
Published in DASIA 2005 Conference Proceedings.

Systematic Generation of Test and Fault Cases for Space
Application Validation

Ana Maria Ambrosio1*, Eliane Martins2,

Nandamudi L. Vijaykumar1, Solon V. de Carvalho1
1National Institute for Space Research (INPE), Av. Dos Astronautas, 1758, S J Campos, 12227-

010, SP, Brazil (ana@dss.inpe.br)
2Institute of Computing - Campinas State University, P.O. Box 6176 - Campinas, 13083-970, SP,

Brazil

* Corresponding author. FAX: +55-12-3945-6625 and E-mail address: ana@dss.inpe.br

Abstract

The most critical activity of a V&V process is the test design, as it should be
systematic and less dependent of the expert inspiration, mainly for companies
developing software whose failures place millions of dollars at risk. Additionally, the
trend towards service standardization for the most common space applications
motivated us to define a conformance testing methodology added with fault
injection concepts. The methodology, named CoFI, defines steps to generate tests
that cover the conformance of an implementation with respect to a standard
specification. It allows to generate repeatable and controllable test cases and is
conceived to be automated and easy to learn. The idea is to translate the service
behavior, written in natural language, into a FSM-based notation, then
automatically generate test cases. Its main characteristic is to separate in distinct
diagrams the normal, the exceptional behavior, those explicitly-specified and those
based on mapping an external fault model. The paper describes the CoFI testing
methodology and its use in two real case studies. In the first the TC Verification
service specified in ECSS-E_70-41A was used for showing the feasibility of
generating test cases from a publicly recognized standard specification. In the
second, an OBDH-Scientific_Experiment protocol, developed at INPE, was used
for evaluating the set of test and fault cases created by the CoFI methodology.
Preliminary results pointed out that: (i) the methodology is simple and effective
specially for creating fault cases based on a fault model; (ii) current standard
service specification requires extra information to achieve an applicable set of test
cases. Effectiveness metrics of the tests were obtained with specification-based
mutant analysis.

1. Introduction

With the increasing use of acquiring third party software products by space
agencies and companies, the conformance testing becomes more important.

Published in DASIA 2005 Conference Proceedings.

Contractors make the software specification as part of contract and have to
ascertain whether the delivered implementation really conforms to the respective
specification. In other cases, the implementations should conform to standardized
services. In the latter, the test case suite shall not be designed based on the
software source code, as the source code is generally not available. The
conformance is a kind of black-box testing so information about how the software
should behave under certain inputs (dynamic specification) besides the data
description (static specification) is equally important in the software documentation,
in order to become the software testable for conformance. In other words, the
software documents should also provide testability.

This paper presents a testing methodology named CoFI stated from conformance
and fault injection, which establishes a guide for a tester to design conformance
test cases and fault injection experiments (or fault cases). The faults to be covered
are those mimicking problems caused by the environment space radiation to
computational communication system on board of satellites. The proposed
methodology includes the use of formal methods, which allows automation, so
contributing to cost reduction in developing space applications. In order to mitigate
formal methods side-effects [1] like the state space test number explosion, the
methodology advocates to model normal and exceptional behavior into distinct
models. Once the tests are derived from a normatized specification, in the CoFI
approach the tests may be reused, i.e., they may be applied to validate different
implementations. The general idea behind the CoFI approach is illustrated in
Figure 1. In the figure, the ECSS-E-7941A is shown as an example of a normatized
specification to which the CoFI may be applied. The Ferry-injection architecture is
the proposed architecture for supporting communication fault injection [9], [10] in
the methodology.

Ground-board
communication statndard

(ECSS-E-70-41A)

Abstract Test Suite
(ATS)

Test
purposes

Technical specification

(mission dependent)

External faults

Ferry-injection
architecture

Figure 1: Some artifacts handled by the CoFI Approach

The CoFI testing methodology was conceived for satellite on-board communication
software validation, but it is not restricted to this kind of application. The coherence
of the methodology steps was empirically shown in two real examples: the
Telecomand Verification service (ECSS-E-7041A) and the OBDH-EXP protocol

Published in DASIA 2005 Conference Proceedings.

used in INPE`s scientific satellite missions. An analysis of the efficiency of the CoFI
test sequence related to the adequacy criteria of finite state machine mutation
faults was performed.

This paper is organized as follows: section 2 describes the testing methodology,
section 3 illustrates the application of the methodology in two case studies and
section 4 reports the evaluation results and remarks.

