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RESUMO

Observação de ondas de plasma através de satélites evidenciam que interações não li-
neares envolvendo ondas de Langmuir, eletromagnéticas e ı́on-acústicas estão associadas
a explosões de rádio solares do tipo III. Este trabalho tem como objetivo estudar a dis-
tribuição de energia entre os modos eletromagnéticos e eletrostáticos excitados a partir
de duas ondas indutoras de Langmuir contrapropagantes partindo do modelo teórico de
Alves et al. (2002). Começamos nosso trabalho apresentando algumas evidências das in-
terações não lineares envolvendo ondas eletrostáticas de plasma, ondas ı́on-acústicas e
ondas eletromagnéticas no vento solar. Apresentamos alguns conceitos necessários para
o estudo de instabilidades em plasmas não magnetizados e as condições para sua ocor-
rência. Apresentamos a relação de dispersão geral envolvendo duas ondas indutoras de
Langmuir que podem se acoplar com as duas ondas ı́on-acústicas “gratings” para dar
origem as ondas de Langmuir filhas e ondas eletromagnéticas. Mostramos o formalismo
matemático para estudarmos a distribuição de energia entre os modos anti-Stokes (ω0+ω)
e Stokes (ω0 − ω) eletrostático e eletromagnético. Resolvemos numericamente a relação
de dispersão em função de kT reproduzindo casos já estudados anteriormente e, a partir
do valor de kT para a maior taxa de crescimento da instabilidade resolvemos a relação
de dispersão geral em função da energia total do sistema. Desenvolvemos uma rotina
numérica que utiliza os resultados da solução da relação de dispersão em função da e-
nergia total do sistema e calculamos a razão entre as energias dos modos anti-Stokes e
Stokes, para verificarmos quais os modos são dominante no processo de excitação das
ondas eletromagnéticas e eletrostáticas. Utilizamos em nossos cálculos parâmetros obser-
vacionais de explosões solares tipo III no meio interplanetário (Thejappa e MacDowall,
1998), para dois regimes diferentes, de decaimento k0 > (2/3)(µτ)1/2 e modulacional

k0 < (1/3)W
1/2
0 , previstos por modelos anteriores considerando apenas uma indutora.

Os resultados obtidos mostram que as regiões de instabilidade dependem do vetor de
onda das ondas indutoras, das amplitudes e da razão entre as amplitudes das mesmas.





ENERGY DISTRIBUTION BETWEEN EXCITED MODES BY A PAIR
OF COUNTERPROPAGATING LANGMUIR PUMP WAVES

ABSTRACT

Results from plasma wave experiments in spacecraft give support to nonlinear interaction
involving Langmuir waves, electromagnetic waves and ion-acoustic waves in association
with type III solar radio bursts. This work has the objective of studying the energy
distribution between the electromagnetic and electrostatic waves excited from counter-
propagating Langmuir pump waves using the theoretical model of Alves et al. (2002).
We start our work presenting some evidences of the non linear interactions involving
electrostatic plasma waves, electromagnetic and ion-acoustics waves in the solar wind.
We present some necessary concepts for the study of instabilities in no magnetized plas-
mas and the conditions for its occurrence. We present the general dispersion relation
involving two Langmuir pump waves that can couple to two ion-acoustics waves “ gra-
tings” to give origin to Langmuir daughter waves and electromagnetic waves. We show
the mathematical formalism to study the distribution of energy between the anti-Stokes
(ω0+ω) to Stokes (ω0−ω) electrostatic and electromagnetic modes. We solve numerically
the dispersion relation as a function of kT reproducing the cases previously studied. From
the value of kT corresponding to the highest growth rate of the instability we solve the
general relation dispersion as a function of the pump wave energy. We develop a nume-
rical routine that uses the results of the solution of the general dispersion relation as a
function of the energy pump and calculate the ratio between the anti-Stokes to Stokes
amplitudes, and verify which of the modes are dominant in the process of excitement
of the electromagnetic and electrostatic waves. In our calculation we use observational
parameters of the type III solar radio bursts (Thejappa e MacDowall, 1998), for two

different regimes, of decay-type k0 > (2/3)(µτ)1/2 and modulational k0 < (1/3)W
1/2
0 ,

previously predicted considering only one pump wave. Thew results we obtain show that
regions of instability depend on the wave number of pump waves, on the amplitudes and
on the ratio between the amplitudes of the pump waves.
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eletrônica de plasma local, ocorrendo em aproximadamente 23 kHz como indi-
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acústica em um plasma morno não magnetizado. . . . . . . . . . . . . . . . . 44

3.3 Diagramas de casamento de fase que mostram as condições de casamento no

espaço (ω − k) para algumas instabilidades paramétricas de três ondas a)

Espalhamento Raman estimulado, b) Espalhamento Brillouin estimulado, c)

Instabilidade de decaimento de dois plasmons, d) Instabilidade paramétrica

de decaimento, e) Instabilidade de Langmuir, e f) Instabilidade eletrônica de
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+(−)
0 − k1(2)) são as
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+(−)
0 ) modo

Stokes e (k
+(−)
0 +k1(2)) são as ondas eletrostáticas (obĺıquas a k
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kT λD = 8, 09× 10−6 e k0 < (1/3)W
1/2
0 . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Razão entre os modos anti-Stokes e Stokes para o caso estudado na Figura 5.5. 74
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5.17 Solução numérica da relação de dispersão em função da energia total das

ondas indutoras. Para este caso utilizamos o valor de kT λD = 1, 53 × 10−5

que corresponde a maior taxa de crescimento apresentada na Figura 5.16. . . 86
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CAPÍTULO 1

INTRODUÇÃO

Nas últimas décadas um grande número de trabalhos cient́ıficos apresentam observações

e modelos teóricos a respeito das emissões solares. A importância destes estudos está no

fato de servirem para monitorar as atividades solares e conseqüentemente o acoplamento

Sol-Terra. Este acoplamento se dá através do vento solar, um tênue plasma altamente

condutor composto principalmente por elétrons e prótons, emitidos continuamente pelo

Sol como resultado da expansão supersônica da coroa. A Figura 1.1 representa um es-

quema deste acoplamento entre o Sol e a Terra com o vento solar. Junto com a emissão

de energia na forma de part́ıculas o Sol libera energia na forma de ondas que muitas

vezes podem ser detectadas pelos satélites que realizam o monitoramente do espaço in-

terplanetário nas vizinhanças do planeta Terra e também a partir do solo.

FIGURA 1.1 – Esquema do acoplamento Sol-Terra através do vento solar.
FONTE: Endo (2004).

Uma grande contribuição na área observacional foi dada pelas missões espaciais Ulysses

e Galileo, as quais, carregam a bordo um conjunto de instrumentos que possibilita a

obtenção de dados com uma resolução espaço-temporal nunca antes conseguida e que

permite verificar algumas caracteŕısticas previstas em modelos teóricos de uma grande

variedade de fenômenos.

O objetivo principal da missão Ulysses era observar a atividade solar em grandes lati-

tudes. Ao longo de sua trajetória uma grande variedade de fenômenos, entre os quais

ondas de plasma espacial, rádio explosões solares e variações de densidade eletrônica do

plasma espacial, foram observados. Para que o satélite conseguisse seu principal objetivo
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foi necessário que sua trajetória tivesse um vôo de assistência gravitacional no planeta

Júpiter, permitindo assim, uma melhor observação das caracteŕısticas desse planeta. A

Figura 1.2 mostra o esquema da trajetória do satélite no sistema solar.

FIGURA 1.2 – Esquema da trajetória do satélite Ulysses que foi lançado em 6 de outubro
de 1990 com o objetivo de estudar as regiões de grande latitude do Sol.
FONTE: Sedlacko (2003).

Explosões interplanetárias de rádio tipo III, são emissões solares de rádio que têm sua

origem associada a correntes de elétrons energéticos acelerados a partir de explosões

solares (solar flare) ou em regiões ativas do Sol que penetram na coroa solar e no meio

interplanetário a distâncias maiores que 1 UA (Goldman et al., 1980). Os elétrons movem-

se para fora do Sol e excitam ondas de Langmuir através de instabilidade feixe-plasma.

Estas ondas de Langmuir, por sua vez, interagem com flutuações de densidade de baixa

freqüência para gerar radiação fundamental próxima a freqüência local do através de um

processo de decaimento, que pode ser representado por (L → L
′
+ S). A maior taxa

de crescimento para este processo é obtida quando a onda de Langmuir gerada (L‘) se

propaga na direção contrária a direção da onda que a gerou (Robinson, 1997), ou seja

é retroespalhada. De forma alternativa, as ondas de Langmuir originais podem interagir

com as ondas geradas para emitir radiação harmônica com freqüência aproximadamente

duas vezes a freqüência local do plasma (Chian e Alves, 1988).

Estudos teóricos anteriores, usualmente, interpretam emissões de rádio tipo III de baixa

freqüência (menores que 1MHz,) como o segundo harmônico (Ginzburg e Zheleznyakov,

1958). No entanto, estas teorias não conseguem explicar o atraso entre o ińıcio da emissão

da radiação local e as ondas de Langmuir, assim como o feixe de elétrons associado a

elas. Esta inconsistência pode ser resolvida se a emissão de rádio de baixa freqüência
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for interpretada como a radiação fundamental gerada em regiões muito próximas ao Sol.

Experimentos observacionais indicam que a emissão interplanetária tipo III é, de fato,

dominada pela radiação fundamental do ińıcio até o máximo da explosão (Dulk et al.

(1984); Kellogg (1980)).

Vários mecanismos têm sido sugeridos para serem os geradores da radiação solar fun-

damental. Estes incluem, espalhamento induzido de ondas de Langmuir por nuvens de

ı́ons (Ginzburg e Zheleznyakov, 1958); conversão direta devido a propagação e tunela-

mento das ondas de Langmuir através das não homogeneidades do plasma (Ginzburg

e Zheleznyakov, 1959); coalescência incoerente (fases aleatórias) de ondas de Langmuir

com ondas de baixa freqüência (Kaplan e Tsytovich, 1968); colapso supersônico de pa-

cotes de ondas de Langmuir fortemente turbulentos (Goldman et al., 1980); conversão

de ondas de Langmuir pelas flutuações de densidade produzidas por forte turbulência do

plasma (Kruchina et al., 1980); e instabilidade de decaimento eletromagnético.

Atualmente, aceita-se que o mecanismo gerador de emissão de rádio solar tipo III é cons-

titúıdo de duas etapas: feixes de elétrons energéticos emitidos pelo Sol excitam ondas

eletrostáticas ou de Langmuir via interação feixe-plasma, com freqüências da ordem

da freqüência local de plasma ωpe, e número de onda k0 da ordem de ωpe/vb, onde vb

é a velocidade do feixe de part́ıculas. Estas ondas são então convertidas em radiação

eletromagnética via interações onda-onda não lineares.

Vários processos têm sido sugeridos para explicar a segunda etapa do mecanismo gerador

de radiação solar tipo III.

Numa referência clássica, Ginzburg e Zheleznyakov (1958) propuseram que uma onda

eletromagnética com freqüência igual a freqüência fundamental de plasma poderia ser

produzida por um processo de três ondas, envolvendo o acoplamento de uma onda indu-

tora de Langmuir e uma onda filha ı́on-acústica. Akimoto (1988) e Abalde et al. (1998)

estenderam o modelo de Ginzburg e Zheleznyakov (1958) para um modelo de quatro on-

das baseando-se na instabilidade modulacional h́ıbrida (eletromagnética - eletrostática)

na qual os modos Stokes ou anti-Stokes eletromagnéticos e ondas de Langmuir filhas são

excitados simultaneamente.

Lashmore-Davies (1974) foi o primeiro a mostrar que uma emissão eletromagnética fun-

damental (ω = ωpe) poderia ser o resultado do acoplamento de dois tripletos de ondas,

considerando duas ondas de Langmuir indutoras se propagando em direção contrárias.

Chian e Alves (1988), baseando-se na proposta de Lashmore-Davies (1974), formularam

uma teoria para radiação solar tipo III para o caso de duas ondas indutoras de Langmuir
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de mesma amplitude, e apenas um modo de baixa freqüência (́ıon-acústica). Rizzato

e Chian (1992) melhoraram este modelo de duas indutoras introduzindo uma segunda

onda ı́on-acústica (2o grating) que garantia a simetria da cinemática das ondas. Além

disto, esses autores consideraram a geração simultânea de ondas eletromagnéticas e de

Langmuir filhas. Podemos considerar o modelo de Chian e Rizzato como uma extensão

dos modelos de Akimoto (1988) e Abalde et al. (1998).

Glanz et al. (1993) modificaram o modelo de Chian e Alves (1988), permitindo assim,

amplitudes diferentes para as indutoras de Langmuir e incluindo a segunda onda ı́on-

acústica.

Mais recentemente, Alves et al. (2002) consideraram a emissão de radiação eletromag-

nética gerada por duas ondas de Langmuir de diferentes amplitudes se propagando em

direções opostas. Neste tratamento, os autores consideraram a presença de duas ondas

ı́on-acústicas e a geração dos modos Stokes e anti-Stokes eletromagnéticos e de Langmuir

filhas. Alves et al. (2002) obtiveram a relação de dispersão e a resolveram numericamente

para dois casos espećıficos, utilizando como parâmetros dados observacionais do vento

solar (Thejappa e MacDowall, 1998).

Os resultados apresentados por esses autores mostram que a relação de dispersão por eles

obtida engloba os modelos propostos anteriormente. Mostraram ainda, que a presença

de indutoras de amplitudes diferentes leva ao aparecimento de regiões de instabilidade

convectiva, não existentes quando as indutoras têm amplitudes iguais.

