41. The potential presents one

maximum as in solutions of type lin Fig. 3. The potential

is shown in Fig. 1{b) for t=207. Other values ofu in the

same interval have been examined with similar results.
We have also run simulations fqu=3.8 where we

found that the system is unstable and the laminar flow breaks
down. Some features of the electron phase space will be

discussed in the last section.
The next selected value @f was uy,, a Hopf bifurca-

tion point. Particle simulations reveal the presence of an os-

cillatory stable state, as we can see in Fig. 12. Figuré¢s)12

12(b) show the time evolution of the electric field at the

emitter for the intervals €t<20.5r, and 20.5<t<40r,
respectively. The electric fielH, grows in time until steady

state oscillations are attained. Figured2shows the space
profile of the potential at=407, presenting the same shape

indicated in Fig. 3 for branch Ifl. Figure 12d) shows the

spectrum of the electric field at the emitter, with a well-

defined peak at the frequenc=1.9x10" Hz, which in

nondimensional units is Ifh}=0.4, in good agreement with

fluid theory. We have changed the valuewoto n=4.7 and
results are similar.
We have performed particle simulations for=4.8, and

4.8
(@)

Eo(t)

o
N
(=
o

4 ®
2e0
mys
-1

0.1 r [m} 1

FIG. 13. Results for a particle simulation with=0.1, andu=4.8. (a)

found that a nonuniform velocity state is approached asymprime evolution of the electric field at the emitter uptte20r. (b) Potential

totically. Figure 13 shows the results. Figure(d3presents

att=20r.
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FIG. 15. Phase space,vsr, at different times, fox;=0.1 andu=3.8.(a)

FIG. 14. Phase space,vsr, at different times, fox;=10 andu=3.8.(a) t=10r, (b) t=14r, (C) t=20r, and(d) t=60r

t=57, (b) t=10r, (c) t=207, and(d) t=60r.

a§tructure of the acceleration regions is almost identical. We

exist: convergent diodes may evolve either to a new lamin . .
9 y may note, however, that the population of trapped particles at

r towar rbulen nding on the initialization )
state or toward turbulence, depending on the initializatio 607 has decreased with respect to that at 10 or. Zdom

while divergent diodes show loss of laminarity followed by . - .
spontaneous recovery of a laminar state no matter how th%bservatpn; of many §|m|lar runs we conc!ng that a typical
simulation is initialized. energy gain in t.he ]et.S.IS about 3 times the |n|t|a! energy. T_he
growth of the instability of the constant velocity states is
related to an increase of electrostatic energy. This growth is
interrupted by the transfer of energy to selected groups of
We examine now the disruption of the laminar flow in electrons in the acceleration and deceleration processes men-
convergent and divergent systems, using as a diagnosttooned above.
method the phase spacevs r. We have chosen two dual We now report the results for the convergent case
systemsx;=10 and 0.1, for comparison. Both simulations =0.1. The four panel$a)—(d) in Fig. 15 give phase space
are performed at.=3.8. In Fig. 14 the four panel@—(d)  portraits at 10, 14, 20, and 60 transit times, respectively. As
are phase space portraits at 5, 10, 20, ane,G@spectively, in the previous experiment, the diode was started at a con-
for x;=10. The system was started at a constant velocitytant velocity state and perturbed by numerical noise. At
state, taking the numerical noise as initial perturbation. TheOr, in panel(a), we can see the first breakdown of the
line atv/v,=0 represents the neutralizing background ionslaminar flow, as some electrons are being reflected close to
with a fixed 1f2 density profile. In Fig. 14), at 5 we see  the collector. Four transit times later, in paciel we observe
that the laminar flow has already been disrupted and that that a virtual cathode is present on the emitter side. On the
weak virtual cathode has been formed near the emitter, reabsorber side a phase space vortex is being formed. The
flecting a small fraction of the incoming electrons. An accel-emitter is reabsorbing some freshly injected particles from
eration process, hinted by the two velocity spikes near théhe virtual cathode and also some reflected particles coming
emitter, is in its initial stage. Five transit times later this from the vortex region. On the collector side a considerable
process is fully developed and a few jets of energetic parvelocity spread is already apparent. At720n panel(c), a
ticles are now present. potential well for electrons with a large population of trapped
The formation of jets starts near the virtual cathode sarticles has developed on the collector side, and the virtual
that, for instance, the peak seen in Fig(l4will develop  cathode near the emitter has been consolidated and is now a
into a jet traveling away from the emitter. The jets are ac-permanent feature of the system. Forty transit times later, the
companied by streams of electrons whose velocity is beingeneral pattern is still present and persists. A group of par-
slowed down, as can be clearly seen in Fighl4Some of ticles from the vortex region is being ejected towards the
these electrons can be reflected and then form part of a smahitter. The population of trapped particles has increased
population of trapped particles near the emitter. The strucfrom panel(b) to (d), so that the number of particles in the
tures seen at XOwill be convected out of the system, but system oscillates but in average is larger than in the initial
new jets are continuously being formed, reproducing theconfiguration. The fluctuation in the number of particles is
same general pattern, as seen at.20 due to the fact that the vortex region is losing particles to the
The configuration at 20is similar to the one at 16 but  collector and a fraction also to the emitter. Clearly, a group
the two stages are unrelated in the sense that the jets seendh particles can travel through the system without being
these two plots are formed by groups of electrons enteringrapped. These particles must be accelerated to large energies
the system at different times. The repetition of these pattern® overcome the electron potential well. The largest energy
is quasi-periodic as can be seen by comparing the phagmin in paneld) is about 5.6 times the initial energy. While
space at 60 with that at 20, and observing that the fine in the divergent case the patterns seen in pafigl® (d) in

C. Phase space dynamics
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Fig. 14 are snapshots of similar phases of intermittent proi/x; diodes. This feature is a striking characteristic of the
cesses, paneld) to (d) in Fig. 15 for the convergent case spherical diodes and does not hold in cylindrical Pierce con-
describe a continuous evolution of the same basic processfigurations.

