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ABSTRACT

In this work the problem of orbital maintenance of symmetrical constellations of satellites, with
minimum fuel consumption, is studied using impulsive maneuvers with time constraint. To perform
the station keeping of a consteliation of » satellites we have the problem of simultancously
optimizing the maneuvers for » satellites. When we consider all the satellites it is not simple to
determine the optimal maneuver strategy that minimizes the fuel consumption with time constraint.
Therefore, the goal of this work is to formulate and to study maneuver strategies that make possible
to obtain solutions with small fiuel consumption considering all the satellites in the constellation.
The problem can be formulated as a multi-objective problem due to the nature of the station-
keeping of a satellite constellation. Thus, the multi-objective problem applied to satellite
constellations is defined and a new multi-objective optimization method was applied. This method
can consider n conflicting objectives simultaneously without reducing the problem to an
optimization of only one objective, as occur with most of the methods found in the literature. This
method, called the Smallest Loss Criterion, was presented in Rocco et al. (2003). It was compared
with other existent methods and it was verified that it is capable to supply better results to the
problem of the station-keeping of satellite constellations. In this work, some applications of the

Smallest Loss Criterion is presented, as a complementation of the previous work, presented in
Rocco et al. (2003).

THE MULTI-OBJECTIVE PROBLEM

According to Cohon (1978), the static optimization of problems with one objective can be defined
in the following way:

Maximize Z{x) with relation of xe R” . (1)
Subjectto  g(x)<0 i=12,.,m
xz20
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Given zZ(-), g(") or

Maximize Z(x) withrelationto xe R” (2)
Subjectto x € F,

Given Z(.} , F,
where F, is the feasible area of the decision space, defined by:
F,=fxeR"|g(x)<0,i=12,..mx>0) 3)
The multi-objective problem can be defined by:
Maximize Z(x) = {Z,(x), Z,(x),... Z,(x)] (4)
Subjectto x € F,

Therefore, in this case, the objective function, is a vector with dimension p. Thus, the multi-
objective optimization consists of the minimization (or maximization) of a vector of objectives
Z(x) that may be subject of constraints or bounds. This problem type is very common in station

keeping of satellite constellations because during the maneuvers many parameters must be
optimized at the same time,

In problems of unidimensional optimization (when we have one objective), the possible solutions
(x € F,) can be compared by means of the objective function, that is, given two solutions x' and

x” we can compare Z(x') with Z(xz) and determine the optimal solution so that x € F, doesn't

exist such that Z{x)> Z(x*). In problems of multi-dimensional optimization (multi-objective
problem), in general, it is not possible to compare all the possible solutions because the comparison

on the basis of one objective can be contradicted with the comparison based on another objective.
Namely, supposing that:

zlx)=[z,(x") 2, )]

2)-[2,66) 2,{¢’) ~
x' is better than x*if and only if:

21("])) Z,(xz) and Zz(x’)z Zz(xz) (6)
or

Z,(x")2 Z,(x?) and Z,(x')> Z,(x?) 7

If Z](x')> Z,(xz) and Zz(x')< Zz(xz) we cannot conclude anything regarding x' and x?, that is, x'
e x’ cannot be compared.

THE SMALLEST LOSS CRITERION

As previously shown in Rocco et al. (2003), there are several multi-objective optimization methods.
The methodologies found in the literature generally began the problem with a multi-objective
approach but ended reducing the problem to the unidimensional case, by means of simplifications
or influence factors. Or, when the approach was really multi-objective, the found result was a group
of solutions candidates to the optimal solution, and in this case, for the choice of the optimal
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solution we should use other approaches external to the problem. In practical applicatigns,_ it would
be convenient to apply a methodology capable to find the solution that assists all the objectives.

The Smallest Loss Criterion, presented in Rocco (2002) and Rocco et al. (2003), can be enunciated
in the following way: In a problem with » conflicting objectives, where the intention is to optimize
the » objectives simultaneously, privileging none of them, the solution should be the solution which
result in the smallest loss for each one of the objectives. Because doesn't exist a solution that
optimize simultaneously the » objectives individually.

