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Nonlinear dynamics of electron flows with density gradient
in spherical diodes
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A variety of Pierce diodes formed by a pair of grounded concentric spheres with electrons streaming
radially are investigated with particle-in-cell simulations and analytical models. The electrons flow
parallel or antiparallel to a density gradient in convergent or divergent diodes, respectively. The
existence and stability~or instability! of laminar steady states with space charge and nonuniform
velocity that are possible for a given set of diode parameters, are crucial to determine the outcome
of the numerical experiments. The dispersion relation for the stability of the initial constant velocity
states and the concomitant energy flow balance are examined in relation to the nonlinear dynamical
evolution. Spherical diodes have properties that are common to a dual pair of diodes with reciprocal
ratios of collector to emitter radii. Stable oscillatory electrostatic states, associated with Hopf
bifurcations, are observed in the simulations. The breakdown of the laminar electron flow has
completely different physical characteristics in divergent and convergent diodes. ©2000
American Institute of Physics.@S1070-664X~00!01007-7#
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I. INTRODUCTION

The ‘‘classical Pierce diode’’ is a plane diode in which
collisionless cold electron beam propagates between an e
ter ~located atx50) and a collector~at x5L). Both elec-
trodes are kept at the same potential, which is equivalen
an external short circuit. The electrons leave the emitter w
fixed densityn0 and velocityvb . The behavior of the plana
Pierce diode is basically determined by the dimension
Pierce parametera5vpL/vb @vp5(e2n0 /e0m)1/2: plasma
frequency#. The limit current density for the instability onse
is obtained froma5p. Systems witha.p are unstable.

Pierce-type instabilities have been invoked in the cont
of various practical applications and devices such
electron-beam generation, microwave generation and am
fication, thermionic converters, drift tubes, triode lasers, a
ion-beam neutralization for inertial confinement fusion.
survey of the research on planar Pierce diodes can be fo
in Ref. 1. The classical Pierce diode model has been
tended in many aspects and the literature on the subje
vast. Recently, the Pierce diode was considered as a sui
model for the linear stability of thermionic gas discharg
operated at low pressure.2 The inclusion of warm plasma
effects,3 as well as the inclusion of the ion dynamics,4 has
also attracted the attention of researchers. However, to
like nonlinear steady-state oscillations and chaotic beha
of the system have been developed only in relatively rec
times.3,5–9

In many electronic devices, thermionic cathodes w
large curvature are used for practical reasons.10 In fact, elec-
tronic devices with cylindrical and spherical electrodes w
called ‘‘Pierce electrodes’’~see e.g., Ref. 11!. Experiments
with injection of convergent ion beams neutralized by a
2791070-664X/2000/7(7)/2798/12/$17.00
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companying electron currents are considered in inertial
sion systems with cylindrical and spherical geometries.
these configurations the Pierce instability effect is releva
Similarly, the dynamics of the Pierce process includi
boundaries with curvature is of interest in ion depositi
experiments.12–15 Divergent beams between spherical ele
trodes may have a potential for microwave amplification.16

The knowledge of the Pierce instability for diodes wi
curvature is not so well advanced as in the planar case.
linear stability theory for cylindrical and spherical diode
was given in Ref. 16. The nonlinear dynamics of cylindric
Pierce-type devices has been recently investigated u
particle-in-cell simulations.17 In this paper we present
study of the nonlinear evolution of spherical Pierce-ty
electrodes, maintained at the same electric potential, u
numerical simulations and analytical models. These syst
have radial density gradients parallel or antiparallel to
electron flow, depending on whether the emitter focalizes
beam on a collector of smaller radius, or the emitter se
the beam outwards to a collector of larger radius. We w
focus our attention on radial perturbations of the stea
states with constant or with nonuniform velocity. Angle d
pendent perturbations will not be considered in this study.
the numerical experiments show, the instability of the co
stant velocity radial flow does not necessarily imply the e
of laminar motion in the diode and the development o
turbulent phase. In fact, the existence and the stability~or
instability! with respect to radial perturbations of lamin
steady states with space charge~and nonuniform velocity!
that are possible for a given set of diode parameters acc
8 © 2000 American Institute of Physics
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ing to the theory, are crucial to determine the final outco
of the numerical experiments. As we shall see, after the
ear instability phase the diode may relax directly to a diff
ent steady state, characterized by an electrostatic field a
nonuniform velocity flow, without loss of laminarity durin
this evolution. On the other hand, it may also happen t
after a laminar flow disruption the system passes throug
transient disordered stage in the electron phase space, w
is gradually superseded by a relaxation towards a st
laminar electrostatic state, where order in phase space i
covered.

The research has revealed that some properties, like
states with electrostatic structures towards which the sph
cal diodes may relax and the frequency of small oscillatio
about these states, are shared by convergent and dive
diodes with reciprocal valuesxi5Ri /Re andxi851/xi of the
ratio of the collector radius,Ri , to the emitter radius,Re .
This dual characteristic is not present in cylindrical diod
However, when the initial flow is disrupted and becom
turbulent the nonlinear dynamics revealed by the numer
simulations is quite different in divergent or convergent d
vices. The investigation has also confirmed that spher
systems are singularized by being stable in the constan
locity configuration for all values of the interelectrode d
tanceuRe2Ri u when the plasma frequency at the emitter
less thanvb/2Re . Planar and cylindrical diodes, instead, b
come unstable by increasing the interelectrode separatio
any injection density.