2. The testing methodology

The CoFI is a testing methodology that guides the test personnel to design both
kinds of tests: conformance (test cases) and robustness (fault cases). The resulting
set of test and fault cases are named abstract test suite. The abstract name means
implementation independency.

The testing methodology is based on formal methods, however, it uses UML-
diagrams, which may be re-used from the development phase (if available), and
guides the creation of formal specifications in several smooth steps. These steps
are illustrated in Figure 2 in a UML-activity diagram and shortly described in the
following:

(1) Find the services in the specification: identify the services from a given
normatized service description (and a corresponding technical specification) that
should be tested, chose one service to proceed in the next steps;

(2) Identify the service users and the physical communication medium, i.e., define
the systems that interfaces with the service and the hardware and software
providing the communication medium;

(3) Identify observable inputs, outputs, operational variables, the test architecture
and the points of control and observation (PCO): this step consists of identifying
the interfaces of the unit under test (UUT) and the observability provided for
executing the tests. Only the accessible inputs should be chosen (otherwise the
test can not be executed). Operational variables, defined in [2], describe
counters, packet fields, special parameters, timers, etc., which allows one to
better understand the UUT. The testing architecture and the PCOs allow
preparing the test bed for the test execution. In this work we have been taking
into account the Ferry-injection test architecture that provides communication
fault injectors [9];

(4) Describe the functionality of the service as use cases: one or more use cases
may be created. We suggest describing the use case including name, general
description, entry and exit conditions and flow of activities, named scenarios [3].
Three types of scenarios should be defined: basic scenario, which describes
the most common flow of activities that characterize the service; alternative
scenarios, created from the basic scenario on considering all the possible
alternative activities the service provides according to the specification;
exceptional scenarios, map the exceptions as specified. In [3] one may found
the rules to describe the alternative and exceptional scenarios.

Published in DASIA 2005 Conference Proceedings.

 s4: Describe the serv ice
 as use cases

s3: Identify inputs, outputs,
op variables, T. Architect., PCOs

s4.3: Define exceptional
scenarios

s5: Translate norm al scenarios
into Seq. diagram s

s10: Create exceptional scenarios
into Seq. diagram s

s4.1: Define basic scenario

s6: Translate Seq. diagram s into
norm al state diagram s

s9: Define a fault m odel
s7: Generate test cases

s2: Identify users & the
com m unication physical m edium

s11: Translate Seq. diagram
into exceptional state diagram

s1:Find the serv ices in the
specification

s13: Com pose the Abstract
Test Suite

s4.2: Define alternative
scenarios

s8: Create a transition
m atrix

s12: Generate the fault cases
 (workload and fault instances)

Figure 2: Steps for generating an abstract test suite (activity diagram)

(5) Translate normal scenarios into Normal Sequence Diagrams: the basic and the
alternative scenarios are described into sequence diagrams;

5.1) identify the entities interacting with the service under test. At least three
entities should exist: the unit under test, its peer, and the communication
medium. Each entity is a vertical line in the diagram,

5.2) translate the scenario as a sequence of input and outputs of the unit under
test (drawing interactions in horizontal lines);

Published in DASIA 2005 Conference Proceedings.

(6) Translate the Normal Sequence Diagrams into Normal State Diagrams: in this
step normal sequence diagrams modeling all the sequence of inputs and their
corresponding observable outputs are translated into state diagrams (which
formally are finite state machine -FSM). Rumbaugh et all. describe how to make
such a translation [4];

(7) Generate test cases: on having the specification in a FSM, one may use a tool
able to traverse the transitions of a state diagram or manually combine
sequence of events which characterize the test cases for normal situations.
Condado tool [5] has been used in the examples illustrated here;

(8) Create a transition matrix: translate the normal FSMs of the step 6 into a
transition matrix. In this matrix the rows are events, the columns states and the
elements are the action (or outputs) and the next state. Generally, this is a
sparse matrix (there is non-specified fields). In this step such a matrix should be
completed. In doing this, the person responsible for the tests is forced to define
what the service should do when a correct event occurs in a wrong state. (Lacks
in the standard or the technical specification, means unspecified tests;

(9) Define the fault model: the fault model express the communication medium’s
faults where the service will be run. A communication fault model includes faults
like: message lost, delayed, corrupted or duplicated. (Other kind of fault like
memory fault (single bit-flip, multi-bit-flip) or processor may be used if the testing
architecture may support them for executing the tests). The choice of the fault
model is restricted to a fault injector available as the execution of the fault cases
requires a fault injector. Only the executable faults may be mapped. A fault of a
communication fault model is characterized for the following parameters: instant
(when to apply), type (what kind of fault), mask (how modify the message in
case of corruption fault), location (where to inject), repetition pattern (how many
times to inject). The set of faults comprises the faultload. In order to design the
exceptional scenarios and fit them well with the testing execution, fault primitives
should be defined;