O objetivo deste trabalho de mestrado é explorar melhor a relação de dispersão geral

obtida por Alves et al. (2002), obtendo soluções para valores diferentes entre as ampli-

tudes das ondas indutoras r, energia das ondas indutoras W0 e número de onda k0. Obter

a razão entre as energias dos modos anti-Sokes e Stokes eletromagnéticos e eletrostáticos

que são excitados a partir das ondas indutoras de Langmuir associadas às explosões

solares tipo III.

No segundo caṕıtulo apresentamos algumas evidências para as interações não lineares

envolvendo ondas eletrostáticas, ondas ı́on-acústicas e ondas eletromagnéticas que podem

ser associadas às observações das explosões solares tipo III, e discutimos alguns fatores

que caracterizam estes fenômenos.

No terceiro caṕıtulo apresentamos alguns conceitos necessários para o estudo das insta-

bilidades, assim como o formalismo matemático necessário para realiza-lo.

No quarto caṕıtulo descrevemos o método utilizado para obtermos a razão entre a energia
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dos modos anti-Stokes e Stokes, eletrostáticos e eletromagnéticos, excitados pelas ondas

indutoras de Langmuir contrapropagantes.

O quinto caṕıtulo é destinado a apresentação das soluções numéricas da relação de dis-

persão e da razão entre os modos anti-Stokes e Stokes eletromagnéticos.

No sexto caṕıtulo apresentamos as conclusões deste trabalho e discutimos algumas pro-

postas para trabalhos futuros.
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CAPÍTULO 2

OBSERVAÇÃO DAS EXPLOSÕES SOLARES TIPO III

Resumo

Neste caṕıtulo vamos apresentar algumas evidências observacionais da ocorrência de interações

não lineares envolvendo ondas eletrostáticas de plasma (Langmuir), ondas ı́on-acústicas e ondas

eletromagnéticas no vento solar, associadas ao fenômeno das explosões solares tipo III.

2.1 Introdução

As explosões solares tipo III foram umas das primeiras formas de rádio emissão solar

descobertas, tornando-se um dos aspectos mais caracteŕısticos da atividade solar. Esta

classe de fenômenos e suas variantes são talvez o tipo de rádio emissão mais estudado,

visto que, várias investigações têm sido feitas para fornecer um entendimento de seus

aspectos teóricos e observacionais, a partir do momento que foram reconhecidas como

uma classe de fenômenos solares de rádio. Desde então, sua observação e interpretação

tem despertado o interesse de muitos pesquisadores (Ginzburg e Zheleznyakov (1958);

Goldman (1984); Dulk et al. (1984); Kellogg (1980); Goldman et al. (1981); Hafizi et al.

(1982); Chian e Alves (1988); McKinstrie e Bingham (1989); Luther e Mckinstrie (1990);

Mckinstrie e Goldman (1992); Li (1993b); Li (1993a); Chian e Abalde (1999); Alves et al.

(2002); Li et al. (2003) e outros) contribuindo para o aprimoramento da f́ısica de plasma,

do entendimento de processos de emissão e propagação da radiação eletromagnética,

facilitando o estudo das propriedades da cromosfera e da coroa solar.

2.2 Explosões solares tipo III

Para a identificação das caracteŕısticas destas complexas emissões de rádio a partir do

Sol, foi necessário seu estudo num amplo e cont́ınuo intervalo de freqüência. Com o rádio

espectógrafo dinâmico (1949) foi posśıvel o registro da intensidade da emissão solar como

função cont́ınua da freqüência e do tempo, permitindo que a primeira classificação da

emissão solar fosse feita (Wild e Mccready, 1950)

Os rádios espectógrafos foram muito úteis na pesquisa da natureza f́ısica das emissões,

mas não auxiliaram na detecção da origem da radiação. No estudo deste fenômeno foi

necessária a obtenção de dados direcionais usando interferômetros como o de Nançay

na França em 1956. Os progressos nas técnicas espectrais e na observação direcional,

isto é, rádio desenho em duas dimensões com adequada resolução temporal e espacial,

têm auxiliado no delineamento das estruturas das fontes de emissão e de seu desenvolvi-
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mento; uma grande contribuição foi dada com o radioheliógrafo de Culgoora (Austrália),

operacional de 1967 a 1986 (McLean e Labrum, 1985).

FIGURA 2.1 – Representação esquemática da geração de ondas de Langmuir e emissão

de ondas de rádio do tipo III no meio interplanetário a partir de um feixe

de elétrons energéticos de origem solar.

FONTE: adaptada de Goldman (1984, p. 389).

O cenário associado com as emissões solares tipo III é mostrado na Figura 2.1. O feixe

de elétrons é gerado na superf́ıcie do Sol, possivelmente como resultado da reconexão

magnética que ocorre durante uma emissão solar (Goldman, 1984). O resultado deste

evento é um feixe de elétrons propagando-se ao longo das linhas abertas de campo mag-

nético na direção radial a partir do Sol. Quando estes elétrons são produzidos, passam

pelo plasma denso próximo ao Sol, e à medida que se afastam encontram regiões onde a

densidade vai tornando-se progressivamente menor e conseqüentemente, com freqüência

de plasma menor (veja Figura 2.2).

As ondas de plasma são convertidas não linearmente em radiação próxima a freqüên-

cia local do plasma e seus harmônicos. Como a freqüência diminui com a densidade,

a freqüência da radiação observada em um determinado ponto no meio interplanetário
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diminui com uma função do tempo, de altos valores (≈ 200 MHz), quando a onda é

gerada próxima a superf́ıcie do Sol, até valores bem pequenos (dezenas de kHz), quando

a onda é gerada próxima a Terra.

FIGURA 2.2 – Esquema da variação da freqüência local do plasma no meio interplane-

tário como função da posição em unidades astronômicas (UA).

FONTE: Gurnett (2004).

As observações com alta resolução temporal indicam que as ondas de Langmuir associadas

aos eventos tipo III ocorrem em largos picos com escala espacial ≤ 40 km, superpostos

por intensos picos de milisegundos com escala espacial da ordem de 20 comprimentos

de Debye e com densidades de energia bem acima do limiar de forte turbulência. Estes

picos de milisegundos são interpretados em termos de sólitons de Langmuir aparecendo

como resultado da instabilidade modulacional, instabilidade de dois feixes, formação de

sólitons de Langmuir e processos de colapso de ondas de Langmuir (Thejappa et al.,

1993).

Um resumo do mecanismo de colapso de ondas de Langmuir pode ser representado por

um diagrama de fluxo de energia apresentado na Figura 2.3. Grande parte da energia

do feixe de elétrons permanece intacta durante o processo de ejeção a partir do Sol,

uma pequena parte desta energia é transformada em ondas de Langmuir através de

instabilidade feixe de plasma. Os pacotes de ondas de Langmuir restantes entram em

colapso devido às interações onda-onda não lineares. Durante este colapso uma pequena
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fração de energia das ondas de Langmuir é irradiada, principalmente com freqüências da

ordem de 2ωpe. Grande parte desta energia é dissipada pelo acoplamento entre ı́ons e

elétrons neste último estágio do colapso (Goldman et al., 1980).

As emissões tipo III foram primeiramente observadas por estações localizadas na super-

f́ıcie da Terra, mas, como a ionosfera terrestre reflete as radiações abaixo de 5 MHz,

somente as emissões que ocorriam mais próximas ao Sol podiam ser observadas. Com o

advento dos satélites (Helios 1 e 2 em uma órbita intermediária entre o Sol e a Terra

e ISEE-3 e IMP 6,8 em órbita próxima a Terra), que forneceram dados importantes a

respeito do espectro de radiação das ondas de Langmuir e dos feixes de elétrons, foi

posśıvel observar as emissões de baixa freqüência que ocorrem mais próximas à Terra

(Goldman, 1984).

FIGURA 2.3 – Fluxo de energia durante uma explosão de rádio tipo III. Parte da energia
do feixe é transformada em radiação através da instabilidade feixe-plasma
com freqüência da ordem de ωpe e instabilidade onda-onda com freqüência
2ωpe. A energia restante é transformada em ondas ı́on-acústicas e perdida
para o plasma local.
FONTE: Adaptado de Goldman et al. (1980, p. 393)
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2.2.1 Caracteŕısticas das Explosões Solares tipo III

A seguir, algumas das principais caracteŕısticas das explosões solares tipo III são enume-

radas (Vlahos e Raoult (1995); Wiehl et al. (1985); Elgaroy e Lyngstad (1972); Simnett

e Benz (1986)):

1- as explosões do tipo III ocorrem em um amplo intervalo de freqüências de 10

kHz a 8 GHz, correspondendo a alturas que vão desde a cromosfera até o meio

interplanetário;

2- a taxa de deriva em freqüências diminui com o decréscimo da freqüência, e

com a velocidade correspondente dos elétrons emitidos da ordem de 0, 2c a

0, 6c, onde c é a velocidade da luz no vácuo;

3- explosões do tipo III ocorrem em grupos de 10 ou mais explosões, podendo,

raramente haver explosões isoladas. Grupos intensos ocorrem freqüentemente

na fase impulsiva dos “flares”, apesar de 15% dos “flares” impulsivos não apre-

sentarem explosões tipo III entre 100 e 1000 MHz;

4- a duração é inversamente proporcional à freqüência; a duração (em segundos)

à meia potência é da ordem de 220/f (MHz);

5- os tempos de excitação são mais curtos que os tempos de decaimento e o de-

caimento é exponencial;

6- a temperatura de brilho é da ordem de 108 − 1010K;

7- a polarização circular varia de ∼ 50% a 100%;

8- as alturas t́ıpicas, onde são observadas, variam de 10 a 200 R� (raios Terrestres)

para configuração de linhas de campo magnético abertas.

2.3 Dados Observacionais

O espectro dinâmico de uma explosão solar tipo III se distingue das outras formas de

explosões ativas pela rápida deriva de freqüência que vai de centenas de MHz na coroa

solar (onde ocorrem normalmente duas bandas espectrais, com uma razão de freqüências

da ordem de 2) a dezenas de kHz no meio interplanetário (Thejappa e MacDowall, 1998).

Dados observacionais mostram que os processos não lineares do tipo acoplamento onda-

onda estão presentes nas explosões solares tipo III. A Figura 2.4 apresenta dados obser-

vacionais do satélite ISEE-3 durante eventos de emissão de rádio tipo III onde se observa

31



uma correlação entre o fluxo de elétrons energéticos (parte superior da figura), e a am-

plificação de ondas eletromagnéticas com freqüências da ordem de 100, 56,2 e 31,6 kHz,

ondas de Langmuir com freqüências da ordem de 17,8 e 10 kHz e ondas ı́on-acústicas

de 178 e 100 Hz no peŕıodo das 11:15 às 11:45 horas, indicado pela barra horizontal

que aparece na parte superior da figura que corresponde à região de emissão de ondas.

Nesta figura, observa-se um gradiente positivo na função de distribuição das velocidades

dos elétrons neste peŕıodo, condição necessária para ocorrer a interação feixe-plasma que

gera as ondas de Langmuir; é clara a correlação entre as ondas eletrostáticas de baixa

freqüência (ondas ı́on-acústicas), e de alta freqüência (ondas de Langmuir) que ao inte-

ragirem entre si através de instabilidade onda-onda podem gerar ondas eletromagnéticas

que reforçam as emissões geradas anteriormente, mais próximas ao Sol (100, 56,2 e 31,6

kHz). Nesta figura, observa-se que as ondas eletromagnéticas foram geradas em regiões

mais próximas do Sol, em processos anteriores, por terem seu ińıcio antes das 11:15 horas.

Pode-se notar que para freqüências maiores este ińıcio ocorre mais cedo.
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FIGURA 2.4 – Dados observacionais associados a uma explosão solar tipo III, onde se

observa no topo o fluxo de elétrons com energias entre 2 e 62 keV, e na

parte inferior os campos elétricos, com freqüências entre 17,8 Hz e 100

kHz, associadas a ondas eletromagnéticas, de Langmuir e ı́on-acústicas.

A barra horizontal entre 11:15 e 11:45 horas indica o peŕıodo onde se tem

inclinação positiva da função de distribuição de velocidade dos elétrons e

uma amplificação das ondas de Langmuir (17,8 e 10 kHz) e ı́on-acústicas

(178 a 100 Hz).

FONTE: Lin et al. (1986, p. 956).
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A Figura 2.5 apresenta as micro estruturas, ou seja, as observações com alta resolução

temporal que são muito importantes para o estudo da correlação entre as ondas de

Langmuir e as ondas ı́on-acústicas. Nesta figura, observam-se as micro variações nas

freqüências de 100 Hz (ondas ı́on-acústicas) e 17,8 kHz (ondas de Langmuir), num curto

intervalo de tempo.

FIGURA 2.5 – Dados observacionais com alta resolução temporal (micro estruturas)
para o mesmo evento da Figura 2.4 onde observa-se uma melhor cor-
relação entre as ondas de Langmuir e ondas ı́on-acústicas..
FONTE: Lin et al. (1986, p. 958)

A Figura 2.6 apresenta alguns dados do Experimento Unificado de Rádio e Ondas de

Plasma (URAP) (Stone et al., 1992) a bordo do satélite Ulysses. Durante estas obser-

vações o satélite se encontrava a aproximadamente 1, 34 UA do Sol e 2, 31 UA da Terra. A

parte superior da figura mostra os dados do RAR1 o qual apresenta as caracteŕısticas do

campo elétrico, banda superior (52−940 kHz), assim como, a banda inferior (1, 25−48, 5

kHz). A rápida deriva de freqüência que se estende de ∼ 940 kHz até a freqüência local

de plasma ωpe ∼ 23 kHz é uma caracteŕıstica das explosões solares de rádio tipo III. A

sobreposição que as ondas de Langmuir fazem com a linha de plasma (região de fronteira

entre as emissões e o rúıdo térmico) indicam que as ondas são geradas na vizinhança do

satélite (Thejappa e MacDowall, 1998).