The layout of the paper is as follows. The geometry
the system is presented in Sec. II. The theoretical conc
that are necessary to interpret the results of the nume
experiments are given in Sec. III, which is subdivided in
four parts. In this section we introduce the equations for
fluid model and we examine the existence of alternat
laminar electrostatic structures and their stability proper
as a function of the parameters of the diode. A description
the instability of the initial constant velocity states, and t
connection of the growth~or damping! rate of the perturba-
tive modes with the net energy outflow from the system
also given there. The particle-in-cell model is described
Sec. IV. The results of numerical simulations for diverge
and convergent cases, showing the evolution toward st
electrostatic states and other features worthy of notice,
given in the first two parts of Sec. V. This section also co
tains a third part, where physical differences between div
gent and convergent diodes during the breakdown of
laminar flow and the following turbulent stage are hig
lighted. Finally, our conclusions are presented in Sec. VI

II. CONFIGURATION OF THE SYSTEM

We consider systems with radial flow throug
grounded, concentric spherical grids, with radiiRe , Ri , for
the emitter and collector electrode, respectively. In the
perturbed steady state, the flow of electrons has a cons
radial velocityv5v056vb . We assume that ions are als
injected into the system with the same speed and are com
ing with the electrons, so that charge and current neutra
are both ensured. This basic setup does not show rela
Downloaded 26 Aug 2005 to 150.163.34.27. Redistribution subject to AIP
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electron-to-ion drifts and avoids the possibility of electro
ion stream instabilities. In this paper we focus the attent
on the electrons in view of the high frequency of their d
namics, and we shall ignore the perturbations of the io
~infinite mass!. Thus, under the same restriction this stu
may also apply to a case in which the ions are assumed t
fixed, provided that the ion density is radially varying
achieve charge neutrality. In the comoving setup, for g
metrical reasons and because of particle flux conserva
under steady state conditions, both electrons and ions h
an unperturbed density distribution with a density gradie
n05A/r 2, whereA is a constant~computed with emitter val-
ues, A5neRe

2 , for instance! and r is the radial position.
Thus, initially no electric fields exist in the interelectrod
space. Figure 1 shows the two basic configurations stud
with incoming (2vb) or outgoing (1vb) radial velocityv0 ,
hence forming convergent or divergent flows. In the div
gent configuration the electrons flow against the density g
dient, conversely in the convergent setup the motion is p
allel to the density gradient. This study will bring into ligh
the influence of the convergence or divergence of the e
tron flow with the concomitant parallel or antiparallel dens
gradient, on the linear and nonlinear dynamics of the ins
bility.

III. THEORY

Previous to a description of the simulation results,
derive in this section several theoretical concepts based
laminar fluid description, which are necessary to conduct
interpret the numerical experiments properly.

A. The fluid model

The laminar behavior of the system can be treated us
the following model for a monoenergetic beam~cold fluid,
pressureless!:

S ]

]t
1v

]

]r D v5
e

m

]f

]r
,

]~r 2n!

]t
1

]~r 2nv !

]r
50,

]

]r S r 2
]f

]r D52
e

e0
~A2r 2ne!,

wheren denotes the number density,v the radial velocity of
the beam, andf the electric potential. In the Pierce diode th
boundaries are equipotentials, so thatf(Re)5f(Ri)50.
The remaining boundary conditions arev(Re)56vb , ne

FIG. 1. Set up and geometry of the systems studied in this paper.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2800 Phys. Plasmas, Vol. 7, No. 7, July 2000 Alves et al.
5A/Re
2 . This fluid model relies on the assumption of

unique value of the radial velocity at each positionr. How-
ever, the nonlinear evolution of the system may lead to m
tivalued electron velocities with breakdown of the lamin
model. Therefore, the fluid treatment will be supplemen
with the particle-in-cell model that adequately describes
dynamics of the system in phase space (r ,v).

It is convenient to introduce the following nondime
sional quantities:u5v/vb , x5r /Re , w52ef/mvb

2 , T
5vbt/Re , n5nr2/A, andE52]w/]x. The new variablen
is x2 times the density normalized to its value at the emitt
The equations can then be written as

S ]

]T
1u

]

]xDu52
1

2
E, ~1!

S ]

]T
1u

]

]xD n52n
]u

]x
, ~2!

]~x2E!

]x
52 m2~12n!. ~3!

The boundary conditions for the velocity and the density
now expressed asu(1)561 andn(1)51, respectively, and
the condition for the electric field,E, is *xi

1 E dx50. While

planar Pierce diodes are governed by a single nondim
sional numbera, the behavior of spherical diodes, as r
flected in Eqs.~1!–~3! and the boundary conditions, depen
on two parameters:xi5Ri /Re andm5Revp /vb , wherevp

is the plasma frequency at the emitter density. This is a
true for cylindrical electrodes.17

For comparisons with planar devices, typified by the p
rametera, a number,ac5uxi21uRevp /vb5uxi21um, for
diodes with curvature may be used, instead. The steady
with u0561,n051, andE050, is a basic solution of Eqs
~1!–~3!, characterized by constant velocity and no elec
field.

B. Electrostatic structures

In general, steady state solutions~denoted by a subinde
0) also include electrostatic structures with nonuniform
locity and nonzero electric field, given by the following no
linear equation for the potential,

d

dx
S x2

dw0

dx
D 52m2S 1

A11w0

21D , ~4!

the relationships

u0n051, u0
25w011,

and the corresponding boundary conditions. As we shall
in the simulations, when these states are stable, the sy
tries to evolve towards these configurations.

Let us consider for the moment the small amplitude v
sion of ~4!, describing states that are close to thew050
solution,

d

dx S x2
dw0

dx D1m2w050. ~5!
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Equation~5! is an Euler equation with solutionsw0 that are
linear combinations ofxl1 andxl2, wherel1,2521/26 id,
with d5(m221/4)1/2. Applying the conditions for grounded
electrodes we findxi

2id51, which is equivalent to

mn5@1/41~np/ ln xi !
2#1/2, n51,2,3,••• ~6!

for n51,2,3, . . . .16 Note thatxi and 1/xi give the samemn

values. Since the square root in~6! must be real, small am
plitude solutions exist form.1/2 only. The sequence o
critical valuesm1 ,m2 ,m3 , . . . , in whose neighborhood con
stant and small amplitude modulated velocity steady sta
coexist, is of great importance for the analysis of the stabi
and nonlinear dynamics of Pierce diodes.