(10) Create exceptional scenarios in Exceptional Sequence Diagrams: this step
consists in representing in sequence diagrams the exceptional behavior. Three
types of exceptional scenarios are mapped:

10.1) the scenarios identified in step 4.2, i.e., the exceptions stated in the
specification,

10.2) the scenarios identified in step 8, whose known inputs lead the system to
unknown state or to a crash (sneak paths),

10.3) scenarios created on combining the fault model to the normal scenarios
identified in the step 5.

Include the same entities of the step 5 and add the fault injectors. The Ferry-
injection architecture comprises two fault injectors: the controller (FIC) and the
executor (FIM). The fault primitives, defined in step 9, are used here as a special
interaction between the fault injectors, which indicates the fault to be applied in
order to establish such a scenario. This interaction is named fault interaction.

Published in DASIA 2005 Conference Proceedings.

(11) Translate the Exceptional Sequence Diagrams into a Exceptional State
Diagram: in this step a FSM modeling all the exceptional scenarios is generated;

(12) Generate fault cases: derive fault cases either directly from the sequence
diagrams or from the exceptional state diagrams. For the second option, existing
tool may be used but information on fault transitions should be translated to
commands to the fault injectors. In the first case, although automation is not
provided, the information to the injectors is explicitly designed;

(13) Compose an Abstract Test Suite: the set of test and fault cases (see steps 7
and 12) are translated into a testing language. ISO defined the TTCN1 as a test
notation independent of any implementation language [6]. The PLUTO2 [7],
defined by ESA may be also chosen to write the tests. Another option is the
UML Testing Profile [8] recently defined by OMG.

3. Experimental evaluation through case studies

3.1. ECSS- TC Verification – an standard service
The TC verification service specified in ECSS-E-7041A was used as a case study
for the analysis of the feasibility of the CoFI methodology when stating test case
design from a standard service description. On firstly applying the CoFI steps
based exclusively on such a standard description, the resulting formal specification
is presented in Figure 3. A one-state diagram represents the normal service
behavior, which seems to be little realistic.

 Figure 3: (a) state diagram (b) test case in TTCN notation

1 Testing and Test Control Notation
2 Procedure Language for User in Test and Operations

Test Case Name : telecommand acceptance, start and completion execution report

with success

Purpose : To verify the telecommand execution.

Behavior
Description

Constraint Comments

Expected Output

PCO1 ? TC

PCO3 !
AccSuc_Rep
StartSuc_Rep
CompSuc_Rep

[Ackbits =
1101]

A TC arrives requiring
reports for acceptance,
starting and completion
execution steps

Acceptance Success
Report Start-execution

Success Report
Completion-execution

Success Report

Detailed Comments:
The “?” indicates a received event, the “!” indicates a send operation.
PCO1: is the interface with the Packetization Protocol layer in the satellite System.
PCO3: is the interface with the ground system
TC: is an event that carry out telecommand packet data for TC verification
purposes.

TC[0001]

CompSucc_Rep

Verifying

TC[0000]

TC[0011]

PrSucc_Rep

CompSucc_Rep
TC[0111]

StartSucc_Rep
PrSucc_Rep

CompSucc_Rep

TC[1111]

AccSucc_Rep
StartSucc_Rep
PrSucc_Rep

CompSucc_Rep

TC[0110]

StartSucc_Rep
PrSucc_Rep

TC[0100]
---------------StartSucc_Rep

TC[0010]
-----------------PrSucc_Rep

TC[1000]
---------------AccSucc_Rep

TC[1100]

AccSucc_Rep
StartSucc_Rep TC[0101]

-----------------StartSucc_Rep
CompSucc_Rep

TC[1001]

AccSucc_Rep

CompSucc_Rep

TC[1011]

AccSucc_Rep
PrSucc_Rep

CompSucc_Rep

...

Published in DASIA 2005 Conference Proceedings.

The test cases are straightly identified, each arc represents a test case. Figure 2(b)
illustrates a test case written in TTCN, in which the two points of control and
observation identified are: PCO1 - from where the service receives TC packets and
PCO2 - from where the service sends TM packets.