No terceiro painel são apresentadas as medidas do campo elétrico com o censor PRF2.

As flutuações do campo nos peŕıodos de ∼ 6 : 00 até ∼ 10 : 00 UT, com uma banda de

freqüência próxima a freqüência de plasma, são ondas de Langmuir; os sinais aleatórios

1Receptor Astronômico de Rádio, que mede os campos elétricos de ondas de 1 a 940 kHz com uma
resolução temporal de 128 s.

2Receptor de Freqüência de Plasma, que mede o campo elétrico das ondas de 0, 5 a 35 kHz e resolução
temporal de 16 s.
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que são vistos com freqüências de ∼ 1 a ∼ 10 kHz são as chamadas ondas ı́on-acústicas

de alta freqüência (Thejappa e MacDowall, 1998). Nos painéis quatro, cinco e seis são

apresentados as medidas dos instrumentos WFA3, que mostram as variações dos campos

elétricos e magnéticos associados às ondas de Langmuir.

Um outro exemplo pode ser observado nas Figuras 2.7 e 2.8. Estas figuras mostram o

espectro de freqüências para as explosões solares tipo III produzidas nas intensas emis-

sões solares de 28 de outubro de 2003 e 4 de novembro de 2003. Estas emissões foram

observadas pelo satélite Cassini que está localizado a uma distância radial do Sol de

aproximadamente 8,67 UA. Como as ondas eletromagnéticas se propagam a velocidade

da luz, levam em torno de 8 minutos para percorrer 1 UA, estas emissões de rádio chegam

até o satélite em aproximadamente 68 minutos quando são detectados pelos instrumentos

RPWS (Radio and Plasma Wave Science). Podemos observar que a freqüência diminui

de 107Hz para aproximadamente 104 Hz em três a quatro horas. Este fato ocorre devido

a variação da freqüência local de plasma, que diminui conforme aumenta a distância a

partir do Sol.

3Analisador de Forma de Onda que mede tanto o campo elétrico quanto o campo magnético com
sinais de 0, 08 até 448 Hz e resolução temporal de 64 s.
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FIGURA 2.6 – Espectro dinâmico de uma explosão de rádio solar tipo III interplane-
tária e ondas associadas. A intensidade da onda é indicada pela escala de
cores em dB acima do rúıdo de fundo. No painel superior são observadas
duas explosões tipo III: o evento mais intenso mostra emissão de rádio em
freqüência eletrônica de plasma local, ocorrendo em aproximadamente 23
kHz como indicado pelo rúıdo térmico dos elétrons. Ondas de Langmuir,
de baixa freqüência (LF), e ondas eletromagnéticas de baixa freqüência
(whistler) são detectadas quando associadas ao feixe de elétrons na região
onde se encontra o satélite.
FONTE: Adaptado de URAP (2004).
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FIGURA 2.7 – Espectograma freqüência - tempo que mostra uma explosão solar tipo III
produzida em uma intensa emissão solar ocorrida no dia 28 de outubro
de 2003.
FONTE: Gurnett (2004).

FIGURA 2.8 – Espectograma freqüência - tempo que mostra uma explosão solar tipo III
produzida em uma intensa emissão solar ocorrida no dia 4 de novembro
de 2003.
FONTE: Gurnett (2004).
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CAPÍTULO 3

INSTABILIDADES DE PLASMA

Resumo

Neste caṕıtulo, serão abordados alguns conceitos necessários para o estudos das instabilidades

de plasma, apresentando algumas condições que são necessárias para que surjam instabilidades

em plasmas não magnetizados, assim como, o formalismo matemático necessário para este

estudo.

3.1 Introdução

As part́ıculas em plasmas espaciais geralmente possuem um grande caminho livre médio

que está relacionado com as colisões entre as part́ıculas. Por exemplo, o caminho livre

médio entre os elétrons do vento solar pode chegar a aproximadamente 1 UA próximo a

Terra. Em termos do tempo médio livre, significa dizer que a part́ıcula colide somente

uma vez em alguns dias. Além disso, podemos notar que o tempo de eqüipartição de

energia é maior que o tempo de colisão entre as part́ıculas, sendo este último relacionado

com a diferença entre as massas dos prótons e dos elétrons. Assim, podemos esperar que

o plasma espacial, ambos interplanetário e magnetosférico, não estejam em equiĺıbrio

termodinâmico. No entanto, estes plasmas podem, em muitos casos, serem considerados

sob equiĺıbrio dinâmico: as forças atuando no plasma tendem para zero. Isto ocorre,

porque a escala de tempo para a resposta dinâmica do plasma é dada por ∼ ω−1
pe ou Ω−1

c

onde ωpe e Ωc são as freqüências angular de plasma e ciclotrônica respectivamente. Por

exemplo, para o vento solar estes valores são de aproximadamente 10−5 e 10−3 segundos

para os elétrons, e 10−2 e 1 segundos para os prótons (Hasegawa, 1975).

O fato de não estar em equiĺıbrio termodinâmico gera como conseqüência o armazena-

mento de certas quantidades de energia pelo plasma: esta energia pode ser convertida

em movimentos violentos do plasma ou em radiação eletromagnética. Instabilidade em

plasma é um processo semelhante onde a conversão de energia se dá de forma coletiva:

essa idéia está no fato de que pequenas variações a partir do equiĺıbrio dinâmico se trans-

formam em grandes perturbações. Matematicamente, se escrevermos uma variação como

x, a frase acima diz que a taxa de variação temporal de x, dx/dt, é proporcional ao

próprio x, ou seja, dx/dt = γx. Resolvendo está equação, obtemos x = eγt, mostrando

que a perturbação cresce exponencialmente com o tempo. A constante γ é chamada de

taxa de crescimento da instabilidade.

Existem basicamente duas maneiras sob as quais o plasma pode mudar a partir do
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equiĺıbrio termodinâmico. Uma forma é pela localização espacial de flutuação de den-

sidade, temperatura, pressão ou outra quantidade termodinâmica; quando estes fatores

dão origem a uma instabilidade, o plasma como um todo muda seus parâmetros carac-

teŕısticos devido ao processo externo, chamado portanto de instabilidade macroscópica.

A outra forma é quando o plasma apresenta uma distribuição de velocidades diferente da

distribuição Maxwell-Boltzmann; as instabilidades causadas por este motivo, relacionada

a processos internos, são chamadas de instabilidades microscópicas.

As instabilidades de plasma podem ser ilustradas por uma bolinha situada no topo de

uma montanha (Figura 3.1). Vamos utilizar este modelo para mostrar alguns exemplos

onde as instabilidades podem se desenvolver. Notamos que, em todos os casos a bolinha

está em um equiĺıbrio dinâmico.

(a) Linearmente ins-
tável (Explosiva)

(b) Linearmente ins-
tável (Não explosiva)

(c) Não linearmente
instável

(d) Estável

FIGURA 3.1 – Ilustração de várias condições das instabilidades.
FONTE: Adaptado de Hasegawa (1975, p. 2).

A Figura 3.1(a) representa uma situação linearmente instável1, porque uma perturbação

infinitesimal da posição da bolinha a derrubará do topo da montanha, sem que ela tenha

1Na verdade a Figura 3.1(a) não representa uma instabilidade linear. Para ser uma instabilidade
linear, a taxa de variação temporal da posição da bola deveria aumentar, por definição, proporcional-
mente com a variação da sua própria posição. Para isso devemos levar em conta a variação espacial da
gravidade.
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condições de voltar à posição original. O caso a) é chamado de instável e explosiva

porque um pequeno deslocamento da bola fará com que ela não retorne mais a situação

de equiĺıbrio; já no caso b) a bola pode sofrer uma perturbação finita (diferente de zero)

de forma que ela possa ser refletida em algum ponto da curva e consiga voltar para a

posição de equiĺıbrio. No caso c) podemos dizer que ela está em uma situação estável,

mas, se uma grande perturbação for aplicada na bola, o equiĺıbrio torna-se instável,

devido a este motivo ele é chamado de não linearmente instável. O caso d) representa

uma situação de estabilidade “absoluta”, porque qualquer perturbação que a bola sofra,

ela sempre retornará para a posição de equiĺıbrio.

A instabilidade explosiva é definida como sendo uma instabilidade onde a taxa de cresci-

mento γ aumenta em função do tempo; podemos ver que o caso da Figura 3.1(a) repre-

senta corretamente uma instabilidade explosiva (Hasegawa, 1975).

A importância do estudo das instabilidades em plasmas está no fato de que elas servem

para dissipar a energia livre do plasma de forma a tentar deixá-lo em equiĺıbrio ter-

modinâmico. A taxa de variação é determinada pela escala de tempo necessária para a

resposta dinâmica do plasma, que é muito mais rápida que a taxa de variação devido

aos processos colisionais. Desta maneira, uma instabilidade de plasma, devido aos efeitos

coletivos, pode formar um grande coeficiente de transporte anômalo (comparado com

os processos colisionais aleatórios) das quantidades termodinâmicas, como o número de

part́ıculas, temperatura, pressão ou resistividade elétrica. De fato, as instabilidades po-

dem ser causadas por todas as formas de desequiĺıbrio termodinâmico. Os transportes

“anômalos” são muito comuns em plasmas. Já os transportes clássicos gerados pelos

efeitos colisionais são mais raros (Hasegawa, 1975).

Um outro aspecto importante das instabilidades em plasmas é que algumas delas podem

gerar vários tipos de ondas; exceto para alguns casos especiais (como o mostrado na

Figura 3.1(a)), as instabilidades de plasma são causadas por perturbações que oscilam

em torno de uma freqüência particular. Em geral a instabilidade é capaz de excitar os

modos naturais do plasma. Devido a natureza das instabilidades, a taxa de aumento da

amplitude da onda é proporcional a sua amplitude instantânea.

3.2 Instabilidades Paramétricas

Talvez o fenômeno mais estudado dentre as interações onda-onda não lineares sejam as

instabilidades paramétricas. Este termo é usado, geralmente, para designar o fenômeno

de amplificação dos modos de um sistema em conseqüência da modulação periódica de

um dos parâmetros que caracterizam esse sistema. Este fenômeno é conhecido há muito
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tempo, sendo que, a primeira investigação de instabilidade paramétrica foi realizada por

Rayleigh em 1883.

Como exemplo de instabilidade paramétrica, têm-se os experimentos produzidos em

1934 por Mandelstam e Papalexi com um circuito oscilante especialmente projetado

para este fim. Os experimentos mostraram que se o circuito usado, chamado de gerador

paramétrico, tinha uma resistência pequena (um circuito linear), conseqüentemente a

amplitude das oscilações crescia indefinidamente até que a isolação dos elementos do

circuito fosse destrúıda por voltagem excessiva. Se, entretanto, um condutor não linear

fosse inserido em série no circuito, uma condição de estado estacionário seria atingida, o

que mostraria tratar-se de um fenômeno não linear.

Um tratamento linear de uma instabilidade prevê um crescimento exponencialmente no

tempo; na prática isto não ocorre, e a saturação é devido aos fenômenos não lineares. Em

um regime não-linear uma instabilidade pode crescer até atingir um ponto de saturação.

Numa instabilidade paramétrica a amplitude cresce até atingir um ponto máximo a partir

do qual a oscilação é estacionária.

O plasma responde a um campo eletromagnético interno ou externo como um meio

dielétrico ativo. Quando a amplitude do campo é pequena, a teoria linear descreve cor-

retamente o processo de dissipação de energia e momentum do campo. No caso de uma

amplitude grande, a resposta não linear do plasma desempenha um papel importante. Por

exemplo, um campo eletromagnético externamente excitado se acopla não linearmente

com os modos naturais do plasma, convertendo a energia externa em energia interna do

plasma.

Vamos considerar uma onda, de amplitude finita, excitada num plasma. Esta onda, que

chamaremos de onda indutora, pode causar uma modulação periódica dos parâmetros

que caracterizam os modos naturais do plasma. Quando a onda indutora excede um

certo valor limiar, necessário para compensar as dissipações, os modos naturais começam

a crescer a partir do ńıvel de rúıdo, absorvendo energia e momentum da onda indutora.

Tal tipo de instabilidade é chamada de instabilidade paramétrica.

O tipo mais simples de instabilidade paramétrica num plasma é a instabilidade de decai-

mento, na qual a onda indutora decai em dois modos naturais do plasma. As freqüências

ωj e os números de onda kj (j = 1, 2, 3) da onda indutora (j = 1) e dos modos naturais

(j = 2, 3) devem satisfazer às condições de casamento:

ω1 = ω2 + ω3 k1 = k2 + k3. (3.1)
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Estas condições de casamento requerem que as três ondas, quando representadas como

vetores no espaço (ω, k), satisfaçam às regras de adição vetorial. Para o plasma, além

das condições de acoplamento, a freqüência e o número de onda para cada modo devem

satisfazer à relação de dispersão linear apropriada (ω = ω(k)). Assim, as relações de

dispersão lineares mais as condições de casamento decidem quais modos podem ser ex-

citados, pois os pontos finais dos vetores que representam os modos devem situar-se nas

curvas de dispersão das respectivas ondas. A instabilidade é dita ressonante, e o modo

de baixa freqüência deve satisfazer à relação de dispersão linear, tal tipo de instabilidade

ocorre mesmo para indutoras de amplitudes relativamente pequenas.