C. Bifurcations and stability

As shown in Ref. 18, in spherical diodes electrosta
structures bifurcate from the simple flows with constant v
locity at the critical valuesmn given by ~6! in terms ofxi .
Linear perturbations of the steady states, with a time dep
dence exp(sT) and amplitudes,w1 , n1 , andu1 , satisfy

d

dx S x2
dw1

dx D52m2n1 ,
d

dx S u0u12
1

2
w1D52su1 ,

d

dx
~u0n11n0u1!52sn1 .

The steady states and their corresponding perturbat
were evaluated using numerical codes based on spectt
methods.19

A summary of numerical results of the stability analys
for a case of divergent beams,xi510 andm,5 is presented
in Fig. 2. The shape of the potential in each region is sho
The first three branches of nonuniform velocity states int
sect the m axis at the critical pointsm151.4531, m2

52.7742, andm354.1236. Stable~full lines! and unstable
~dotted lines! branches are presented. Form,1/2 ~not
shown!, the constant velocity states are always stable, in
pendent of the value ofxi . This stability region extends up
to m5m1 . At m1 an exchange of stability takes place b
tween modes of uniform and nonuniform velocity states. T

FIG. 2. Bifurcation diagram of the steady states forxi510. The electric
field at the emitter,E0 vs m. The shape of the potential in each region a
the stability of the branches are also shown.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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branch of solutions where the potential has one maxim
identified by I1 in Fig. 2, exists for allm.m1 and these
configurations are stable. In the interval 2.4,m,3.4 a new
branch of solutions~labeled II2 and II1) exists. These non
linear structures with one maximum and one minimum
unstable. The next branch (III2 and III1), in the interval
3.5,m,5.1, contains structures with two minima and o
maximum (III2), or two maxima and one minimum (III1)
of the potential. In this branch, the pointsmH153.838,mH2

54.694, andmH354.899, are Hopf bifurcation points wher
pulsating electrostatic structures are viable. For higher va
of m there is a succession of branches in intervals compris
the critical valuesmn . All branches, with the exception o
I1, exist for a restricted range ofm values. Their presence i
limited by the formation of a virtual cathode at some po
inside the diode, wherew→1. Besides the states with on
maximum of the potential that exist form.m1 and are
stable, there is one additional stability region in the inter
mH2,m,mH3 ~see the lower right-hand corner of Fig. 2!,
corresponding to structures where the potential has
maxima.

A similar analysis for the convergent case is presente
Fig. 3, showing a summary of numerical results of stabi
analysis forxi50.1 andm,5. The critical values ofm are
the same as forxi510, according to~6!.

For a fixedm value, the steady state solutions with n
uniform velocity for a convergent diode with ratioxi are
equivalent to those for a divergent diode with a ratioxi8
51/xi . This duality property of solutions, which amounts
an exchange of the roles of emitter and collector~and the
sign of the beam velocity! in the pair of diodes considered
can be easily shown considering the invariance of Eq~4!
with respect to a rescaling of the variablex with x/xi . Not-
ing, moreover, that for steady states the boundary condit
u(1)51 andn(1)51 at the emitter, imply necessarily th
conditionsu(xi)51 andn(xi)51 at the collector. This res
caling is an exclusive feature of the spherical geometry,
does not hold for cylindrical diodes. Nevertheless, it must
noted that the value of the electrical field at the emitter
different for xi510 andxi50.1, as a comparison of Figs.
and 3 shows.

FIG. 3. Same as Fig. 2, for the convergent case,xi50.1.
Downloaded 26 Aug 2005 to 150.163.34.27. Redistribution subject to AIP
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It is also interesting to note that calculations show th
the eigenvalues of the linear perturbations computed foxi

510, both for constant velocity states and for nonunifo
velocity states, are also eigenvalues of thexi50.1 case, pro-
vided a dimensionless time variableT/uxi21u, measured in
units of the transit timet5Reuxi21u/vb , is employed. In
other words, the computed values ofsuxi21u are the same in
the two dual problems. Again, this is a property not observ
for cylindrical diodes.17

D. Stability of constant velocity states

The initial states of the diodes are represented by s
tions withu0561. A linearization of the set of Eqs.~1!–~3!
for perturbations of the constant velocity solutions with
time dependence of the form exp(sT) leads to the dispersion
relation

~1/21 id1s!I 22~1/22 id1s!I 112is d esI 050, ~7!

with the following expressions forI 0 ,I 1 , andI 2 :

I 05
1

2idExi

1

esxS x(23/21 id)E
1

x

e2szz(1/22 id) dz

2x(23/21 id)E
1

x

e2szz(1/21 id) dzD dx,

I 15E
xi

1

esxx(23/21 id)dx, I 25E
xi

1

esxx(23/22 id)dx.