An attempt to find this solution would be to find de barycenter of a normalized n-dimensional
figure, which the “ertexes are the optimal solution for each objective. Therefore, for problems with
three objectives the solution would be in the center of a normalized triangle, for » objectives the
solution would be in the center of a normalized n-dimensional figure. Figure 1 shown an example of
this criterion applied to a problem with three conflicting objectives. In this example, S1, S2 and 53
are the optimal solutions for each one of the objectives, considered separately. B is the barycenter of
the triangle formed by the segments S152, 5253 and §351. By the barycenter definition, the
distance from B to the vertexes of the triangle represented by the solutions S1, 52 and §3 is the
same. So, if the barycenter B is adopted as a solution for the multi-objective problem, the segment
S1B represents the loss in relation to the objective 1, and in the same way, the segments S2B and
$3F represent the loss in relation to the objectives 2 and 3 respectively. Thus, from the Figure 1 it
can be conclude that if the three objectives are equally considered, the best solution is that one
which coincides with the barycenter of the triangle.

loss in relation St
to the objective |
a loss in relation
to the objective 3
. F 3
B
S2 . i, . - .. ._.__.‘ S3

loss in relation to the objective 2

Fig. 1 — The Smallest Loss Criterion.
RESULTS OBTAINED WITH THE SMALLEST LOSS CRITERION

To test this methodology, it was adopted, just as an example, a constellation in low Earth orbit. In
this way, the effect of the atmospheric drag was accentuated. Thus, the variation of the semi-major
axis was accentuated and the software developed was submitted to a situation of worse case with
relation to the orbital maintenance of the satellites. Three satellites with circular and equatorial
nominal orbits compose the constellation studied. Therefore, the nominal elements of the satellites
are given by (a@and /in km and angles in radians):

e = 0.00000000 a = 6603.13900000
! = 6603.13900000 i - = 0.00000000
@ = 0.00000000 0 = 0.00000000

It may be assumed that in the initial instant the satellite 1 is entering in the visibility cone of the
ground tracking station and the actual orbital elements of the satellite | are given by:
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Satellite 1:

a; =6601.93044509 L = 0.00000000 H, = 0.00000000
e = 0.00000000 o, = 0.00000000 fi = 0.00000000
i = 0.00000000 M, = 0.00000000 8 = 0.00000000

where M is the mean anomaly, » is the eccentric anomaly, s it is the true anomaly and 4 is the
true longitude. The actual orbital elements of the others satellites are given by:

Satellite 2:

a, = 6601.93044509 Q = 0.00000000 u, = 2.09439522
e = 0.00000000 @, = 0.00000000 f2 = 209439522
i, = 000000000 M, = 209439522 f, = 209439522
Satellite 3:

a, = 6601.93044509 £, = 0.00000000 u, =  4.18879042
e = 0.000000600 a;, = 0.00000000 f3 = 4.18879042
I, = 0.00000000 M, = 418879042 8, = 418879042

To assist the specifications of the mission, the satellites should be positioned in such a way that the
difference between the true longitudes (A#,, Af, and A#,) should be 2.09439435 rad (120

degrees). With the actual true longitudes &,, @, and &, we can calculate the position constraints
36,, 66,, 88, and 88, which represent the position error of the satellites, as shown in the Figure 2:
T ‘. Satellite 3

%

: . -
Satellite 18- ¢ %=% @ o0 am

v

i I

Adh \a
aB1 = AB2 = A Py
Satellite 2
Fig. 2 — Nominal position of the satellites.
2z
6,<6,: 58, =(92-9,)—~3— (8)
0,<8,: 86,=027-6 +92)_2Tfr 9)
6,<0,: &6, =(6'3—62)—sz ‘ (10)
6, <6,: 582=(27r—6'2+83)—2?ﬁ (11)
6,<6,: 66,=(6,-6, -%’r (12)
6,<0,: 86, =(2;r-93+9,)-331’- (13)
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If the difference between the nominal and actual elements, and the position constraint 6¢ do not
satisfy the tolerance previously specified, at least a correction maneuver becomes necessary. The
actual position error for the satellites are: 86, = 86, = 66, = 66 = 0, but the error in the semi-
major axis is -1.20855491 km. Considering that it is necessary to execute the maneuver, several
possible maneuvers are calculated, each one of them with different values of the semi-major axis of
the final orbit and different values of the time spent for the maneuver. The semi-major axis and the
time, vary from predefined values belonging to an operation range for the satellite. Thus we obtain
the orbital elements of the transfer orbit, where Av is the total velocity increment and 7 is the time

(14)

spent in the maneuver.