As relações de dispersão para os modos naturais presentes num plasma térmico não

magnetizado são:

ondas eletromagnéticas (T)

ω2
T = ω2

pe + c2k2
T , (3.2)

onda eletrônica de plasma ou onda de Langmuir (L)

ω2
L = ω2

pe + γev
2
thk

2
L, (3.3)

e onda ı́on-acústica (S)

ω2 = v2
Sk2

S, (3.4)

onde ωpe = (ne2/ε0me)
1/2 é a freqüência eletrônica de plasma, Te é a temperatura dos

elétrons, me e mi são as massas dos elétrons e dos ı́ons respectivamente, γe é a razão

dos calores espećıficos dos elétrons, vth = kBTe/me é a velocidade térmica dos elétrons,

vs = kBTe/mi é a velocidade ı́on-acústica, kB é a constante de Boltzmann, ε0 é a per-

missividade dielétrica do vácuo, “−e” é a carga do elétron e n a densidade do plasma. A

Figura 3.2 mostra os gráficos das relações de dispersão para os modos eletromagnético,

de Langmuir e ı́on-acústico para um plasma morno não magnetizado.
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FIGURA 3.2 – Relação de dispersão para as ondas eletromagnética, de Langmuir e ı́on-
acústica em um plasma morno não magnetizado.
FONTE: Adaptado de Bittencourt (1995, p. 460).

Então, das condições de casamento, Equação 3.1, e das relações de dispersão dos modos

num plasma não magnetizado, Equações 3.2 a 3.4, pode-se construir os seguintes con-

juntos de tripletos de modos naturais que satisfazem às condições de casamento para o

caso de instabilidades de decaimento ressonante (Mima, 1984).

a) Espalhamento Raman estimulado - para uma onda indutora eletromagnética

com freqüência ω1 > 2ωp, esta pode decair em uma onda eletrônica de plasma

e uma outra onda eletromagnética.

T → T
′
+ L ω1 = ωT + ωL k1 = kT + kL

b) Espalhamento de Brillouin estimulado - para ω1 > ωp a onda indutora eletro-

magnética pode decair em uma onda ı́on-acústica e uma outra onda eletromag-

nética.

T → T
′
+ S ω1 = ωT + ωS k1 = kT + kS

c) Instabilidade de decaimento de “dois plasmons” - para ω1 = 2ωp a onda eletro-

magnética pode decair em duas ondas eletrônicas de plasma.

T → L + L
′

ω1 = ωL + ωL′ k1 = kL + kL′
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d) Instabilidade de decaimento eletromagnético - quando a freqüência da onda

indutora é aproximadamente igual à freqüência de plasma, ela pode decair em

uma onda eletrônica de plasma e uma onda ı́on-acústica.

T → L + S ω1 = ωL + ωS k1 = kL + kS

e) Instabilidade de decaimento h́ıbrida - quando a onda indutora é uma onda

de Langmuir, ela pode decair em uma onda eletromagnética e em uma onda

ı́on-acústica.

L → T + S ω1 = ωT + ωS k1 = kT + kS

f) Instabilidade de decaimento de Langmuir - quando a onda indutora é uma onda

de Langmuir, ela pode decair em outra onda eletrônica de plasma e em uma

ı́on-acústica.

L → L
′
+ S ω1 = ωL′ + ωS k1 = kL′ + kS

Os processos a), b) e f) podem ser considerados como um espalhamento estimulado por

um outro modo de plasma. Os processos c) e d) são considerados efetivos em transformar

energia externa em energia interna do plasma, enquanto que o processo e) contribui para

a perda por radiação da energia do plasma.

A Figura 3.3 apresenta os diagramas de Peierls, ou de casamento de fase, que mostra as

condições de ressonância no espaço (ω − k) para os três modos presentes num plasma

térmico e as condições de casamento para os processos citados anteriormente. A partir

destas relações vemos que uma onda eletromagnética não pode decair em duas outras

ondas eletromagnéticas; nem pode uma onda de Langmuir decair em duas outras ondas

de Langmuir.

Conhecem-se pelo menos quatro mecanismos para a conversão das ondas de Langmuir

em ondas eletromagnéticas:

a) interação onda-onda envolvendo a fusão de ondas de Langmuir com ondas de baixa

freqüência para produzir ondas eletromagnéticas ou, alternativamente, o decai-

mento de ondas de Langmuir em ondas de baixa freqüência e ondas eletromag-

néticas,

b) interação onda-part́ıcula envolve espalhamento induzido ou espontâneo de ondas de
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Langmuir para radiação eletromagnética por ı́ons térmicos,

c) forte turbulência com emissão de ondas eletromagnéticas por sólitons de Langmuir

ou emissão incoerente devido ao espalhamento de ondas de Langmuir de longo

comprimento de onda em cávitons de Langmuir colapsados,

d) acoplamento direto entre ondas de Langmuir e ondas eletromagnéticas devido a gra-

dientes, em grande escala, na densidade dos elétrons ou a não homogeneidades

locais do plasma.

A equação que descreve quais os modos de propagação de ondas no plasma e como eles

se comportam é a relação de dispersão. Para o caso do acoplamento de ondas de Lang-

muir, ondas eletromagnéticas e ondas ı́on-acústicas, presentes num plasma térmico não

magnetizado, esta equação é derivada a partir das equações generalizadas de Zakharov

(Zakharov, 1984).
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FIGURA 3.3 – Diagramas de casamento de fase que mostram as condições de casamento
no espaço (ω−k) para algumas instabilidades paramétricas de três ondas
a) Espalhamento Raman estimulado, b) Espalhamento Brillouin estimu-
lado, c) Instabilidade de decaimento de dois plasmons, d) Instabilidade
paramétrica de decaimento, e) Instabilidade de Langmuir, e f) Instabili-
dade eletrônica de decaimento.
FONTE: adaptada de Guede (1995, p. 25).
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3.3 Equações Generalizadas de Zakharov

Os processos de acoplamento paramétrico de ondas de Langmuir, ondas eletromagnéticas

e ondas ı́on-acústicas num plasma podem ser descritos em termos do modelo hidrodi-

nâmico de dois fluidos, onde o movimento do plasma apresenta duas escalas de tempo:

uma escala lenta caracterizada por tempos τi ≥ ω−1
pi , e uma escala rápida com tempos

τe ≤ ω−1
pe , onde ωpj = (en0/ε0mj)

1/2 com j = e, i (elétrons e ı́ons respectivamente).

Considerando estas duas escalas de tempo as densidades dos elétrons e dos ı́ons podem

ser escritas da seguinte forma:

ne = n0 + nl + nh, ni = n0 + nl e ne ≈ ni,

onde, (ne) é a densidade total de elétrons, (n0) é a densidade de elétrons no equiĺıbrio,

(ni) é a densidade total de ı́ons e os sub ı́ndices representam a variação de escala lenta

(l) e de escala rápida (h). Conseqüentemente, as velocidades, densidade de corrente e

campos elétricos são escritos na forma

ve = vl + vh, J = Jl + Jh, E = El + Eh e vi ≈ vl.

As equações básicas utilizadas para estudar o processo de conversão de ondas de Lang-

muir em eletromagnéticas são: a equação da continuidade, equação de movimento e as

equações de Maxwell,

∂tnj +∇ · (njvj) = 0 (3.5)

∂tvj + (vj · ∇)vj =
q

m
(E + vj ×B)− νjvj −

γjkBTj∇nj

njmj

(3.6)

∇× E = −∂tB, (3.7)

∇×B = µ0J +
1

c2
∂tE, (3.8)

∇ · E = ρ/ε0, (3.9)

∇ ·B = 0, (3.10)

onde E é o campo elétrico, B é o campo magnético induzido, c é a velocidade da luz, µ0

é a permeabilidade magnética, ν é a taxa de amortecimento e ρ a densidade de carga.

Das equações de Maxwell obtém-se a equação de onda:

∇× (∇× E) +
1

c2
∂2

t E = −µ0∂tJ. (3.11)
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Considerando as equações da continuidade 3.5 e do movimento 3.6 para os elétrons

(j = e), a Lei de Gauss, Equação 3.9, e as relações da densidade de carga e corrente

elétrica com a densidade e a velocidade

ρ = e(ni − ne), J = e(nivi − neve), (3.12)

junto com a equação de onda, Equação 3.11, e lembrando que ω2
pe = n0e

2/(ε0me) é a

freqüência de plasma e v2
th = kBTe/me a velocidade térmica, obtemos a equação para o

acoplamento não linear dos componentes na escala rápida

(∂2
t + νe∂t + c2∇× (∇×)− γev

2
th∇(∇·) + ω2

pe)E = −
ω2

pe

n0

nE. (3.13)

A Equação 3.13 é a primeira equação de Zakharov eletromagnética (Zakharov, 1984).

Notemos que, νe é o fator de amortecimento para as ondas de alta freqüência. A primeira

equação de Zakharov mostra como as flutuações de densidade afetam as ondas de Lang-

muir e ondas transversas (Robinson, 1997).

Semelhante ao procedimento realizado para a escala rápida, obtemos a segunda equação

de Zakharov, que é uma relação não linear para a onda ı́on-acústica de baixa freqüência

(∂2
t + νi∂t − v2

s∇2)n =
ε0

2mi

∇2〈E2〉. (3.14)

As Equações 3.13 e 3.14 são as conhecidas equações generalizadas de Zakharov (Zakharov,

1984), onde E é o campo elétrico de alta freqüência e 〈〉 significa a média temporal.

3.4 Derivação da Relação de Dispersão Generalizada

Para derivar a relação de dispersão a partir das Equações 3.13 e 3.14 vamos seguir o

procedimento adotado por Alves et al. (2002). Considera-se a existência de duas ondas

indutoras de Langmuir, de diferentes amplitudes, se propagando em direções opostas.

Matematicamente o campo elétrico das ondas indutoras pode ser representado por

E0 =
1

2

(
E+

0 exp[i(k0 · r− ω0t)] + E−
0 exp[i(−k0 · r− ω0t)]

)
+ c.c.. (3.15)

A Equação 3.15 representa duas ondas propagando-se em direções contrárias com fre-

qüências iguais e vetores de ondas opostos; a amplitude destas duas ondas indutoras po-

dem ser diferentes tal que |E−
0 |2 = r|E+

0 |2, com 0 ≤ r ≤ 1. Cada uma destas duas ondas
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indutoras podem gerar os modos Stokes (ω0−ω∗) e anti-Stokes (ω0 +ω), eletrostático ou

eletromagnético, como sabido nos processos de três ondas. Vamos considerar um acopla-

mento de quatro tripletos, sendo que, os tripletos têm em comum uma onda de Langmuir

indutora (para frente ou para trás) e uma das gratings com densidades independentes,

n1(2), dados por

n =
1

2
n1(2)exp[i(k1(2) · r− ωt)] + c.c.,

com |k1| = |k2|. Os campos elétricos das ondas filhas obedecem à relação

E =
1

2
E+(−)

ω exp[i(k+(−)
ω · r− ω+(−)

ω t)] + c.c., (3.16)

onde o ı́ndice subscrito ω representa as ondas filhas, eletromagnética (T) ou Langmuir

(L), respectivamente; o ı́ndice sobrescrito representa os modos anti-Stokes (+) e Stokes

(−). A Figura 3.4 mostra o acoplamento dos vetores de ondas usado em nosso tratamento.

FIGURA 3.4 – Esquema dos vetores de ondas: k
−(+)
0 estão relacionados com as ondas

de Langmuir indutoras, k1(2) com as ondas ı́on-acústicas, (k
+(−)
0 − k1(2))

são as ondas eletrostáticas (obĺıquas a k
+(−)
0 ) ou eletromagnéticas (⊥ a

k
+(−)
0 ) modo Stokes e (k

+(−)
0 +k1(2)) são as ondas eletrostáticas (obĺıquas

a k
+(−)
0 ) ou eletromagnéticas (⊥ a k

+(−)
0 ) modo anti-Stokes.

FONTE: Alves et al. (2002, p. 352).

O fato de termos considerado duas ondas indutoras propagando-se em direções contrárias

implica na existência de um processo que gere uma onda eletrostática retroespalhada

(Alves et al., 2002). Dados de alta resolução temporal do campo elétrico medidos pela
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sonda Galileo mostraram que as ondas de Langmuir associadas com as explosões solares

de rádio tipo III têm um batimento padrão caracteŕıstico (Gurnett et al., 1993). Este

batimento padrão é produzido por duas componentes espaçadas de banda estreita. Uma

destas componentes acredita-se que seja um grupo excitado de ondas de Langmuir, E+
0 ,

e a outra, acredita-se que sejam ondas de Langmuir propagando-se na direção oposta,

geradas por decaimento paramétrico de E+
0 .

O modelo cinemático escolhido implica que as duas ondas de Langmuir propagando-se em

direções opostas ao longo do eixo “x”, produzem duas ondas eletromagnéticas induzidas,

opostas, ao longo do eixo “y”, e também, modos induzidos de Langmuir que se propagam

principalmente ao longo do eixo “x”. A escolha desta geometria para os vetores de onda

baseia-se no fato de que o acoplamento entre as ondas é maior quando os campos elétricos

das ondas têm a mesma direção (Glanz et al., 1993).