This equation was derived in Ref. 16, but the roots w
examined only near the critical valuesmn given by~6!. Here
we solved numerically the dispersion relation~7! for the
characteristic valuess, without restrictions. The roots appea
as an infinite sequence of branches. We can see a typ
display in Fig. 4, which shows real roots~full lines! and
complex ones@Re(s): dotted lines and Im(s): dashed-dotted
lines# for xi510, a diverging flow case, as functions ofm, in
the range 0,m,8. For negative values of Re(s) there appear
five branches which represent damped modes@with Im(s)
50]. Each of these branches attains thes50 value atm1 to
m5 , respectively, given by~6!. The instability, Re(s).0, first

FIG. 4. Roots of the dispersion relation forxi510 as a function ofm: real
roots, full lines; complex roots, Re(s): dotted lines and Im(s): dashed–
dotted lines.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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appears form.m1 . For a value ofm slightly larger thanm2

the first and second~real! branches merge and become a p
of complex conjugate branches which are oscillatory
stable up tom;5 and oscillatory damped thereafter. Th
third branch becomes unstable form.m3 , and meets a
fourth branch for a higher value ofm, repeating the same
stability pattern of the first and second branches. The
merical solutions of~7! also show that, for allm, the quantity
suxi21u has the same values forxi and 1/xi diodes. Thus,
Fig. 4 can be applied also to the convergent casexi50.1,
after rescaling the correspondings roots.

E. Energy analysis of the stability of flows with
uniform velocity

The Pierce diode is an open system and its energy c
tent varies during unsteady regimes. The instability of c
stant velocity states can be analyzed in terms of the en
flow balance of the system. This approach sets out the ro
the Maxwell radial electric stress power exerted on the e
tron flow, an effect absent in planar diodes, which acts
opposite ways in divergent or convergent flows. Using~1!–
~3! and the boundary conditions, it is easy to verify that

]

]TE1

xi x2

2
E 2 dx52m2E

1

xi
unE dx. ~8!

This equation states that the rate of time variation of
electrostatic energy of the diode is due to the power de
ered by the electric current to the field.

Computing the productu n E from ~1!–~3! as

22m2Eun5S 2m22
]

]x
~x2E! D S ]

]T S u2

2 D1u
]

]x S u2

2 D D
after some simple manipulations a formula for the change
the total~electrostatic plus kinetic! energy,ET ,

ET[E
1

xi S x2

2
E 212m2n

u2

2 Ddx,

can be derived,

dET

dT
522m2Fnu

u2

2 G
1

xi

. ~9!

The left-hand-side term of~9! represents the difference be
tween the inflow and outflow of kinetic energy through t
boundaries of the system. In nondimensional units the infl
of kinetic energy through the emitter is 1. For divergent
odesnu.0 at xi.1, while for convergent diodesnu,0 at
xi,1, so that in both cases we can write

d

dT
uETu5m2F12unuu

u2

2 G
xi

.

Thus, the total energy grows in time when the inflow
kinetic energy is larger than the outflow, and vice versa.

The instability develops when conditions for growth c
be steadily maintained in time. We show now how these
be written in the case of the linear perturbations of cons
velocity statesu0561. We set E15E1(x)exp(sT)1c.c.,
with s5p1 iv, wherep, v are the real and imaginary par
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of s, respectively, c.c. denotes the complex conjugate of
preceding term, with similar expressions foru and n. The
linearized version of~1! and ~3!, with subindex 1 denoting
perturbation quantities, is

S ]

]T
1u0

]

]xDu15
1

2
E1 ,

]

]x
~x2E1!522m2n1 .

Using them in~8!, we obtain

]

]TE1

xi
x2S E 1

2

2
1

2m2

x2
u1

2D dx

52u0Fx2S E 1
2

2
1

2m2

x2
u1

2D G
1

xi

2u0E
1

xiE 1
2

2

]

]x
~x2!dx.

We note now that, whenv50, we may write E 1
2

5(2 Re(E1))2 exp(2pT) and (]/]T)E 1
252pE 1

2, with similar
expressions foru1

2. If, instead, we havevÞ0 but the growth
is small over an oscillation period,v..upu, then by time
averaging over one period we get^E 1

2&52uE1u2 exp(2pT).
Thus, for this case the same results of the case withv50 are
obtained, replacing (Re(E1))2 by uE1u2. Therefore, in both
cases we find

p5

u0Fx2S uE1u21
4m2

x2
uu1u2D G

xi

1

2E
1

xi
uE1u2

]

]x
~x2u0!dx

2E
1

xi
x2S uE1u21

4m2

x2
uu1u2D dx

.

~10!

This formula gives the growth~or damping! rate as the
ratio of the difference of the net energy inflow and the pow
of the radial electric stress component over 4 times the t
energy content of the perturbative mode. While the deno
nator is positive definite, the numerator can be positive
negative. The last term in the numerator of~10! represents
the power due to the radial electric tension during the exp
sion or compression of spherical shell volumes, in diverg
or convergent flows, respectively. In divergent diodes,xi

.1, u0511, this term is negative and it always provides
stabilizing contribution. In convergent diodes,xi,1,
u0521, the power of the electric stress component giv
always a destabilizing contribution, instead. In short, whe
material volume convected by the flow increases, as it h
pens in divergent diodes, perturbative electrostatic energ
spent during the expansion. The opposite happens in con
gent diodes. The numerical experiments reported in Sec
give evidence of differences in the evolution of converge
and divergent diodes after a laminar flow breaks down, e
when dualxi and 1/xi diodes are compared.

IV. PARTICLE-IN-CELL MODEL

Particle simulation techniques are by now a well est
lished and effective technique for studying the nonline
properties of plasmas. Unlike the fluid model that is based
the assumption of a unique value of the radial velocity
every position, particle simulations allow multivalues of v
locities originated by the overcrossing of different elemen
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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The basic concepts involved in particle simulations
well known.20 In principle, we follow the movement of a
large number of particles under the action of collective~self-
consistent! and externally applied electromagnetic fields.
time t50 we know the velocities and positions for ea
particle and from these we obtain charge and current de
ties. These are then used to derive the electromagnetic fi
Using these fields we advance the positions and veloci
and a new cycle starts.