Maneuver I: @, = @, pppmg =6603.139 km

a = 3813.50753965 e = 0.84297654 @ = 3.29684376 Av = 1043563617 1= 701.00770076
Maneuver2: a,, =1.0la,,,,, =6603.364km

a = 383894341245 e = 0.82943908 @ = 3.30375052 Av = 10.16880281  r= 702.00882124
Maneuver 3: a,,, =1.02q,,,,, =6602.914 km

a = 383239271231 e = 0.82972598 @ = 3.30147425 Av = 10.15092314 = 692.00916737
Maneuver 4. a,,, =1034a,,,.., =6603.589 km

a = 382699885076 e = 0383507624 @ = 3.30053543 Av = 10.28923606 7= 701.10831091
Maneuver 5. a,,, =1.04q,,,,, =6602.689 km

a = 1383200577843 e = 0.83006536 @ = 330139725 Av = 10.15886021 /= 692.50914418
Maneuver 6: a,, =1.054,,,., =6603.814km

a = 383677670075 e = 083146479 @ = 3.30331350 Av = 10.21398945  f= 704.45390971
Maneuver 7. a,, =1.06q,,,. ., =6602.464 km

a = 3836.67153417 e = 0.82958744 @ = 3.30024999 Av = 10.16508475  ¢= 699.00894038
Maneuver 8: a,, =107a,,, ., =6604.039 km

a = 383428236173 e = 0.83205939 @ = 3.30253352 Av = 1021971060  £= 702.00859016
Maneuver 9: a,,, =0.99%6a,,,. =6602239km

a = 383483954066 e = 0.82894987 w = 330220747 Av = 1014092168  f= 694.00916232

Applying the Smallest Loss Criterion to select the best maneuver, using normalized measures
withd@, , =0.7rad, Av__ =1lkm/s and T, =1000s to calculate the barycenter, it can be
obtained the following table.

TABLE 1 — Choose of the Best Maneuver.

a0 Av Time Classification
1 0.34398092 9° 10.43563617 9° 1 701.00770076 5° 9°
2 0.33559710 5° 10.16880281 5° | 702.00882124 8° 5°
0.33072576 1° 10.15092314 2¢ | 69200916737 1 °
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TABLE 1 — Choose of the Best Maneuver (Cont.).

4 0.33920262 g 10.28923606 8" | 701.10831091 6° 8
5 0.33118940 2° 10.15886021 3° | 692.50914418 2° 2°
6 0.33815711 7° 10.21398945 6° | 704.45390971 9° 7°
7 0.33415824 4° 10.16508475 4° | 699.00894038 4° 4°
8 0.33730895 6° 10.21971060 7° | 702.00859016 7° 6°
9 0.33122408 3° 10.14092168 1° | 694.00916232 3® 3°
B 0.33122408 10.14092168 694.00916232
® Verexes ® Best Maneuver ® Burycenter

Therefore, the maneuver 3 is selected, because it is the closest maneuver of the barycenter. Now, 1t
is considered that the satellite 3 is in visibility (8,= 0). Therefore, the satellites present the
following orbital elements:

Satellite 1;

a, = 6602.68166455 .Q, = 0.00000000 u, = 1.56913823
e = 0.00000000 W = 0.00000000 fl = 1.58913823
i = 0.06000000 M] = 1.59913823 9] = 1.59913823
Satellite 2:

a, = 6601.36490371 Q2 = 0.00000000 u, = 4.1899689%
e = 0.00000000 @, = £.00000000 f ; = 4.1895689%
i = 0.00000000 JW2 = 4.18996899 6’2 = 4.18996899
Satellite 3:

a, = 6601.36490371 .Q3 = 000000000 u, = 0.00000000
e = 0.00000000 @, = 0.00000000 f3 = 0.00000000
i, = 0.00000000 M, = 0.00000000 8, =  0.00000000

Thus, the actual position error for the satellites are: 88, = -0.49643566; &8, = 0.00117879;
08, =0.49525687; 5& =0.33095711. Calculating the maneuvers for the satellite 3, we obtain:

Maneuver 11 a,,,, = a,,ppna =6603.139 km

a = 382010647821 ¢ = 0.83967098 @ = 3.29880702 Av = 1037217642  t= 702.20795943
Maneuver 2: a,,, =1.01a,,,,., =6603.364 km

a = 3838.33164219 e = 0.82962949 @ = 3.30368228 Av = 10.17237866  t= 701.80880615
Maneuver 3: a,,, =1.02q,,,., =6602914kn '

a = 3820.02868970 e = 0.83647339 @ = 3.29834695 Av = 1028484948 1= 692.32301320
Maneuver 4. a,, =1.03a,,,. . =6603.589 kin

a = 3831.09118064 e = 0.83285319 @ = 330165542y  Av = 1022995622 I= 699.50860888
Maneuver 5: a,,, =1.04q,,,.., =6602.689 km