Escrevendo os campos de flutuação de alta freqüência em termos das componentes

transversais e longitudinais, E = EL + ET , impondo k adequado e usando as condições

cinemáticas mostradas na Figura 3.4 na Equação 3.13, podemos escrever as variações

para as ondas induzidas como

D−
L1E

−
L1 =

ω2
p

n0

n∗1E
−
0 , (3.17)

D+
L1E

+
L1 =

ω2
p

n0

n1E
+
0 , (3.18)

D−
L2E

−
L2 =

ω2
p

n0

n∗2E
+
0 , (3.19)

D+
L2E

+
L2 =

ω2
p

n0

n2E
−
0 , (3.20)

D+
T E+

T =
ω2

p

n0

(n1E
−
0 + n2E

+
0 ), (3.21)

D−
T E−

T =
ω2

p

n0

(n∗1E
+
0 + n∗2E

−
0 ), (3.22)

onde os sub ı́ndices L1(2) se referem às ondas de Langmuir filhas, dependendo da grating

envolvida. As ondas ı́on-acústicas são dadas por

Ds1n1 =
ε0k

2
1ω

2
p

2min0

(
n1|E+

0 |2

D+
L1

+
n1|E−

0 |2

D−∗
L1

+
n1|E−

0 |2

D+
T

+
n2E

+
0 E−∗

0

D+
T

+
n1|E+

0 |2

D−∗
T

+
n2E

+
0 E−∗

0

D−∗
T

)
, (3.23)
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Ds2n2 =
ε0k

2
2ω

2
p

2min0

(
n2|E+

0 |2

D−∗
L2

+
n2|E−

0 |2

D+
L2

+
n2|E+

0 |2

D+
T

+
n1E

+∗
0 E−

0

D+
T

+
n2|E−

0 |2

D−∗
T

+
n1E

+∗
0 E−

0

D−∗
T

)
. (3.24)

Nas Equações 3.23 e 3.24 temos:

Ds1(2) = ω2 + iνiω − v2
sk

2
1(2),

D±
T = [(ω0 ± ω)2 + iνT (ω0 ± ω)− c2k±2

T − ω2
p], (3.25)

D±
L1(2) = [(ω0 ± ω)2 + iνL(ω0 ± ω)− v2

thk
±2
L1(2) − ω2

p].

Notemos que |k±L1| = |k±L2|, e |k+
T | = |k−T | conforme a Figura 3.4, e que a geometria

escolhida implica em |k±T | << |k0|, |k±L1(2)|, |k1(2)|.

Usando a aproximação de alta freqüência D±
T
∼= ±2ωp(ω ± (ω0 − ωT ) + iνT /2), D±

L1(2)
∼=

±2ωp(ω± (ω0−ωL) + iνL/2) com ωL(T ) representando a relação de dispersão linear para

a onda de Langmuir (eletromagnética), |k1| = |k2|, e normalizando ω por ωs e k por

1/λD onde λD é o comprimento de Debye, obtemos as Equações 3.25 já normalizadas e

levando em conta a relação de dispersão linear para ωL, ωT e ωs,

Ds = ω2 − 1

D±
T = ω ± 3

2

k0

(µτ)1/2
∓ 1

2

c2

v2
th

k2
T

(µτ)1/2k0

(3.26)

D±
L = ω ∓ 9

2

k0

(µτ)1/2

onde µ = me/mi, e τ = (γeTe + γiTi)/Te. Finalmente, supondo que |E−
0 |2 = r|E+

0 |2, e

definindo W0 = ε0|E+
0 |2/(2n0kBTe), e WT0 = (1 + r)W0, obtemos a relação de dispersão

geral (Alves et al., 2002)

D2
s − WT0

4τ(µτ)1/2k0

Ds

(
1

D+
L

− 1

D−
L

+
1

D+
T

− 1

D−
T

)
+

W 2
T0

16µτ 3k2
0(1 + r)2

[
−(1− r)2

D+
T D−

T

+ (1 + r2)

(
1

D+
T D+

L

− 1

D+
LD−

L

+
1

D−
T D−

L

)
− 2r

(
1

D+
LD−

T

+
1

D+
T D−

L

)
+ r

(
1

D+2
L

+
1

D−2
L

)]
= 0. (3.27)

Esta relação de dispersão não leva em conta o fator de amortecimento, e descreve as

interações que envolvem os modos Stokes e anti-Stokes eletrostático e eletromagnético.
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A Equação 3.27 foi resolvida numericamente por Alves et al. (2002) para dois valores

distintos de k0, k0 > (2/3)(µτ)1/2 para o caso de uma onda indutora, regime de de-

caimento (ωr = ωs) e para o modelo de quatro ondas no limite k0 < (1/3)W
1/2
0 para

o regime modulacional (ωr 6= ωs). A relação de dispersão foi resolvida numéricamente

com base em dados observacionais (Thejappa e MacDowall, 1998). Neste trabalho, após

recuperarmos os resultados de Alves et al. (2002), analisaremos a influência da ener-

gia da onda indutora e como a mesma se distribui entre os modos Stokes e anti-Stokes

eletromagnéticos.
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CAPÍTULO 4

DISTRIBUIÇÃO DE ENERGIA

Resumo

Neste caṕıtulo apresentamos o método utilizado para obtermos a razão entre os modos anti-

Stokes e Stokes eletrostático e eletromagnético para os modos excitados por ondas de Langmuir

contrapropagantes.

4.1 Introdução

Trabalhos anteriores apresentam resultados e teorias sobre o processo de conversão de

ondas de Langmuir em ondas eletromagnéticas e ı́on-acústicas (Lashmore-Davies (1974);

Chian e Alves (1988); Rizzato e Chian (1992); Abalde et al. (1998); Alves et al. (2002);

e outros). Nesses trabalhos os autores tratam a relação de dispersão sem analisar como

ocorre a distribuição de energia entre os distintos modos excitados.

Em seu trabalho, Glanz et al. (1993) calculam a razão entre os modos anti-Stokes e

Stokes para o caso de duas ondas indutoras e duas gratings sem considerar a excitação

das ondas de Langmuir filhas. Nesta dissertação vamos incluir duas ondas indutoras

com duas “gratings” considerando que sejam excitadas as ondas de Langmuir filhas que

engloba o caso mais geral no processo de conversão de ondas de Langmuir em ondas

eletromagnéticas e eletrostáticas.

A idéia da distribuição de energia está baseada nas relações de Manley-Rowe que dão

a proporção de energia convertida para cada onda parametricamente excitada. Estas

condições relacionam a conservação de momentum para as ondas que satisfazem as

condições de casamento para k e ω (Lashmore-Davies, 1981).

4.2 Razão Entre os Modos Anti-Stokes e Stokes Eletrostáticos

Adotando o modelo cinemático utilizado por Alves et al. (2002) temos dois modos eletros-

táticos excitados, um anti-Stokes e outro Stokes, e também dois modos eletromagnéticos

sendo um anti-Stokes e outro Stokes. Nesta sessão, vamos obter uma expressão para a

razão entre as energias dos modos eletrostáticos; verificamos que é posśıvel obter esta

razão independentemente das emissões eletromagnéticas e que a distribuição de energia

entre os modos eletrostáticos anti-Stokes e Stokes depende apenas do parâmetro r. Este

resultado é interessante no sentido em que mesmo para r 6= 1, parece que os modos

eletrostáticos não estão acoplados aos modos eletromagnéticos. Este aspecto já havia sido

apontado por Rizzato e Chian (1992) que obtiveram para r = 1, equações desacopladas
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para (n1 +n2) e (n1−n2) com os modos eletromagnéticos presentes apenas em (n1−n2)

(Equações 18 e 19 de Rizzato e Chian (1992)).

Lembrando que o modo anti-Stokes é dado por ω3 = ω1+ω2 e k3 = k1+k2 e o modo Stokes

é dado por ω3 = ω1−ω2 e k3 = k1−k2, para o caso de duas ondas indutoras temos que os

modos eletrostáticos poderão ser representados pelas Equações 3.17 a 3.20 sendo E+
L1(2)

e E−
L1(2) os modos anti-Stokes e Stokes, respectivamente. Vamos considerar freqüências

positivas, com o modo anti-Stokes representando uma conversão para frequência acima

da onda indutora (up conversion) e o modo Stokes com uma conversão para frequência

abaixo da onda indutora (down conversion).

A partir da Equação 3.17

D−
L1E

−
L1 =

ω2
pe

n0

n∗1E
−
0 (4.1)

obtemos

D−
L1D

−∗
L1 |E

−
L1|

2 =
ω4

pe

n2
0

|n1|2|E−
0 |2. (4.2)

Para a Equação 3.18

D+
L1E

+
L1 =

ω2
pe

n0

n1E
+
0 (4.3)

temos

D+
L1D

+∗
L1 |E

+
L1|

2 =
ω4

pe

n2
0

|n1|2|E+
0 |2. (4.4)

Dividindo a Equação 4.4 pela Equação 4.2 chegamos à equação abaixo

|E+
L1|2

|E−
L1|2

=
D−

L1D
−∗
L1 |E

+
0 |2

D+
L1D

+∗
L1 |E

−
0 |2

(4.5)

lembrando que |E−
0 |2 = r|E+

0 |2 a equação acima se reduz a

|E+
L1|2

|E−
L1|2

=
D−

L1D
−∗
L1

D+
L1D

+∗
L1 r

. (4.6)

Utilizando o mesmo procedimento para as equações que estão relacionadas com E
−(+)
L2
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chegamos a seguinte equação

|E+
L2|2

|E−
L2|2

=
D−

L2D
−∗
L2 r

D+
L2D

+∗
L2

. (4.7)

Observamos que as Equações 4.6 e 4.7 só são válidas para o caso de duas indutoras. No

caso de uma única indutora, instabilidade h́ıbrida, o modo Stokes é eletromagnético e

o anti-Stokes eletrostático que é o caso tratado por Akimoto (1988) e vice-versa para

o caso tratado por Abalde et al. (1998). Na prática, Alves et al. (2002) mostraram que

ambos modelos são equivalentes, já que a instabilidade ocorre para ωr > 0 no modelo

de Akimoto (1988) e ωr < 0 no modelo de Abalde et al. (1998). Ou seja, para o caso de

uma única indutora, instabilidade h́ıbrida, a onda eletromagnética excitada tem sempre

freqüência menor que a freqüência da onda indutora.

FIGURA 4.1 – Solução numérica para o modelo de uma onda indutora com o limite
k0 > (2/3)(µτ)1/2; a) e c) para o modelo de Akimoto (1988), e b) e d)
para o modelo de Abalde et al. (1998); a) e b) mostram a parte real da
solução da relação de dispersão e c) e d) a taxa de crescimento em função
de kT λD.
FONTE: Alves et al. (2002, p. 355).

Na Figura 4.1 podemos notar que a instabilidade ocorre para o mesmo intervalo de kT λD

com a mesma taxa de crescimento para ambos os modelos. Notamos que a parte real das

freqüências é > 0 para o modelo de Akimoto (1988) (4.1(a) e (c)) e < 0 para o modelo
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de Abalde et al. (1998) (4.1(b) e (d)). No entanto, para o modelo de Abalde et al. (1998)

a freqüência para a onda eletromagnética é dada por ω0 + ωr (modo anti-Stokes) e no

trabalho de Akimoto (1988) a freqüência para o modo eletromagnético é dada por ω0−ωr

(modo Stokes), com resultado final idêntico para os dois casos. Este fato já foi apontado

por Bárta e Karlický (2000).

Após a normalização das Equações 3.25, que possuem explicitamente as relações com os

sub-́ındices (1, 2) D±
L1(2), elas tornam-se as Equações 3.26 que não possuem os sub-́ındices

(1, 2) devido as condições impostas (|k1| = |k2| = k, νe(i) = 0, D−
L2 = D−∗

L2 , D−
L1 = D−∗

L1 ,

D+
L2 = D+∗

L2 , D+
L1 = D+∗

L1 e Ds = D∗
s) para obtermos a relação de dispersão Equação 3.27.

É fácil observar que nas Equações 4.6 e 4.7 tanto o numerador quanto o denominador

variam com a mesma taxa em função de kT λD, de forma que o parâmetro que determina

a distribuição de energia para os modos eletrostáticos é simplesmente a razão entre

as amplitudes das ondas indutoras, representado por “r”. Este resultado para as ondas

eletrostáticas pode ser intúıdo através de uma análise da Figura 3.4. Observe que o modo

anti-Stokes excitado pela onda indutora que se propaga para frente tem como grating k1,

enquanto que o modo Stokes tem como grating k2. O oposto ocorre para os modos anti-

Stokes e Stokes excitados pela indutora retropropagante. Estas condições de casamento

para os vetores de ondas se refletem nas Equações 4.6 e 4.7.