In order to create more realistic test cases, some assumptions were taken,
concerning the communication between the service and the TC executor.
Information about the TC execution must be identified by the service; otherwise it is
impossible to produce the requested reports. This interface was assumed in an
abstract form, thus giving flexibility to different implementations. This assumed
interface, a PCO3 from where commands like: StartOK, PrOK(p), FinOK, StartNOK,
PrNOK(p), FinNOK are received by the service, indicates respectively that a TC
execution have stated, progressed and finalized correctly, or incorrectly. In
providing such a definition, more realistic test cases were derived. The fault model
applied to this interface includes message lost, delayed and corrupted. Part of the
sequence diagram modeling the delayed message from the TC Executor is shown
in Figure 4.

TC(... Ack=1110 ...)
send(TC)

gr-board
comm.

TC
executor

board-board
comm.

Borad
Appl proc

Gr Appl
proc

StartOK

PrOK(1)

PrOK(2)

FinOK

TC(... Ack=1110 ...)

send(TC)

TM(... PrFail_rep, 1,f ...)

StartOK

PrOK(1)

PrOK(2)

FinOK

TM(... PrSucc_rep, 2 ...)

TM(... PrFail_rep, 1,f ...)

TM(... PrFail_rep, 2,f ...)

FICFIM

f.delay (1, PCO3)

TM(... StartFail_rep..f ...)

f.delay(2, PCO3)

TM(... StartSucc_rep ...)

TM(... FinFail_rep f...)

TM(... FinSucc_rep ...)

to

to

Figure 4. Exceptional Sequence Diagram for delay in PCO3

The normal and exceptional state diagrams are presented in Figures 5 and 6
respectively. Figure 6 includes only the specified exceptions. The diagram
modeling exceptions related to the 10.2 are not presented here for lack of space.

Published in DASIA 2005 Conference Proceedings.

On combining the fault model (delay and lost message) and information corruption
one may have the state diagrams shown in Figure 7(a) and 7(b). In the latter
diagrams the state named received TC* represents the set of states: Verify fields,
Cksum correct, Apid correct Length correct, Type correct and Subtype correct,
Fields correct.

The set of test cases were created by submitting the FSMs to Condado. A total of
107 test and fault cases were derived.

Lenght_OK

a4: verify type

Type_OK

a5: verify
subtype

AppData_OK

a7: analyse
response

Cksum_OK---------------------
a2: verify Apid

Subtype_OK

a6: verify
Appdata

Type
correct

Lenght
correct

Subtyp
acept

Verify
fields

Cksum
correct

Apid
correct

Apid_OK------------------
a3: verify

Lenght

TC (...)--------------------a1: verify TC
packet syntax

AccOK [bit3=0]

a9: evalute execution

feasibility

AccOK [bit3=1]

TM(AccSucc_rep)
a9: evaluate execution

feasibility

Fields
correct

Inicial

AccOK [tci]

a8: start execution

StartOK [bit2=0]

-

FinOK [bit0=0]

StartOK [bit2=1]

TM(StartSucc_rep)

FinOK [bit0=1]

TM(FinSucc_rep)

FinOK [bit0=1]

TM(FinSucc_rep)

PrOK(p) [bit1=0]

-

PrOK(p) [bit1=1]

TM(PrSucc_rep(p))

TC
inicialize

d

TC
Acept

FeasibilityOK
------------------------------a8: start execution FinOK [bit0=0]

Sintaxe
correct

Figure 5: Normal State Diagram

Published in DASIA 2005 Conference Proceedings.

TC<f0,Lenght_OK>

a4: verify typeTC<f0,Type_OK>

a5: verify subtype

TC<f0,Cksum_OK>-----------------------a2: verify Apid

TC<f0,Subtype_OK>
----------------------- ---

a6: verify
Appdata

Type
correct Lenght

correct

Subtyp
accept

Verify
fields

Cksum
correct

Apid
correct

TC<f0,Apid_OK>------------------
a3: verify lenght

TC<f1,Cksum_NOK>-----------------------------
TM(AccFail_rep(2))

TC<f1,Apid_NOK>------------------------TM(AccFail_rep(0))
TC<f1,Lenght_NOK>----------------------------
TM(AccFail_rep(1))TC<f1,Type_NOK>-------------------------

TM(AccFail_rep(3))

TC<f1,Subtype_NOK>-----------------------------
TM(AccFail_rep(4))

TC<f1,AppData_NOK>-------------------------
TM(AccFail_rep(5))

TC(...)------------------------a1: verifica sintaxe
do pacote TC

Inicial

FinNOK(f)<f1>

TM(FinFail_rep(f))

TC(...)----------------------
a1: verify TC packet

syntax

StartOK [bit2=1]

TM(StartSucc_rep)

PrNOK(p, f) <f1>

TM(PrFail_rep(p, f))