a = 3829.8951038% e = 0.83097526 @ = 3.30092382 Av = 10.17578723 1= 692.00905341
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Maneuver 6: a,,, =1.05q,,,,, =6603.814 km

a = 3801.74263575 e = 0.85048278 @ = 3.29372503 Av = 1059662285 1= 704.00701406
Maneuver 7: a,,, =1.004, ., =6602.464 km

a = 382194279967 e = 0.83753216 @ = 3.29916105 Av = 1032212647 = 699.00822263
Maneuver 8: a,,, =1.07a,,,,, =6604.033 km

a = 3827.14559359 e = 0.83613392 w = 3.30076197 Av = 1030244922 = 702.80820995
Maneuver 9: a,, =0.9964a,,,,, =6602239kn

a = 3821.52887093 ¢ ¢ = 0.83498276 @ = 3.29863995 Av = 1025135796 {= 690.50874504

Applying the Smallest Loss Criterion to select the best maneuver, using normalized measures
withdd  =0.7rad, Av__ =1lkm/s and T, =1000s to calculate the barycenter, it can be

max

obtained the following table.

TABLE 2 — Choose of the Best Maneuver.

o8 Av Time Classification
1 (.34323784 8° 1037217642 8% | 702.20795943 7 g°
p 0.33646255 4° 10.17237866 1® | 701.80880615 6° 4°
3 0.33606968 3° 10.28484948 5% 169232301320 3° 5°
4 033739004 5° 10.22995622 3° | 699.50860888 5° 3°
5 0.33236134 1° 1017578723 2% 1692.00905341 2° 1°
6 0.35149893 9° 10.59662285 9" | 704.00701406 9° 9"
7 0.34016808 6° 13.32212647 7° | 699.00822263 4° 6°
8 034122538 7° 10.30244922 6° 1 702.80820995 8° 7°
9 0.33416546 2° 10.2513579¢6 4% | 690.50874504 1° 2°
B 0.33432978 10.19984128 694.77553487
® Vertexes ® Best Maneuver ® Barycenter

Therefore, the maneuver 5 is selected. Now, it is considered that the satellite 2 is in visibility
(8,=0). Therefore, the satellites present the following orbital elements:

Satellite 1:

a, = 660225313837 £, = 0.00000000 u, =  3.69287951

e, =  0.00000000 @, =  0.00000000 fi = 3.69287951

i, = 0.0000000 M, = 369287951 8, = 369287951

Satellite 2:

a, = 6600.67050929 £, = 0.00000000 ¥, = 0.00000000
e, =  0.00000000 ®, = 0.00000000 f; = 000000000
i, = 000000000 M, = 0.00000000 #, = 000000000
Satellite 3.

a, = 6602.43722227 Q= 0.00000000 u, = 159657315
e, =  0.0000000 @, = 000000000 fi = 159657315y
i, = 000000000 M, = 159657315 g, = 15957315
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Thus, the actual position error for the satellites are: 66, = 0.32893532; &4, = 0.32240998;
06, = 0.00652534; 56 =0.21929022. Calculating the maneuvers for the satellite 2, we obtain:

Maneuver 1. a,, =4, ... =6603.139 km _

a = 377237771504 e = (.86553757 @ = 3.28511293 Av = 1090875480  #= 700.50599655
Maneuver2: a, , =10la,,, , =6603.364 km

a = 3823.66473495 e = 0.83557977 @ = 3.29961906 Av = 1027556023 = 695.80850117
Maneuver3: a, , =1.02a,,,. ., =6602.914 km

a = 3798.81533139 e = 0.84792405 @ = 329267829 Av = 1051590970 = 692.00758398
Maneuver4: a,, =1.03qa,,,., =6603.589 km

a = 381345483938 e = 0.84224231 @ = 3.29699006 Av = 1041646132 = 699.00782878
Maneuver 5: a,,, =1.04a,, . , =6602.689km

a = 3815.40470459 e = 0.84007344 @ = 3.29739101 Av = 1036610269 {= 696.00810762
Maneuver 6: a,. , =1054,,,.., =6603.814km

a = 382287235742 e = 0.83877470 @ = 3.29977568 Av = 1035876729 = 704.10794359
Maneuver 7: a, , =1.06a,,,.. =6602.464km

a = 383451473078 e = 0.82946812 @ = 3.30244565 Av = 1015517129 £= 695.50905470
Maneuver 8: a,, , =1.07a,,,.,., =6604.039 km

a = 383227494773 e = 0.83282349 @ = 3.30220482 Av = 1023427641 = 701.5085348%
Maneuver 9: a,,, =099%a,,,.. ., = 6602239 km

a = 3831.52178764 € = 0.83010164 & = 330149199 Av = 1016054631 = 692.50911115

Applying the Smallest Loss Criterion to select the best maneuver, using normalized measures
withé@,,, =0.7rad, Av_ =11km/s and T, =1000s to calculate the barycenter, it can be
ebtained the following table,

TABLE 3 - Choose of the Best Maneunver.