4.3 Razão Entre os Modos Anti-Stokes e Stokes Eletromagnéticos

Seguindo o mesmo procedimento adotado por Glanz et al. (1993), vamos obter a razão

entre as energias dos modos eletromagnéticos anti-Stokes e Stokes. Observe através da

Figura 3.4 que neste caso contribuem para cada um dos modos eletromagnéticos as duas

ondas indutoras, as duas gratings e conseqüentemente as duas ondas de Langmuir filhas.
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Para este procedimento vamos utilizar,

D−
L1E

−
L1 =

ω2
p

n0

n∗1E
−
0 , (4.8)

D+
L1E

+
L1 =

ω2
p

n0

n1E
+
0 , (4.9)

D−
L2E

−
L2 =

ω2
p

n0

n∗2E
+
0 , (4.10)

D+
L2E

+
L2 =

ω2
p

n0

n2E
−
0 , (4.11)

D+
T E+

T =
ω2

p

n0

(n1E
−
0 + n2E

+
0 ), (4.12)

D−
T E−

T =
ω2

p

n0

(n∗1E
+
0 + n∗2E

−
0 ), (4.13)

DS1n1 =
ε0k

2
1

2mi

[E+
0 E−∗

T + E−
0 E−∗

L1 + E+
L1E

+∗
0 + E+

T E−∗
0 ], e (4.14)

DS2n2 =
ε0k

2
2

2mi

[E+
0 E−∗

L2 + E−
0 E−∗

T + E+
L2E

−∗
0 + E+

T E+∗
0 ]. (4.15)

Partindo das Equações 4.14 e 4.15 juntamente com as Equações 4.8 até 4.11 e escrevendo

explicitamente em função de n1 e n2 temos

n1 =

ε0k2
1

2mi

DS1 − ε0k2
1

2n0mi
ω2

pe

(
E−

0 E−∗
0

D−∗
L1

+
E+

0 E+∗
0

D+
L1

) [E+
0 E−∗

T + E+
T E−∗

0 ], (4.16)

n2 =

ε0k2
2

2mi

DS2 − ε0k2
2

2n0mi
ω2

pe

(
E+

0 E+∗
0

D−∗
L2

+
E−

0 E−∗
0

D+
L2

) [E−
0 E−∗

T + E+
T E+∗

0 ]. (4.17)

As expressões para n∗1 e n∗2 podem ser obtidas a partir das Equações 4.14 e 4.15.
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Substituindo as equações para n1, n2, n∗1 e n∗2 nas Equações 4.12 e 4.13 obtemos

D+
T E+

T =
ω2

p

n0

(
ε0k2

1

2mi

DS1 − ε0k2
1

2n0mi
ω2

pe

(
E−

0 E−∗
0

D−∗
L1

+
E+

0 E+∗
0

D+
L1

) [E+
0 E−∗

T + E+
T E−∗

0 ]E−
0

+

ε0k2
2

2mi

DS2 − ε0k2
2

2n0mi
ω2

pe

(
E+

0 E+∗
0

D−∗
L2

+
E−

0 E−∗
0

D+
L2

) [E−
0 E−∗

T + E+
T E+∗

0 ]E+
0

)
(4.18)

D−
T E−

T =
ω2

p

n0

(
ε0k2

1

2mi

D∗
S1 −

ε0k2
1

2n0mi
ω2

pe

(
E−∗

0 E−
0

D−
L1

+
E+∗

0 E+
0

D+∗
L1

) [E+∗
0 E−

T + E+∗
T E−

0 ]E+
0

+

ε0k2
2

2mi

D∗
S2 −

ε0k2
1

2n0mi
ω2

pe

(
E+∗

0 E+
0

D−
L2

+
E−∗

0 E−
0

D+∗
L2

) [E−∗
0 E−

T + E+∗
T E+

0 ]E−
0

)
. (4.19)

Para trabalharmos a Equação 4.18 devemos lembrar que |E−
0 |2 = r|E+

0 |2 e como não

estamos considerando os termos de amortecimento para as ondas νe = νi = 0, de forma

que podemos supor D+
T = D+∗

T , D−
T = D−∗

T , D+
L = D+∗

T , D−
L = D−∗

L e DS = D∗
S.

Devido a cinemática adotada (Figura 3.4) temos |k1| = |k2| = k, podemos reescrever a

Equação 4.18 da seguinte maneira(
D+

T −
D−

LD
+
L k2|E+

0 |2ω2
peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

−
rD−

LD
+
L k2|E+

0 |2ω2
peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

)
E+

T

=

( D−
LD

+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

+

D−
LD

+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

)
E−∗

T . (4.20)
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Podemos definir G(ω, kT ) e F (ω, kT ) como as expressões abaixo

G(ω, kT ) = D+
T −

D−
LD

+
L k2|E+

0 |2ω2
peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

−
rD−

LD
+
L k2|E+

0 |2ω2
peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

(4.21)

F (ω, kT ) =

D−
LD

+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

+

D−
LD

+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

(4.22)

e reescrever a Equação 4.20 como:

G(ω, kT )E+
T = F (ω, kT )E−∗

T . (4.23)

A seguir usaremos as normalizações adotadas anteriormente para ω e k de forma a

escrevermos a Equação 4.23 apenas em função de parâmetros conhecidos.

Vamos começar lembrando que |E−
0 |2 = r|E+

0 |2, com isso, podemos escrever,

|E+
0 E−

0 | = (E+
0 E+∗

0 E−
0 E−∗

0 )1/2

= (|E+
0 |2|E−

0 |2)1/2

= r1/2|E+
0 |. (4.24)

A densidade de energia de uma onda eletromagnética é dada por 1
2
ε0|E|2 onde ε0 é a

permissividade dielétrica no vácuo e E é o campo elétrico da onda. A densidade de energia

térmica do plasma é dada por n0kBTe. Definimos anteriormente W0 = ε0|E|2/2n0kBTe

assim podemos definir a energia total do sistema como

WT0 =
ε0|E+

0 |2

2n0kBTe

+
ε0|E−

0 |2

2n0kBTe

WT0 = (1 + r)W0. (4.25)
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Escrevendo as relações de dispersão lineares para as ondas ı́on-acústicas, eletromagnéticas

e Langmuir já normalizadas, e lembrando que para esta normalização consideramos |k1| =
|k2| = k, obtemos

Ds = (ω2 − 1)

D±
T = ω ± 3

2

k0

(µτ)1/2
∓ 1

2

c2

v2
th

k2
T

(µτ)1/2k0

(4.26)

D±
L = ω ∓ 9

2

k0

(µτ)1/2
.

Utilizando as Equações 4.24, 4.25 e 4.26 podemos reescrever G(ω, kT ) já normalizada e

simplificada da seguinte maneira

|G(ω, kT )| =

D+
T −

WT0

τ 2µk2
0(1 + r)

(
D−

LD+
L

D+
LD−

LDS −
D+

L WT0

τ2µk2
0(1+r)

− rD−
L WT0

τ2µk2
0(1+r)

− rD−
LD+

L

D+
LD−

LDS −
D−

L WT0

τ2µk2
0(1+r)

− rD+
L WT0

τ2µk2
0(1+r)

) (4.27)

e de forma semelhante a expressão para F (ω, kT ) torna-se

|F (ω, kT )| =
r1/2WT0

τ 2µk2
0(1 + r)


(

D−
LD+

L

D+
LD−

LDS −
D+

L WT0

τ2µk2
0(1+r)

− rD−
L WT0

τ2µk2
0(1+r)

+
D−

LD+
L

D+
LD−

LDS −
D−

L WT0

τ2µk2
0(1+r)

− rD+
L WT0

τ2µk2
0(1+r)

). (4.28)

A razão entre os modos Anti-Stokes e Stokes será obtida levando as Equações 4.27 e 4.28

na Equação 4.23, e assim, teremos portanto, E+
T

E−∗
T

 =
|F (ω, kt)|
|G(ω, kt)|

(4.29)

onde τ = (γeTe + γiTi)/Te e µ = me/mi.

A Equação 4.29 estabelece a razão entre as amplitudes dos modos eletromagnéticos anti-

Stokes e Stokes, e conseqüentemente entre as energias dos mesmos.

Esta equação será tratada numericamente. Primeiramente obteremos as ráızes da relação

de dispersão geral, Equação 3.27, para valores determinados de k0 e W0 em função de

kT λD. As ráızes encontradas serão então usadas para obter a razão |E+
T |/|E

−∗
T |. Observe
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que nos interessam apenas as soluções com ωr ≥ 0 e Γ > 0, casos em que há instabilidade

e o modo anti-Stokes representa uma conversão para freqüência acima ou igual a ω0.

Quando ωr = 0 e Γ > 0, a instabilidade é dita puramente crescente, não sendo posśıvel

fazer uma distinção entre os modos anti-Stokes e Stokes. Os resultados obtidos serão

apresentados no caṕıtulo seguinte.
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CAPÍTULO 5

SOLUÇÃO NUMÉRICA DA RELAÇÃO DE DISPERSÃO E RAZÃO

ENTRE OS MODOS ANTI-STOKES E STOKES ELETROMAGNÉTICOS

Resumo

Este caṕıtulo é destinado a apresentar as soluções numéricas da relação de dispersão e análise

das diferentes regiões onde as instabilidades ocorrem. Obtemos também a razão entre os modos

anti-Stokes e Stokes. Realizamos uma breve discussão, comparando os resultados obtidos com

alguns trabalhos anteriores que estudam os mecanismos de geração de ondas eletromagnéticas

a partir de ondas de Langmuir via instabilidade de plasma.

5.1 Introdução

Neste caṕıtulo vamos apresentar alguns resultados da solução numérica da relação de dis-

persão obtida por Alves et al. (2002). Resolvemos a relação de dispersão de duas maneiras

distintas, a primeira maneira fixamos a energia da onda indutora e verificamos para quais

valores de kT λD encontramos a maior taxa de crescimento; na segunda maneira, adotamos

o valor kT λD equivalente a maior taxa de crescimento como parâmetro fixo e resolvemos

a relação de dispersão variando a energia total do sistema.

5.2 Descrição dos Métodos Para o Cálculo da Relação de Dispersão e Razão

Entre os Modos Anti-Stokes e Stokes

A relação de dispersão, Equação 3.27, obtida por Alves et al. (2002) é um polinômio de

grau dez com ráızes reais e complexas. Para calcular a razão entre os modos anti-Stokes

e Stokes realizamos basicamente três passos: o primeiro passo é calcular a relação de

dispersão da forma tradicional, adotando parâmetros fixos para os valores de energia, k0

e variando os valores de kT λD.

O segundo passo é resolver a relação de dispersão de forma semelhante a realizada por

Glanz et al. (1993). Este procedimento consiste em adotar como parâmetro o valor de

kT λD para a maior taxa de crescimento e fazer uma varredura na energia total do sistema,

obtendo assim os gráficos para as freqüências reais e a taxa de crescimento da relação de

dispersão.

Para o terceiro passo, desenvolvemos uma rotina numérica que lê os resultados da solução

da relação de dispersão em função da energia total do sistema. De posse destes resultados,

a rotina utiliza simultaneamente os valores para a freqüência real, taxa de crescimento e

energia total do sistema para calcular a razão entre os modos eletromagnéticos excitados.
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Este procedimento é adotado para garantir que a razão entre os modos anti-Stokes e

Stokes seja uma reprodução fiel da informação contida na solução da relação de dispersão.

A rotina numérica joga na Equação 4.26 a energia total do sistema e as ráızes reais e ima-

ginárias da relação de dispersão que foram obtidas para cada valor de energia, seguindo

este procedimento para todos os valores de energia utilizados para calcular a relação de

dispersão no segundo passo. Nas seções seguintes apresentamos os resultados da solução

da relação de dispersão e a razão entre os modos anti-Stokes e Stokes eletromagnéticos.

5.3 Solução Numérica da Relação de Dispersão e Razão Entre os Modos

Anti-Stokes e Stokes.

Os resultados numéricos apresentados neste caṕıtulo foram obtidos utilizando os

parâmetros mais relevantes das emissões solares tipo III (Thejappa e MacDowall, 1998).

Para as soluções da relação de dispersão (Equação 3.27) utilizamos os seguintes valores

fixos µ = 1/1836, τ = 1, 520, vth = 2, 2 × 106m/s, Te = 1, 6 × 105K e Ti = 5 × 104K.

Para simplificar o tratamento consideramos as taxas de amortecimento nulas.

Consideramos o processo ressonante aquele em que a freqüência da onda de baixa fre-

qüência é da ordem da freqüência ı́on-acústica (|ω| ≈ ωs), e não ressonante quando esta

condição não é satisfeita (|ω| 6= ωs). No caso não ressonante, quando a freqüência da onda

de baixa freqüência tem somente parte imaginária (ω = ωR + iΓ, onde ωR = 0), diz-se

que a instabilidade é absoluta ou puramente crescente. Define-se de processo convectivo

aquele em que ocorre para os valores de ωr 6= 0 (Guede (1995); Abalde et al. (1998)).

Na Figura 5.1 mostramos a solução da relação de dispersão para r = 0, 001, W0 =

1 × 10−5, k0 = 0, 0451. Podemos observar que para os valores de “r” muito pequenos

obtemos os mesmos resultados encontrados para o caso de uma única onda indutora

(Abalde et al. (1998); Akimoto (1988)). A diferença entre os nossos resultados e aqueles

obtidos por Abalde et al. (1998) e Akimoto (1988) é que a inclusão da segunda onda

indutora, ainda que, com energia mı́nima, e da segunda grating, permitem a geração

simultânea da onda eletromagnética convertida para freqüências superiores a freqüência

da onda indutora e para freqüências inferiores a da onda indutora..

Em fenômenos não lineares, a energia da onda indutora desempenha um papel funda-

mental na determinação das regiões de instabilidade e da taxa de crescimento. Utilizando

o mesmo valor de k0 adotado na Figura 5.1 e o valor de kT λD para o qual a taxa de

crescimento é máxima (kT λD = 1, 53 × 10−5), resolvemos a relação de dispersão para

diferentes valores de WT0, obtendo os valores de ω correspondente. O que se verifica é

66



que o valor de ωr é constante (ωr = ωs), mas a taxa de crescimento aumenta em função

da energia. Este é um resultado esperado neste limite, em prinćıpio envolvendo processos

de 3 ondas. A razão entre as amplitudes dos modos anti-Stokes e Stokes para este caso é

apresentada na Figura 5.3. Este resultado, com a amplitude do modo Stokes muito maior,

está de acordo com os resultados anteriores, já que no caso de uma única onda indutora

(r = 0 e neste caso r = 10−3) apenas o modo Stokes é excitado (down conversion).
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FIGURA 5.1 – Solução numérica da relação de dispersão em função de kT λD, no limite

de r → 0 (uma única onda indutora). Neste caso adotamos r = 0, 001,

k0 = 0, 0451 satisfazendo o limite k0 > (2/3)(µτ)1/2.
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(a) Parte real da solução da relação de dispersão
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FIGURA 5.2 – Solução numérica da relação de dispersão em função de WT0. Para estes

gráficos utilizamos k0 = 0, 451, r = 0, 001, kT λD = 4, 35 × 10−4 satis-

fazendo o limite k0 > (2/3)(µτ)1/2.
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FIGURA 5.3 – Razão entre os modos anti-Stokes e Stokes para o caso r = 0, 001, caso

limite de uma onda indutora, utilizando os mesmos valores da Figura 5.2.

