Nitrogen and boron-codoped diamond films were produced to obtain an extension of the diamond electrode work potential window (>3.0 V). These electrodes will be applied in electroosynthesis [1]. Diamond films were grown on silicon substrate by hot filament CVD method. The deposition temperature of the polycrystalline films was around 700°C. The N2 gas was introduced simultaneously with B doping. The CH4 gas was dissolved in methanol and placed in a bubbler. Boron source was achieved using a solution of boric trioxide dissolved in methanol and placed in a bubbler. The deposition temperature of the films were grown on silicon substrate by hot filament electrodes will be applied in electroosynthesis [1]. Diamond electrode work potential window (>3,0 V). These were produced to obtain an extension of the diamond work potential window. Nitrogen and boron-codoped diamond films are more resistive than boron doped ones. The resistivity increases with the N2 concentration. All diamond films exhibited an uniform surface containing faceted grains, their grain size was approximately 2.5 - 3.5 µm. Nitrogen and boron-codoped diamond films were observed due to the boron incorporation in the diamond crystalline structure, mainly for the highly doped electrodes (200000 ppm B/C). Another band was observed around 2452 cm$^{-1}$ (2.1 eV). This band was also observed by other authors [2-3] and was attributed to the nitrogen-vacancy complex. The band was also observed by other authors [2-3] and was attributed to the nitrogen-vacancy complex. The figures 2 and 3 show the cyclic voltammetry for the diamond electrode (10000 ppm B/C) in KCl (1 mol.l$^{-1}$) and H2SO4 (1 mol.l$^{-1}$), respectively, obtained in the potential range between –3.0 and 3.0 V in a scan rate of 100 mV/s. In figure 2, it was observed a work potential window nearly 4.0 V, larger than observed with B-doped electrode (3.0 V). The oxygen evolution for the N and B-codoped diamond electrodes occurs nearly 2.0 V and the hydrogen evolution in –2.0 V while for B-doped one, these reactions occur in 1.6 and –1.4 V, respectively. In figure 3, it was observed a work potential window nearly 3.6 V. The oxygen evolution for the N and B-codoped diamond electrodes occurs nearly 2.6 V and the hydrogen evolution in –1.0 V while for B-doped one, these reactions occur in 2.2 and –0.7 V, respectively. The extension of the work potential window due to N2 introduction in the film is not well understood in the literature, although, some authors[3] inferred from luminescence studies of N and B-doped diamond films that a competition between the boron acceptors and nitrogen donors can occur in diamond crystalline structure, moving the position of the Fermi level. This way, the film become more resistive and causes the extension of the work potential window.

References

Acknowledgments

Supported by FAPESP