36 Ay Time Classification
1 0.02871318 9° 10.90875480 9° | 700.50599655 7 o°
2 0.00575679 3 10.277556023 4° | 69580850117 4° 1°
3 0.01195674 7° 10.51590970 8% | 692.00758398 1 B®
4 001179272 6° 1041646132 7° | 699.00782878 &° ) &°
5 0.00879068 5° 10.36610269 6° | 696.00810762 5° 3°
6 001514568 g 10.35876729 5% | 704.10794359 9° 7°
7 0.00164066 2° 10.15517129 1® | 695.50905470 3° 5°
3 0.00687667 4° 10.23427641 3 | 701.50853489 8° 2°
9 0.0012963 1° 10.16054631 2° 169250911115 2° 4°
B 0.00496478 1027720910 693.34191641
® Vertexes ® Best Maneuver ® Barycenter

Therefore, the maneuver 2 is selected.

130



The comparison among the results obtained with the application of the multi-objective methodolo_gy
developed in this work (Criterion of the Smallest Loss) and the results obtained with the application
of nominal maneuvers (each satellite is maneuvered to reach the nominal orbit), can be seen in the
Figures 3 to 5. Figure 3 compares the position error, after maneuvering the three satellites of the
constellation. Figure 4 compares the sum of the velocity increment necessary 1o maneuver the
satellites of the constellation. Figure 5 compares the sum of the time spend to maneuver all the
satellites.

Position Error Velocity Increment
(SHNOMNAL - 59er;_omgcrwg A wosar > DVamri-orrecrive
398.77066907 % 3.64122259 %

31
30
FA Multi-Objective 0.00575679 rad 0 Multi-Objective  30.6022706 /s
M Nominal 0.02871318 M Nominal 3171656739
Fig. 3 — 86,01 ossective and 88,40, - Fig. 4 - Av,, 0 owiccnive and AV, 0m -
Time Spent

At NOMINAL > ArM’i[.l';'_}'".' -OBJECTIVE

1,14889065 %

B Multi-Objective 2079.826722
B Nominal 2103.721657 5

Fig. 5 — Afyun omeerve © A noranar -

Figures 3 to 5 shown that the multi-objective methodology presented better results. The position
error obtained by the multi-objective methodology was considerably smaller than the error obtained
by the nominal methodology. The necessary velocity increment and the time spend to maneuver the
satellites were also smaller when the multi-objective methodology was applied.
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CONCLUSION

In this article, which is part of the work developed by Rocco (2002), the problem of orbital station
keeping of satellite constellations was studied as a problem of multi-objective optimization. The
multi-objectives methodologies found in the literature, generally began the problem with an multi-
objective approach but ended reducing the problem to the mono-objective case, by means of
simplifications or influence factors. Or, when the approach was really multi-objective, the found
result was a group of solutions candidates to the optimal solution, and in this case, for the choice of
the optimal solution we should use other approaches external to the problem, The best methodology
found in the literature, that bases on Pareto (1909), present this deficiency, as shown in Rocco et al.
(2003). Therefore, it seems that doesn't exist in the revised literature any method really capable to
accomplish the multi-objective optimization, considering all the objectives of the problem equally.
Thus, it was used a methodology that at least to consider equally all the objectives. This
methodology is based on what it was called Smallest Loss Criterion. It was considered in the
example presented in this work three objectives, but the Smallest Loss Criterion allow to consider
s0 many objectives as necessary. The constellation considered here was composed by » = 3
satellites. However, the multi-objective optimization method and the developed software for the
control of the constellation allow easily to consider more than 3 satellites. But the concept for the
problem for » = 3 is identical to the problem for » > 3, but in this case, we would have a larger
computer effort. So, it was opted to consider » = 3. The developed software was tested and it was
verified that it is capable to generate reliable solutions. The software was built in modules, so it can
be enlarged considering a larger number of satellites and/or other geometric configurations of the
constellation, according to the necessity. The application of the multi-objective methodology
generated results clearly superiors, as shown in the Figures 3 to 5. With the application of this
methodology it was possible to obtain better results with relationship to the three objectives
simultaneously. In a real application, the economy obtained can be extremely important.
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