Na Figura 5.4 apresentamos a solução da relação de dispersão para r = 0, 1, e k0 =

1× 10−4, W0 = 1× 10−5 satisfazendo o limite k0 < (1/3)W
1/2
0 . Observamos duas regiões,

uma onde a instabilidade é puramente crescente (ωR = 0) para os valores de kT λD

menores que 1×10−5, e outra onde a instabilidade é não ressonante (ωr 6= ωs) e convectiva

(ωr 6= 0) para os valores de kT λD > 1×10−5. Verificamos que ocorre uma transição de uma

instabilidade puramente crescente para uma instabilidade não ressonante e convectiva.

Para avaliar a influência da energia das ondas indutoras fixas resolvemos a relação de

dispersão, adotando como parâmetros os valores de kT λD correspondentes a maior taxa

de crescimento para as duas regiões distintas.Embora este procedimento possa ser ques-

tionado, ele serve de indicador para o fato de que existem limites, que dependem de k0

e WT0, para a ocorrência de processos de 3 e 4 ondas, assim como no caso em que se

considera apenas uma onda indutora (Akimoto (1988) e Abalde et al. (1998)). A Figura

5.5 mostra a solução da relação de dispersão em função da energia total do sistema

para a primeira região da Figura 5.4 com kT λD = 8, 09 × 10−6. Podemos observar que

para valores bem pequenos da energia, temos uma região de instabilidade não ressonante

ωr 6= ωs (região de WT0 < 1×10−5). Para regiões de energia maiores que WT0 ≈ 1×10−5

a instabilidade é puramente crescente, o que está de acordo com a solução da relação de
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dispersão para os parâmetros analisados. Comparando os resultados das Figuras 5.4 e

5.5 observamos um ponto onde os valores da taxa de crescimento, para as duas figuras,

assim como o valor da freqüência real são os mesmos, mostrando uma correlação entre

as duas formas distintas de resolver a relação de dispersão.

A razão entre as energias dos modos anti-Stokes e Stokes para a primeira região (kT λD <

1× 10−5) da Figura 5.4 pode ser observada na Figura 5.6. Notamos que para as regiões

onde a instabilidade é não ressonante o modo Stokes é dominante (maior que duas vezes o

modo anti-Stokes), até o valor cŕıtico da energia onde a instabilidade torna-se puramente

crescente. A partir deste ponto, caso puramente crescente, não há como distinguir os

modos anti-Stokes e Stokes, de forma que espera-se obter a razão entre eles igual a um.

71



0 1×10
-5

2×10
-5

3×10
-5

4×10
-5

5×10
-5

k
T
λ

D

-0,5

0

0,5

ω
r/ω

s

(a) Parte real da solução da relação de dispersão

0 1×10
-5

2×10
-5

3×10
-5

4×10
-5

5×10
-5

k
T
λ

D

0

0,2

0,4

Γ/
ω

s

(b) Taxa de crescimento da solução da relação de dispersão

FIGURA 5.4 – Solução numérica da relação de dispersão em função de kT λD. Neste caso

adotamos r = 0, 1, k0 = 10−4 satisfazendo o limite k0 < (1/3)W
1/2
0 .
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FIGURA 5.5 – Solução numérica da relação de dispersão em função de WT0. Para esta

solução adotamos o valor de kT λD da primeira região da Figura 5.4

para o qual obtem-se a maior taxa de crescimento adotando os seguintes

parâmetros r = 0, 1, kT λD = 8, 09× 10−6 e k0 < (1/3)W
1/2
0 .
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FIGURA 5.6 – Razão entre os modos anti-Stokes e Stokes para o caso estudado na Figura

5.5.

A Figura 5.7 apresenta a solução da relação de dispersão em função da energia total do

sistema para kT λD = 1, 83 × 10−5 para o qual a taxa de crescimento é máxima, para

os valores de k0 e W0 usados para obter a Figura 5.4 na região de kT λD > 1 × 10−5.

Observamos que para estes valores de k0 e kT λD existe uma limiar de energia para a

excitação da instabilidade (0, 5× 10−5), que nesta região é não ressonante e convectiva.

A pequena taxa de crescimento observada para valores menores de energia está associada

a raiz com ωr = 0 (puramente crescente) e não há como distinguir os modos anti-Stokes

e Stokes nesta região.

A Figura 5.8 mostra a razão entre os modos anti-Stokes e Stokes para WT0 > 0, 5×10−5,

mostrando a predominância do modo Stokes. Neste caso, para r = 0, 1 o resultado é

esperado.
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FIGURA 5.7 – Solução numérica da relação de dispersão em função de WT0. Utilizamos

o valor de kT λD da segunda região da Figura 5.4 para maior taxa de

crescimento. Para estes gráficos utilizamos r = 0, 1, kT λD = 1, 83× 10−5

satisfazendo o limite k0 < (1/3)W
1/2
0 .

75



1×10
-5

2×10
-5

3×10
-5

W
T0

0

0,5

1

1,5

2

ra
zã

o 
en

tr
e 

os
 m

od
os

 A
nt

i-
St

ok
es

 e
 S

to
ke

s

FIGURA 5.8 – Razão entre os modos anti-Stokes e Stokes para o caso da Figura 5.7.

Na Figura 5.9 apresentamos a solução da relação de dispersão em função de kT λD para

r = 0, 5, k0 = 1×10−4, W0 = 1×10−5, dentro do limite k0 < (1/3)W
1/2
0 . Observamos três

regiões diferentes para os diferentes valores de kT λD. Na primeira região, para kT λD <

1, 8×10−5 temos instabilidade puramente crescente. Para o intervalo 1, 8×10−5 < kT λD <

3, 6 × 10−5, a instabilidade é não ressonante e convectiva. Para kT λD > 3, 6 × 10−5 as

ráızes são reais, não havendo instabilidade.

Fixando o valor de kT λD = 1, 34 × 10−5, correspondente a maior taxa de crescimento

para a região de instabilidade puramente crescente, resolvemos a relação de dispersão em

função da energia. Os resultados obtidos estão mostrados na Figura 5.10. Para este caso

verificamos que a instabilidade convectiva não ressonante ocorre para WT0 ≤ 0, 7×10−5.

Para valores maiores de WT0, a instabilidade é puramente crescente.

A Figura 5.11 mostra a razão entre as energias dos modos anti-Stokes e Stokes para

WT0 ≤ 0, 7×10−5, já que para valores maiores que WT0, ωr = 0 e não há como distinguir

entre os modos anti-Stokes e Stokes.
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FIGURA 5.9 – Solução numérica da relação de dispersão em função de kT λD para r =

0, 5, k0 = 10−4 e W0 = 1× 10−5 dentro do limite k0 < (1/3)W
1/2
0 .
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FIGURA 5.10 – Solução numérica da relação de dispersão em função de WT0. Neste

caso usamos o valor de kT λD equivalente ao ponto de maior taxa de

crescimento para região de instabilidade puramente crescente da Figura

5.9. Para estes gráficos utilizamos r = 0, 5, kT λD = 1, 34× 10−5 dentro

do limite k0 < (1/3)W
1/2
0 .
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FIGURA 5.11 – Razão entre os modos anti-Stokes e Stokes para o caso da Figura 5.10.

Na Figura 5.12 mostramos a solução da relação de dispersão em função de WT0 para

kT λD = 1, 8 × 10−5, dentro da região de instabilidade convectiva não ressonante da

Figura 5.9. Novamente podemos observar a influência da amplitude da onda indutora.

Para WT0 ≤ 2× 10−5 temos instabilidade convectiva não ressonante, enquanto que para

WT0 maiores temos instabilidade puramente crescente. A Figura 5.13 apresenta a razão

entre as energias dos modos anti-Stokes e Stokes para WT0 ≤ 2 × 10−5, já que para

energias maiores a instabilidade é puramente crescente.
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FIGURA 5.12 – Solução numérica da relação de dispersão em função de WT0. Neste

caso adotamos o valor kT λD = 1, 8 × 10−5, representativo da região

de instabilidade não ressonante para o caso da Figura 5.9. Para estes

gráficos utilizamos k0 = 1 × 10−4 fixo, r = 0, 5, dentro do limite k0 <

(1/3)W
1/2
0 .
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FIGURA 5.13 – Razão entre os modos anti-Stokes e Stokes para o caso da Figura 5.12.

A solução da relação de dispersão para r = 0, 95, k0 = 1× 10−4 e W0 = 10−4 é mostrada

na Figura 5.14. Notamos que somente para os valores de kT λD > 4, 0× 10−5 ocorre uma

região de instabilidade não ressonante. Para os outros valores de kT λD apresentados no

gráfico temos instabilidade puramente crescente.

Na Figura 5.15 apresentamos a solução da relação de dispersão em função de WT0 para

kT λD = 1, 52×10−5 que é o número de onda equivalente a maior taxa de crescimento para

o modelo apresentado na Figura 5.14. Podemos observar que, independente da energia

total do sistema, encontramos apenas regiões de instabilidade puramente crescente.

Neste caso, não há como separar os modos anti-Stokes e Stokes, e a razão da energia

entre os modos não será apresentada.
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FIGURA 5.14 – Solução numérica da relação de dispersão em função de kT λD. Para este

caso adotamos r = 0, 95, k0 = 10−4 e W0 = 10−5 dentro do limite

k0 < (1/3)W
1/2
0 .
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FIGURA 5.15 – Solução numérica da relação de dispersão em função de WT0 para um

valor de kT λD correspondente a maior taxa de crescimento da Figura

5.14. Para estes gráficos utilizamos r = 0, 95, kT λD = 1, 52 × 10−5 e

k0 = 10−4 dentro do limite k0 < (1/3)W
1/2
0 .
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Na Figura 5.16 apresentamos a solução da relação de dispersão considerando que as

amplitudes das duas ondas indutoras de Langmuir sejam iguais (r = 1). Vemos que para

esta situação recuperamos o caso analisado por Rizzato e Chian (1992). Podemos observar

que para o caso de duas ondas indutoras com mesma amplitude obtemos apenas uma

região de instabilidade puramente crescente para todos os valores de kT λD analisados.

Adotando o valor de kT λD para a maior taxa de crescimento, calculamos a relação de

dispersão em função da energia total do sistema. Os resultados são apresentados na

Figura 5.17 e podemos verificar que para r = 1 não encontramos um valor cŕıtico de

energia onde a instabilidade deixe de ser puramente crescente.
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FIGURA 5.16 – Solução numérica da relação de dispersão em função de kT λD. Para

este caso consideramos duas ondas indutoras de Langmuir com mesma

amplitude e direções opostas r = 1 e adotamos k0 = 10−4, W0 = 10−5

dentro do limite k0 < (1/3)W
1/2
0 .
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FIGURA 5.17 – Solução numérica da relação de dispersão em função da energia total das

ondas indutoras. Para este caso utilizamos o valor de kT λD = 1, 53×10−5

que corresponde a maior taxa de crescimento apresentada na Figura

5.16.
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5.4 Solução Numérica da Relação de Dispersão em 3D

5.4.1 Introdução dos Resultados em 3D

Uma olhada cuidadosa na relação de dispersão geral, Equação 3.27, nos diz que a solução

depende de k0, número de onda da onda indutora, da energia das ondas indutoras WT0

e de como esta energia está distribúıda entre as duas indutoras, r.

Como já foi mencionado, a relação de dispersão foi resolvida numericamente para dois

valores distintos de k0, mantendo-se fixos o valor de WT0. Para um destes casos, analisou-

se a influência da segunda onda indutora, resolvendo a relação de dispersão para os

mesmos parâmetros, mas para diferentes valores de r (r = 0, 5 e r = 0, 95). Mostrou-se

ainda que os modelos anteriores de uma onda indutora (Akimoto (1988); Abalde et al.

(1998)) e de duas indutoras (Rizzato e Chian (1992); Chian e Alves (1988) e Glanz et al.

(1993)) estão contidos na relação de dispersão geral, Equação 3.27 (Alves et al., 2002).

Nesta sessão, apresentamos alguns resultados obtidos numericamente para a relação de

dispersão, em função de dois parâmetros, simultaneamente. Consideramos os mesmos dois

limites tratados por Alves et al. (2002), ou seja, k0 > (2/3)(µτ)1/2 e k0 < (1/3)W
1/2
0 .

5.4.2 Solução Numérica da Relação de Dispersão em 3D

Inicialmente, apresentamos a solução da relação de dispersão em função de k0, e kT λD,

ou seja, para cada valor de k0 obtivemos a solução em kT λD, para os valores fixos de

WT0 e r.

Na Figura 5.18 apresentamos a solução obtida considerando r = 0, 5, W0 = 1 × 10−5

(WT0 = 1, 5 × 10−5). Os parâmetros f́ısicos µ, vth, Te e Ti são os mesmos utilizados

previamente. Neste caso, k0 < (1/3)W
1/2
0 .