The particle code used here is PDS1~plasma device
spherical one dimensional!.21 This code is one-dimensiona
radial, electrostatic, and simulates a plasma contained
tween concentric spheres. The spherical grids can be cou
to an external RLC~resistive, inductive, and/or capacitive!
circuit and/or rf source, i.e., it is not specialized to the pro
lem treated here. During the simulations the applied bou
ary conditions ensure that electrons are injected at a con
rate from the emitter~inner electrode for a divergent beam
xi.1, and outer electrode for a convergent beam,xi,1).
When electrons reach the collector they are absorbed,
contribute to the external surface charge.21 Both electrodes
are kept at the same potential,f50. Fields are calculated o
a grid of 400 points using a finite-difference Poisson sche
~equivalent to the flux conserving method20!. Poisson’s equa-
tion is solved in each time step with the given bounda
conditions. More details about PDS1 can be obtained
Refs. 21–23.

The time step is determined by ensuring that
Courant–Friedrichs–Levy conditionvmaxDt/Dx,1 is satis-
fied. A value ofvmax53vb is assumed, after concluding from
a series of numerical experiments that this is an upper bo
for the velocity. This condition means that no disturban
can propagate more thanDx in a time Dt, and avoids nu-
merical instabilities.

The original code has been modified in order to have
initial density that varies asn0}1/r 2. The algorithm for this
distribution was obtained as follows~see Ref. 20, p. 388!.
We wish to place particles in phase space so as to for
density n(r )5A/r 2, from r 5r a to r 5r b , A being a con-
stant. We form acumulative distribution function

N~r ![
* r a

r n~r 8!dr8

* r a

r bn~r 8!dr8
,

whereN(r a)50, N(r b)51, and

dN~r !

dr
5

n~r !

* r a

r bn~r 8!dr8
.

We see that equatingN(r s) to auniform distributionof num-
bersRs , 0,Rs,1 will produce ther s corresponding to the
distributionn(r s).

The total number of particles is given by

Ntotal5E
0

2pE
0

pE
r a

r b A

r 2
r 2 sinu du dw dr54pA~r b2r a!.

Between one particle and the followingNtotal51, and we can
write
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Ntotal
5

4pA~r i 112r i !

4pA~r b2r a!
5

~r i 112r i !

r b2r a
,

r i being the position ofi th particle. We can now find the
position of the first particle

r 15r a1~r b2r a!/~Ntotal!. ~11!

Observe that the last term in~11! is a constant that we cal
Np . We can now write thatr i 115r i1Np , and we have the
positions of all particles in the simulations, fort50. It is
important to keep in mind thatNtotal is the total number of
macroparticlesto be used in the simulation. Results of th
algorithm are shown in Fig. 5, forxi510. For reference, al
runs discussed in this paper were standardized to invo
some 70 000 simulation particles~macroparticles!, the pre-
cise number varying during each run.

Initial conditions play a very important role in nonlinea
problems. In the case treated here, the idea is to start
simulation withne(r ,t50)5ni(r ,t50), which givesf(r ,t
50).0, and the electric field at the emitter,E0 , also zero
except for a very small numerical noise. In general, res
for the stability of the constant velocity states obtained w
this initialization agree well with those obtained with flu
models. However, in some instances, it is necessary to
tialize the system with a nonzero potential to reach the
sired stable state. In that case the initial perturbation affe
the value ofA only, and does not entail a change of th
density radial dependence, that remains 1/r 2, or in the flow
velocity. It is important to emphasize that the perturbation
imposed att50, and leaves the system after one transit tim

V. NUMERICAL SIMULATION RESULTS

In this section we present particle simulation results o
tained for xi510, divergent case, and its dual converge
case,xi50.1, for different values ofm, testing the theoretica
predictions and stability diagrams of Sec. III. Investigatio
for other values ofxi , starting close to 1 where the prope
ties of the spherical diodes converge to those of planar
vices, up to values ofxi much larger and much smaller tha
1 where curvature effects are relevant~like the ones dis-
cussed in this section!, have shown nothing qualitatively dif

FIG. 5. Example of initial density profile.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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ferent in matters of bifurcations or dynamics. All numeric
experiments start from the basic constant velocity states,
are initialized as described in Sec. IV.

A. The divergent case

For xi510 we started by simulating the system withm
,1/2. We chosem50.4, and several initial perturbations o
space charge withfÞ0. In all cases the simulations hav
shown that the system is stable, the perturbations decay,
a final state withv5v0 is reached. This is in agreement wi
the linear stability analysis.

We have verified that the constant velocity states
unstable form.1.455m1 . Form larger than the first critica
value simulations show that the potential approaches
electrostatic solution with one maximum corresponding
the branch I1 of Fig. 2. The same figure indicates that f
values ofm in the interval 2.4,m,3.4, branch II, it should
be possible to observe two different behaviors, depending
the value ofE0 . We have done simulations for several va
ues ofm in this interval. As an example, we show results f
m52.5. The system departs from the uniform velocity co
figuration and approaches a new stable state with non
form velocity, independent of the initialization. Figure 6~a!
shows the time evolution ofE0 up to 20t. It seems that the
system starts evolving towards the unstable state of bra
II2 of Fig. 2 by increasingE0 to large positive values. In
fact, the peak inE0 observed at a time.6t, is a manifes-
tation of a virtual cathode formation. As the system evolv
in time it relaxes to a stable state withE0.28.8, and a
potential with one maximum as shown in Fig. 6~b! which
corresponds to branch I1. Notice that the signs ofE0 are
opposite for branch II2 ~unstable! and branch I1 ~stable!
solutions, in the interval 2.4,m,m252.7742. Summariz-
ing, for this set of parameters the numerical experim

FIG. 6. Results forxi510, andm52.5. ~a! Time evolution of the electric
field at the emitter, up tot520t; ~b! space profile of potential att520t.
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shows that,~a! an unstable electrostatic structure is a
proached,~b! the laminar flow is disrupted by the formatio
of a virtual cathode,~c! a transient stage follows in which th
system spontaneously eliminates an excess of electrons
recomposes a laminar flow, and~d! finally the diode settles
down to a stable nonuniform velocity state.