From this and several other similar numerical experi- While there are some properties common to dual conver-
ments with convergent diodes we conclude that the inStab"gent and divergent diodes, when the |aminarity of the flow is
ity growth saturates by two effects: the formation of a per-disrupted by the instability of the uniform constant velocity
manent virtual cathode which shortens the effectivestateg(electron overcrossing and multivalued velogiepm-
interelectrode distance, while at the same time limits the CUmpletely different dynamics develop for divergent and conver-
rent because of the reflected electrons; S|multaneously,. dent diodegeven when pairs with reciprocal ratias,, 1/,

fraction of electrons does not contribute to the net electrlcclre considered In both cases lack of order in phase space
current because a trapped particle population with zero ave(s r, arises, but with different physical features. In the diver-

age current is formed. tgent case the instability growth is saturated by intermittent

The difference in the nonlinear dynamics of convergen ; . .
. ) . .acceleration processes of electron jets, with patterns that re-
and divergent diodes can be summarized as follows. In di-

vergent diodes, the nonlinear evolution of the instabilitypeat quasi-periodically. In convergent diodes, instead, the in-

leads to a number of electrons slightly smaller than in thestability is limited by the formation of a p_ermanent virtual
initial state, the presence of the virtual cathode is intermit.cathode and the growth of a large population of trapped par-

tent, and the instability is reduced by transient periods oficl€S: _ . _
acceleration of groups of electrons. In convergent diodes, 1he numerical experiments allowed us to discover a new

however, the saturation of the instability allows for an in- Property of divergent flows, which marks a difference in the
crease in the number of particles in the system with respedtme-varying operation of divergent and convergent diodes.
to the initial value, leading to the trapping of particles and This is the possibility of a spontaneous recovery of a laminar
the establishment of a permanent virtual cathode. We suggestate(a stable electrostatic structyrafter the formation of
that the different behavior during the unsteady regimes canirtual cathode and the temporary disruption of laminarity
be traced back to the fact that the electrons find a decreasirigee, Secs. VA and VB, interval 24u<3.4). The diver-
local plasma frequency as they approach the collector in digent diode after leaving the unstable initial state shows an
vergent flows, and the Maxwell electric tensiésee Sec. increase of disorder in the electron phase space, but since it
IIIE) does a positive work on expanding material volumesis a driven open system it is capable of decreasing the disor-

while the opposite is true in convergent diodes. der after some time. As far as we know, it is the first time
that this effect has been reported in the context of the Pierce
VI. CONCLUSIONS instability literature.

_ . Another interesting result of the simulations was that
In this paper we have shown the importance of steadyermanent oscillatory electrostatic structures with well-
state electrostatic structures in the nonlinear evolution anfined frequencies can be formed, both in convergent and
spherical diode flows. The numerical simulations havegivergent diodes, for special values of the control param-
shown systematically, both in divergent and convergent CoNgters; , u. These are observed in coincidence with the Hopf
figurations, that often the diode evolution can relax towardy;f,rcations predicted by the theofssec. 111 O.
those states and remain permanently at them, starting from  pygnerties of the dispersion relation for perturbations of

perturbations of constant velocity states. These nonuniforrﬂ,]e initial constant velocity states have been studiedxfor
velocity states have a laminar electron motion and the elec- ;) These results also hold for the reciprocal diode with

tric current OUtPUt of the d|0(je IS not r_no_dn‘led. . x;=0.1. For spherical diodes the threshold of the first un-
We have given a theoretical description of the existence

R . . >1/2. < i
and stability diagram of the electrostatic states in Eyeu 2:22:2 mggeeizﬁ?ff ft(ﬁre Vl;IZLJeFofr ’L; n dlltiea:gfglrzd% Sr Z:‘e
plane for two reciprocal values of, 10 and 0.1, based on b al y

the fluid model. The simulations have confirmed all the prop_in_ter-electrode distgnce. This_ stability property was verified
erties pointed out by the diagrams which we have investi-\’v'th samplg nu_merlcal expenments. Such property does not
gated with several numerical experiments. hold for cylindrical or planar diodes.

The theory of spherical diodes shows a duality in certain 1€ Stability of some electrostatic structures for
properties of the electrostatic steady states and of the spec-1/2, and the possibility to access them which was con-
trum of eigenvalues of small perturbations of these statedifmed by the simulations, means that, in principle, the cur-
when diodes withx; and 1k; ratios are examined for the rent (or density of the diodes can be increased to values
same value of.. For instance, the electrostatic potential pro-Substantially larger than the limit set by the first threshold
file of a steady state for ax diode is related to the potential 1. by keeping a steady laminar flow through the system
profile of an 1x; diode by a simple rescaling. The character-and a constant current output. This result has potential value
istic frequencies of the oscillations about these statesa-  for applications, in particular for devices with simultaneous
sured in transit time unijsare the same. So that, for instance, ion beam injections for current neutralization. This property
the growth rates for the linear instability are equal for bothleads also to the interesting question about the influence of
dual configurations. The numerical simulations have fullythe ion dynamics on long time scales, which we hope to

confirmed the existence of this duality for reciprogaland  address in a future paper.
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