Observa-se que a taxa de crescimento diminui com o aumento de k0, na região de kT

menores. Onde a instabilidade é convectiva, não ressonante (ωr 6= ωs), a taxa de cresci-

mento parece ser independente de kT , a partir de um certo k0 (ver Figura 5.18).

Notamos que para os valores de k0 muito próximos a 1×10−4 reproduzimos a Figura 5.9

(região frontal da Figura 5.18), região esta, onde encontramos a maior taxa de cresci-

mento. Já para os maiores valores de k0, a taxa de crescimento vai diminuindo o que dá

a entender que quando vamos nos aproximando do limite k0 < (1/3)W
1/2
0 deixamos de

ter excitação dos modos eletromagnéticos a partir da ondas indutoras de Langmuir.

Comparando a solução real 5.18(a) e a taxa de crescimento 5.18(b) podemos observar
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que na região onde temos instabilidade puramente crescente (ωr = 0) temos maior taxa

de crescimento; já na região onde a instabilidade é não ressonante (ωr 6= 0) a taxa de

crescimento é menor.
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(a) Parte real da solução da relação de dispersão em função de kT λD e k0

(b) Taxa de crescimento da solução da relação de dispersão em função de
kT λD e k0

FIGURA 5.18 – Solução numérica da relação de dispersão em função de kT λD e k0.

Consideramos r = 0, 5 para o limite k0 < (1/3)W
1/2
0 .
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Na Figura 5.19 utilizamos os mesmos parâmetros da Figura 5.18, agora considerando

r = 0, 95. Podemos observar que para os valores de k0 próximos de (1 × 10−4) re-

produzimos a Figura 5.14. Notamos que só encontramos duas pequenas regiões onde a

instabilidade é não ressonante; a primeira região para kT λD < 1 × 10−5 e para valores

maiores de k0, dentro do limite escolhido. Já a outra região onde ocorre instabilidade

não ressonante é uma pequena região próximo a kT λD ≈ 5× 10−5, que já foi observado

anteriormente na Figura 5.14. Para todos os outros valores de kT λD e k0 a instabilidade é

puramente crescente. Aqui também se observa que a taxa de crescimento decresce quando

k0 aumenta.
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(a) Parte real da solução da relação de dispersão em função de kT λD e k0

(b) Taxa de crescimento da solução da relação de dispersão em função de
kT λD e k0

FIGURA 5.19 – Solução numérica da relação de dispersão em função de kT λD e k0.

Consideramos r = 0, 95 para o limite k0 < (1/3)W
1/2
0 .
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Na Figura 5.20 apresentamos a solução numérica da relação de dispersão para o limite

k0 > (2/3)(µτ)1/2 e r = 10−3 (limite de uma única onda indutora, caso estudado por

Akimoto (1988) e Abalde et al. (1998)). Podemos verificar que à medida que aumentamos

os valores de k0 temos uma variação no valor de kT para o qual Γ é máximo, como pode

ser visto na Figura 5.20(b). Verificamos que existe uma relação linear entre k0 e kT para

o limite onde k0 > (2/3)(µτ)1/2, como mostrado na Figura 5.21. A relação linear entre

k0 e kT é dada por uma reta do tipo y = ax + b onde y = k0, x = kT , a = 78, 06649 e

b = 0, 01098.

Utilizando a equação da reta encontrada podemos calcular o valor aproximado de kT

onde ocorrerá a instabilidade a partir de k0, sendo posśıvel comparar o resultado obtido

com a Figura 5.1.

Para um k0 = 0, 0451 obtemos kT = 4, 37× 10−4 que é o valor aproximado de kT λD para

a maior taxa de crescimento conforme mostrado na Figura 5.2.

Observamos que neste limite, a instabilidade excitadda é sempre ressonante. Neste caso,

a relação prevista entre k0 e kT pode ser obtida a partir das relações de dispersão lineares

das ondas envolvidas ω2
L ≈ ω2

T para o caso puramente crescente (ωr = 0), como segue:

ωL ≈ ωT

ω2
pe + γek

2
0v

2
th ≈ ω2

pe + k2
T c2

k2
0 ≈ 1

γe

c2

v2
th

k2
T

k0 ≈ 1
√

γe

c

vth

kT . (5.1)

Se considerarmos os valores utilizados para os cálculos anteriores γe = 3, c = 2.99 ×
108m/s e vth = 2, 2× 106m/s obtemos

1
√

γe

c

vth

= 78, 467

que é um valor aproximado de a, conforme mostrado anteriormente.
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(a) Parte real da solução da relação de dispersão em função de kT λD e k0

(b) Taxa de crescimento da solução da relação de dispersão em função de
kT λD e k0

FIGURA 5.20 – Solução numérica da relação de dispersão em função de kT λD e k0. Para

estes cálculos adotamos r = 10−3 dentro do limite k0 > (2/3)(µτ)1/2.
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FIGURA 5.21 – Gráfico de contorno da taxa de crescimento apresentado na Figura
5.20(b). Podemos observar uma relação linear entre kT e k0.

Apresentamos nas Figuras 5.22 e 5.23 a solução da relação de dispersão em função de kT e

r. Adotamos o limite k0 < (1/3)W
1/2
0 para a Figura 5.22 e o limite k0 > (2/3)(µτ)1/2 para

a Figura 5.23. Os valores de k0 e W0 são fixos, considerando W0 = 1×10−5 e k0 = 1×10−4

para o limite k0 < (1/3)W
1/2
0 e k0 = 0, 0451 para o limite k0 > (2/3)(µτ)1/2.

Podemos observar que para a Figura 5.22 encontramos regiões diferentes de instabili-

dade para os diferentes valores de r. Já para a Figura 5.23, independente da razão entre

as ondas indutoras, encontramos a mesma região de kT λD onde ocorre a instabilidade,

mostrando que para o limite k0 > (2/3)(µτ)1/2 não há relação entre a região de insta-

bilidade e a razão entre as duas ondas indutoras. Comparando as Figuras 5.20 e 5.23

podemos notar que a região de instabilidade está relacionada com kT λD e o número de

onda da onda indutora e não apenas com a razão entre as amplitudes das duas ondas

indutoras.
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(a) Parte real da solução da relação de dispersão em função de kT λD e r

(b) Taxa de crescimento da solução da relação de dispersão em função de
kT λD e r

FIGURA 5.22 – Solução numérica da relação de dispersão em função de kT λD e r con-

siderando o limite k0 < (1/3)W
1/2
0 .
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(a) Parte real da solução da relação de dispersão em função de kT λD e r

(b) Taxa de crescimento da solução da relação de dispersão em função de
kT λD e r

FIGURA 5.23 – Solução numérica da relação de dispersão em função de kT λD e r, para

o limite k0 > (2/3)(µτ)1/2.

96



Uma vez que parece realmente existir um limite para a excitação de instabilidade tipo

decaimento ou modulacional, como previsto para o caso de uma única indutora, esco-

lhemos um valor de r = 0, 5 e W0 = 1 × 10−3 fixo e variamos os valores de k0 de

modo a englobar os dois limites, ou seja, k0 < (1/3)W
1/2
0 (regime modulacional) e k0 >

(2/3)(µτ)1/2 (regime de decaimento). Para os parâmetros escolhidos, estas desigualdades

nos levam a k0 < 1×10−2 para o regime modulacional e k0 > 1, 92×10−2 para o regime de

decaimento, respectivamente. Os resultados obtidos estão apresentados na Figura 5.24.

Podemos observar na Figura 5.24(b), na região onde k0 é muito pequeno, a predominância

do regime modulacional que está relacionada com a instabilidade puramente crescente,

nesta região da Figura 5.24(a) observamos as soluções reais da relação de dispersão iguais

a zero. À medida que aumentamos os valores de k0 verificamos que o regime de decaimento

torna-se predominante, sendo posśıvel observar a relação entre k0 e kT λD, caracterizada

por uma pequena linha no centro da região de instabilidade semelhante a Figura 5.20.

Verificamos um intervalo de valores de kT λD neste regime, na qual, encontramos taxa

de crescimento diferente de zero e diferente do que acontecia para o caso de três ondas.

Isto pode estar acontecendo devido a inclusão da segunda onda indutora de Langmuir,

já que r = 0, 5.
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(a) Parte real da solução da relação de dispersão em função de kT λD e k0

(b) Taxa de crescimento da solução da relação de dispersão em função de
kT λD e k0

FIGURA 5.24 – Solução numérica da relação de dispersão em função de kT λD e k0,

com os valores de k0 englobando os dois limites k0 < (1/3)W
1/2
0 , k0 >

(2/3)(µτ)1/2 e r = 0, 5.
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CAPÍTULO 6

CONCLUSÕES

Observações através de satélites evidenciam a ocorrência de interações não lineares en-

tre ondas de Langmuir, eletromagnéticas e ı́on-acústicas em associação a explosões de

rádio solares do tipo III. Atualmente, acredita-se que tais emissões podem ser expli-

cadas através da geração de ondas de Langmuir por instabilidade feixe-plasma, num

primeiro passo, e que posteriormente esta onda de Langmuir interaja de maneira não

linear com outras ondas de plasma dando origem às emissões eletromagnéticas. Vários

são os mecanismos propostos para explicar o segundo passo no processo (Ginzburg e

Zheleznyakov (1959); Lashmore-Davies (1981); Akimoto (1988); Chian e Alves (1988);

Abalde et al. (1998); Rizzato e Chian (1992); Glanz et al. (1993); Bárta e Karlický (2000);

Alves et al. (2002), dentre outros).

Nesta dissertação deu-se continuidade ao trabalho desenvolvido por Alves et al. (2002).

Naquele trabalho, a partir das equações de Zakharov, os autores obtiveram uma relação

de dispersão, considerando duas indutoras de Langmuir contrapropagantes, de ampli-

tudes diferentes mas números de onda iguais e a geração de ondas filhas de Langmuir,

eletromagnética. Considerou-se ainda a presença de duas ondas ı́on-acústicas (gratings).

Os autores mostraram que a relação de dispersão por eles obtida continha os modelos pre-

viamente encontrados na literatura: os modelos que consideram apenas uma única indu-

tora e a excitação de ondas filha de Langmuir e eletromagnética (Akimoto (1988) e Abalde

et al. (1998)); o modelo que considera duas ondas de Langmuir contrapropagantes, de

amplitudes diferentes, duas gratings, mas apenas a geração de ondas eletromagnéticas

(Glanz et al., 1993) e o modelo que considera duas ondas de Langmuir contrapropagantes,

de amplitudes iguais, duas gratings e a excitação de ondas filha de Langmuir e eletro-

magnética (Rizzato e Chian, 1992). A relação de dispersão foi resolvida numericamente,

tendo como parâmetros dados observacionais de vento solar (Thejappa e MacDowall,

1998).

Os modelos que consideram apenas uma indutora e a excitação de ondas de Langmuir

e eletromagnética prevêm que uma instabilidade de três ondas, ressonante (ωr = ωs),

ocorre quando k0 > (2/3)(µτ)1/2 e quando k0 < (1/3)W
1/2
0 ocorre um processo de quatro

ondas, instabilidade não ressonante (ωr 6= ωs). Nesta dissertação investigamos se para o

caso de duas indutoras estes limites também são válidos, resolvendo a relação de dispersão

para valores de k0 e W0 satisfazendo estes limites. Investigou-se ainda a influência da

razão entre as amplitudes das indutoras (r) no tipo de instabilidade gerada.
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Como a introdução de uma segunda indutora permite a excitação dos modos anti-Stokes

e Stokes eletromagnéticos simultaneamente (Alves et al., 2002), obteve-se uma expressão

para a razão entre as energias dos modos anti-Stokes e Stokes. Esta razão foi obtida

numericamente para as regiões em que a instabilidade era convectiva, ou seja, ωr 6= 0, já

que para as regiões de instabilidade puramente crescente, ωr = 0, não há como distinguir

entre os modos anti-Stokes e Stokes.

Os resultados obtidos mostram que, no limite em que r tende a zero (r = 10−3), ou

seja, uma única indutora, para k0 > (2/3)(µτ)1/2, um processo de tres ondas ressonante

ocorre e que neste caso a máxima taxa de crescimento é obtida para um kT que está

linearmente relacionado com k0 (veja Figura 5.20).

No caso em que k0 < (1/3)W
1/2
0 (regime modulacional), para r 6= 0 e r 6= 1, a excitação de

instabilidade convectiva ou puramente crescente depende dos valores de k0 e de W0. Neste

limite, nas regiões onde a instabilidade é puramente crescente, a taxa de crescimento da

instabilidade decresce com o aumento de k0 e aumenta em função de r uma vez que ao

aumentarmos o valor de r estamos aumentando a energia total do sistema.

Em todas as regiões em que os modos anti-Stokes e Stokes são excitados simultaneamente,

a amplitude da energia do modo Stokes é sempre maior.

Nesta dissertação não se considerou o amortecimento das ondas, o que pode ser inclúıdo

num trabalho futuro. A inclusão deste parâmetro dependerá também dos parâmetros de

plasma, que foram mantidos os mesmos para todos os resultados numéricos obtidos.

Resultados anteriores mostram que a razão entre as temperaturas de elétron e de ı́ons

pode influir na quantidade de energia eletrostática convertida em energia eletromag-

nética (Bárta e Karlický, 2000). Com a inclusão do fator de amortecimento podemos

também verificar a eficiência do processo de excitação dos modos eletrostáticos e eletro-

magnéticos estudando a razão entre a taxa de amortecimento e a taxa de crescimento

das instabilidades.
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