As we increase the value ofm, we find similar results.
New features appear for the casem53.4, the upper limit of
the interval. Figure 7~a! shows the time evolution ofE0 up to
20t. The peaks are related to the virtual cathode formati
while the minima are related to the presence of a lami
flow. Figure 7~b! shows the space profile of the potential
t520t, an unstable solution. Here, the diode shows an
termittent sequence of disruptions and recoveries of the la
nar flow, which does not seem to stop.

We have also simulated values ofm close to the Hopf
bifurcation points. We present now results for three differe
values ofm: 4.5, mH2 , and 4.8. Figure 8 describes the d
namics of the system form54.5. For this value ofm there
are no stable laminar flows and the dynamics becomes m
complex. Figure 8~a! shows the time evolution up to 25t of
the electric field at the emitter (E0). Neart57 a state of type
III 1 is formed as shown in Fig. 8~b!. The system oscillates
near this unstable state, albeit with increasing amplitude
shown forE0 from t525t to 46t in Fig. 8~c!. The departure
of the system from this unstable configuration is illustrated
Fig. 8~d! where a phase space portrait,dE0 /dt vs E0 , is
given for the same time interval of Fig. 8~c!. The time evo-
lution of E0 from t550t to 75t, after the break up of the
laminar behavior is presented in Fig. 8~e!. At that point the
electric field oscillations contain a mixture of frequencies
contrast with the previous situation in the time interv
7–30t where a well-defined frequency was observed. T

FIG. 7. Results forxi510, andm53.4. ~a! Time evolution ofE0 up to t
520t; ~b! space profile of potential att520t.
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phase space of Fig. 8~f! corresponding to the same time lap
of Fig. 8~e! depicts the complexity of this stage of the ev
lution. The phase space of electrons,v vs r ~not shown!, for
this last period indicates intermittent formation of virtu
cathode and generally shows overcrossing of electron
tions.

Whenm54.8, a stable III1 state is possible in principle
However, the evolution found by particle simulations d
pends on the initial conditions. Stable solutions are foun
we start withne,ni , which gives the potential shown in Fig
9~a!. After t525t the observed potential is shown in Fi
9~b!. The shape of the potential is clearly identified with t
steady state solution III1 and the average value ofE0 is in

FIG. 8. Results forxi 5 10 andm54.5. ~a! Time evolution ofE0 up to t
520t; ~b! potential profile att520t; ~c! time evolution forE0 for a later
time, 25t,t,46t; ~d! the corresponding phase spacedE0 /dt vs E0 ; ~e!
time evolution forE0 for 49t,t,70t; and ~f! the corresponding phas
spacedE0 /dt vs E0 .

FIG. 9. Results forxi 5 10 andm54.8. ~a! Initial potential profile;~b!
potential att520t; ~c! time evolution ofE0 , showing damped oscillations
~d! phase space,dE0 /dt vs E0 , showing a circle converging to a point.
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good agreement with the value of Fig. 2. The time evolut
of E0 is presented in Fig. 9~c! and the corresponding phas
space,dE0 /dt vs E0 , showing cycles converging to a cente
is presented in Fig. 9~d!. The damping ofE0 towards the
asymptotic steady state reaching a final value of213.8 is
clear.

According to theory we expect nonlinearly oscillato
states form close tomH2 . In fact, the simulations form
54.694 confirm this behavior. Figure 10~a! gives the time
evolution of E0 up to t524t, where we can see that th
value of E0 goes from a small perturbation to oscillation
around a value close to29.0. After a long simulation time an
interval 123–147t is shown in Fig. 10~c! where one can see
that the electric field is still oscillating around the avera
29.0 with a well-defined frequency. The phase spa
dE0 /dt vs E0 ~not shown here! portraits a limit cycle. The
electrons maintain a laminar flow throughout the steady s
oscillations.

B. The convergent case

We consider now the convergent case,xi,1. We have
selectedxi50.1, the dual of the previously discussed dive
gent casexi510. The linear stability analysis is summarize
in Fig. 3. We have done particle simulations for differe
values ofm, keepingxi50.1. For values ofm,m1 , several
numerical experiments have been carried out and the in
constant velocity states were found to be stable, confirm
the predictions of the linear theory.

For values ofm in the range 2.4,m,3.4, the simula-
tions show that the evolution of the diode depends on
initial conditions. This is illustrated with an example form
52.5. When we start the simulation withne(r ,t50) slightly
larger thanni(r ,t50), the system becomes unstable and

FIG. 10. Results forxi510 andm5mH254.694.~a! Time evolution ofE0

up to t524t; ~b! time evolution ofE0 after stabilization, 123t,t,147t.
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laminar flow is disrupted. A virtual cathode is formed ne
the emitter and remains during the period examined. If,
stead, we start the simulation withne.ni so that the initial
potential is close to zero, the evolution of the system
proaches a stable nonuniform velocity state. This is ill
trated in Fig. 11~a! that shows the time evolution of the ele
tric field at the emitter~the outer electrode for converge
beams!. The electric field at the emitter approaches asym
totically the value E0.3.41. The potential presents on
maximum as in solutions of type I1 in Fig. 3. The potential
is shown in Fig. 11~b! for t.20t. Other values ofm in the
same interval have been examined with similar results.

We have also run simulations form53.8 where we
found that the system is unstable and the laminar flow bre
down. Some features of the electron phase space wil
discussed in the last section.

The next selected value ofm wasmH2 , a Hopf bifurca-
tion point. Particle simulations reveal the presence of an
cillatory stable state, as we can see in Fig. 12. Figures 12~a!–
12~b! show the time evolution of the electric field at th
emitter for the intervals 0,t,20.5t, and 20.5t,t,40t,
respectively. The electric fieldE0 grows in time until steady
state oscillations are attained. Figure 12~c! shows the space
profile of the potential att540t, presenting the same shap
indicated in Fig. 3 for branch III1. Figure 12~d! shows the
spectrum of the electric field at the emitter, with a we
defined peak at the frequency,f 51.93107 Hz, which in
nondimensional units is Im$l%50.4, in good agreement with
fluid theory. We have changed the value ofm to m54.7 and
results are similar.

We have performed particle simulations form54.8, and
found that a nonuniform velocity state is approached asy
totically. Figure 13 shows the results. Figure 13~a! presents

FIG. 11. Results forxi50.1, andm52.5 with initial conditionf50.0. ~a!
Time evolution of the electric field at the emitter;E0 goes to a stable value
of E05;3.41. ~b! Space profile of the potential att.20t.
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the time evolution of the electric field at the emitter up tot
520t. The damping ofE0 to the constant value ofE0

;4.5, is apparent. Figure 13~b! shows the potential att
520t, with two maxima as predicted by fluid model. In fac
Fig. 3 indicates the presence of stable solutions for the reg
mH2,m,mH3 .

The simulations confirm the theoretical idea embodied
the duality property of the spherical diodes showing that
potential profile of Fig. 13~c! (xi50.1) is equal to the poten
tial profile of Fig. 9~b! (xi510) for the same value ofm.
However, a different behavior can be observed in the
,m,3.4 interval where the initial state is unstable and tw
electrostatic states~one, I1, stable, the other, II2, unstable!

FIG. 12. Results forxi50.1, andm5mH2 . Time evolution of the electric
field at the emitter for the intervals~a! 0,t,20t and~b! 20t,t,40t. ~c!
Space profile of the potential att540t. ~d! Spectrum of the electric field a
the emitter, with one characteristic frequency,f 51.93107 Hz, which in
nondimensional units is 0.4.

FIG. 13. Results for a particle simulation withxi50.1, andm54.8. ~a!
Time evolution of the electric field at the emitter up tot520t. ~b! Potential
at t520t.
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exist: convergent diodes may evolve either to a new lam
state or toward turbulence, depending on the initializati
while divergent diodes show loss of laminarity followed b
spontaneous recovery of a laminar state no matter how
simulation is initialized.

C. Phase space dynamics

We examine now the disruption of the laminar flow
convergent and divergent systems, using as a diagno
method the phase spacev vs r. We have chosen two dua
systems,xi510 and 0.1, for comparison. Both simulation
are performed atm53.8. In Fig. 14 the four panels~a!–~d!
are phase space portraits at 5, 10, 20, and 60t, respectively,
for xi510. The system was started at a constant velo
state, taking the numerical noise as initial perturbation. T
line at v/vb50 represents the neutralizing background io
with a fixed 1/r 2 density profile. In Fig. 14~a!, at 5t we see
that the laminar flow has already been disrupted and th
weak virtual cathode has been formed near the emitter,
flecting a small fraction of the incoming electrons. An acc
eration process, hinted by the two velocity spikes near
emitter, is in its initial stage. Five transit times later th
process is fully developed and a few jets of energetic p
ticles are now present.

The formation of jets starts near the virtual cathode
that, for instance, the peak seen in Fig. 14~b! will develop
into a jet traveling away from the emitter. The jets are a
companied by streams of electrons whose velocity is be
slowed down, as can be clearly seen in Fig. 14~b!. Some of
these electrons can be reflected and then form part of a s
population of trapped particles near the emitter. The str
tures seen at 10t will be convected out of the system, bu
new jets are continuously being formed, reproducing
same general pattern, as seen at 20t.

The configuration at 20t is similar to the one at 10t, but
the two stages are unrelated in the sense that the jets se
these two plots are formed by groups of electrons ente
the system at different times. The repetition of these patte
is quasi-periodic as can be seen by comparing the ph
space at 60t with that at 20t, and observing that the fin

FIG. 14. Phase space,v vs r, at different times, forxi510 andm53.8. ~a!
t55t, ~b! t510t, ~c! t520t, and~d! t560t.
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structure of the acceleration regions is almost identical.
may note, however, that the population of trapped particle
60t has decreased with respect to that at 10 or 20t. From
observations of many similar runs we conclude that a typ
energy gain in the jets is about 3 times the initial energy. T
growth of the instability of the constant velocity states
related to an increase of electrostatic energy. This growt
interrupted by the transfer of energy to selected groups
electrons in the acceleration and deceleration processes
tioned above.

We now report the results for the convergent casexi

50.1. The four panels~a!–~d! in Fig. 15 give phase spac
portraits at 10, 14, 20, and 60 transit times, respectively.
in the previous experiment, the diode was started at a c
stant velocity state and perturbed by numerical noise.
10t, in panel ~a!, we can see the first breakdown of th
laminar flow, as some electrons are being reflected clos
the collector. Four transit times later, in panel~b! we observe
that a virtual cathode is present on the emitter side. On
absorber side a phase space vortex is being formed.
emitter is reabsorbing some freshly injected particles fr
the virtual cathode and also some reflected particles com
from the vortex region. On the collector side a considera
velocity spread is already apparent. At 20t, in panel~c!, a
potential well for electrons with a large population of trapp
particles has developed on the collector side, and the vir
cathode near the emitter has been consolidated and is n
permanent feature of the system. Forty transit times later,
general pattern is still present and persists. A group of p
ticles from the vortex region is being ejected towards
emitter. The population of trapped particles has increa
from panel~b! to ~d!, so that the number of particles in th
system oscillates but in average is larger than in the ini
configuration. The fluctuation in the number of particles
due to the fact that the vortex region is losing particles to
collector and a fraction also to the emitter. Clearly, a gro
of particles can travel through the system without be
trapped. These particles must be accelerated to large ene
to overcome the electron potential well. The largest ene
gain in panel~d! is about 5.6 times the initial energy. Whil
in the divergent case the patterns seen in panels~b! to ~d! in

FIG. 15. Phase space,v vs r, at different times, forxi50.1 andm53.8. ~a!
t510t, ~b! t514t, ~c! t520t, and~d! t560t.
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Fig. 14 are snapshots of similar phases of intermittent p
cesses, panels~b! to ~d! in Fig. 15 for the convergent cas
describe a continuous evolution of the same basic proce

From this and several other similar numerical expe
ments with convergent diodes we conclude that the insta
ity growth saturates by two effects: the formation of a p
manent virtual cathode which shortens the effect
interelectrode distance, while at the same time limits the c
rent because of the reflected electrons; simultaneousl
fraction of electrons does not contribute to the net elec
current because a trapped particle population with zero a
age current is formed.

The difference in the nonlinear dynamics of converg
and divergent diodes can be summarized as follows. In
vergent diodes, the nonlinear evolution of the instabil
leads to a number of electrons slightly smaller than in
initial state, the presence of the virtual cathode is interm
tent, and the instability is reduced by transient periods
acceleration of groups of electrons. In convergent diod
however, the saturation of the instability allows for an i
crease in the number of particles in the system with resp
to the initial value, leading to the trapping of particles a
the establishment of a permanent virtual cathode. We sug
that the different behavior during the unsteady regimes
be traced back to the fact that the electrons find a decrea
local plasma frequency as they approach the collector in
vergent flows, and the Maxwell electric tension~see Sec.
III E ! does a positive work on expanding material volum
while the opposite is true in convergent diodes.

VI. CONCLUSIONS

In this paper we have shown the importance of ste
state electrostatic structures in the nonlinear evolution
spherical diode flows. The numerical simulations ha
shown systematically, both in divergent and convergent c
figurations, that often the diode evolution can relax towa
those states and remain permanently at them, starting f
perturbations of constant velocity states. These nonunif
velocity states have a laminar electron motion and the e
tric current output of the diode is not modified.

We have given a theoretical description of the existe
and stability diagram of the electrostatic states in theE0 ,m
plane for two reciprocal values ofxi , 10 and 0.1, based o
the fluid model. The simulations have confirmed all the pro
erties pointed out by the diagrams which we have inve
gated with several numerical experiments.

The theory of spherical diodes shows a duality in cert
properties of the electrostatic steady states and of the s
trum of eigenvalues of small perturbations of these sta
when diodes withxi and 1/xi ratios are examined for th
same value ofm. For instance, the electrostatic potential pr
file of a steady state for anxi diode is related to the potentia
profile of an 1/xi diode by a simple rescaling. The characte
istic frequencies of the oscillations about these states~mea-
sured in transit time units! are the same. So that, for instanc
the growth rates for the linear instability are equal for bo
dual configurations. The numerical simulations have fu
confirmed the existence of this duality for reciprocalxi and
Downloaded 26 Aug 2005 to 150.163.34.27. Redistribution subject to AIP
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1/xi diodes. This feature is a striking characteristic of t
spherical diodes and does not hold in cylindrical Pierce c
figurations.

While there are some properties common to dual conv
gent and divergent diodes, when the laminarity of the flow
disrupted by the instability of the uniform constant veloc
states~electron overcrossing and multivalued velocity! com-
pletely different dynamics develop for divergent and conv
gent diodes~even when pairs with reciprocal ratios,xi ,1/xi

are considered!. In both cases lack of order in phase spacev
vs r, arises, but with different physical features. In the dive
gent case the instability growth is saturated by intermitt
acceleration processes of electron jets, with patterns tha
peat quasi-periodically. In convergent diodes, instead, the
stability is limited by the formation of a permanent virtu
cathode and the growth of a large population of trapped p
ticles.

The numerical experiments allowed us to discover a n
property of divergent flows, which marks a difference in t
time-varying operation of divergent and convergent diod
This is the possibility of a spontaneous recovery of a lami
state~a stable electrostatic structure! after the formation of
virtual cathode and the temporary disruption of laminar
~see, Secs. V A and V B, interval 2.4,m,3.4). The diver-
gent diode after leaving the unstable initial state shows
increase of disorder in the electron phase space, but sin
is a driven open system it is capable of decreasing the di
der after some time. As far as we know, it is the first tim
that this effect has been reported in the context of the Pie
instability literature.

Another interesting result of the simulations was th
permanent oscillatory electrostatic structures with we
defined frequencies can be formed, both in convergent
divergent diodes, for special values of the control para
eters,xi ,m. These are observed in coincidence with the Ho
bifurcations predicted by the theory~Sec. III C!.

Properties of the dispersion relation for perturbations
the initial constant velocity states have been studied foxi

510. These results also hold for the reciprocal diode w
xi50.1. For spherical diodes the threshold of the first u
stable mode appears form.1/2. Form,1/2 all diodes are
stable independent of the value ofxi , and therefore for any
inter-electrode distance. This stability property was verifi
with sample numerical experiments. Such property does
hold for cylindrical or planar diodes.

The stability of some electrostatic structures form
.1/2, and the possibility to access them which was c
firmed by the simulations, means that, in principle, the c
rent ~or density! of the diodes can be increased to valu
substantially larger than the limit set by the first thresho
m1 , by keeping a steady laminar flow through the syst
and a constant current output. This result has potential va
for applications, in particular for devices with simultaneo
ion beam injections for current neutralization. This prope
leads also to the interesting question about the influenc
the ion dynamics on long time scales, which we hope
address in a future paper.
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