PrOK(p) [bit1=1]

TM(PrSucc_rep(p))

TC
inicializ

ed

TC
Acept

Fields
correct

AccOK [bit3=1]

TM(AccSucc_rep)
a9: avaluate execution

feasibility

FeasibilityNOK(f)

TM(StartFail_rep(f))

Syntax
correct

FeasibilityOK

a8:start execution
StartNOK(f)<f1>

TM(StartFail_rep(f))

FinNOK(f)<f1>

TM(FinFail_rep(f))

TC<f1,AppData_OK>-------------------------a7: analyse response

Figure 6: Exceptional State Diagram

FinOK
------------------------TM(FinFail_rep(f))

TC(...)----------------------
a1: verify TC
packet syntax

StartOK [bit2=1]

TM(StartSucc_rep)

PrOK(p) [bit1=1]

TM(PrSucc_rep(p))

TC
inicializ

ed

TC
Acept

receive
d TC *

AccOK [bit3=1]

TM(AccSucc_rep)
a9: evalute execution

feasibility

Syntax
correct

FeasibilityOK

a8: start execution

Initial

to<f2>

TM(StartFail_rep(f))

to<f2>
---------------------------TM(FinFail_rep(f))

PrOK
------------------------TM(PrFail_rep(p,f))

StartOK
---------------------TM(StartFail_rep(f))

FinOK
------------------------TM(FinFail_rep(f)) TC(...)----------------------

a1: verify TC
packet syntax

StartOK [bit2=1]

TM(StartSucc_rep)

PrOK(p) [bit1=1]

TM(PrSucc_rep(p))

TC
inicializ

ed

TC
Acept

receiv
ed TC

*

AccOK [bit3=1]

TM(AccSucc_rep)

a9: evalute execution
feasibility

Syntax
correct

FeasibilityOK

a8: start execution

Initial

CmdDesc<f1>
---------------------tbd

PrOK
------------------------TM(PrFail_rep(p,f))

StartOK
---------------------TM(StartFail_rep(f))

CmdDesc<f1>

tbd

CmdDesc<f1>

tbd

 (a) (b)

Figure 7: Exceptional State Diagram for (a) delay and (b) corruption

Published in DASIA 2005 Conference Proceedings.

3.2. - OBDH-EXP protocol:

In order to evaluate the CoFI approach in an application where tests could be
executed, the commands recognition software, part of the communication protocol
developed at the National Institute for Space Research (INPE) was used. This
protocol is in charge of providing the communication between on-board data
handling computer (OBDH) and an intelligent satellite payload for Brazilian
scientific satellites, the APEX – Alpha, Proton and Electron Monitoring Experiment
in the Magnetosphere. The APEX sends data only under OBDH request, in a
master-slave relationship. The physical communication is the RS-422 serial
interface in asynchronous mode. Whenever the experiment fails, the OBDH times
out. From this case study, we present some fault cases generated. As this is an in-
house developed software, the test and fault cases, the workload (inputs) and the
fault scenarios were written in symbols recognized by the test personnel and
applied to a corresponding implementation (see Table 1). In this case study all
information about the implementation was available, so the full test suite could be
executed and the results could be analyzed. The diagrams are not shown here for
lack of space.

Table 1: Fault cases for OBDH-EXP protocol implementation
 Input Observed Output Comments

1 EA timeout SYNC - not-recognized

2 EB (delay) no reaction No reaction as expected

3 EB (delay) 92 timeout EXPID - not received

4 EB 91 timeout EXPID - unknown

5 EB92 20 timeout TYPE - invalid

...

33 EB92 1A 4 0000 0000 timeout Incorrect address

4. Conclusion

The paper presented a methodology to systematically designing tests which focus
on errors caused by the space environment problems. The experiments pointed
out that the methodology is effective to reduce testing costs in a mission as test
and fault cases may be re-used. Additionally, the methodology provides
mechanisms to plan the test coverage and effort early in the development.
In order to evaluate the CoFI set of test and fault cases, the specification-based
mutation concept was used, supported by prototyped tools of the PLAVIS project
[11]. A FSM of the service behavior including the total specification was used for
mutant creation. The mutants are classified according to the faults they represent
as shown in Table 2 for both examples presented in this paper. Results of the
experimental evaluation with the case studies are summarized in Table 3, in which
number of test and fault cases, partial models and the mutation score are
presented.

Published in DASIA 2005 Conference Proceedings.

Table2: Mutant operators
Mutant Operators # mutants for TC Verification # mutants for OBDH-Exp

Protocol

Modified Output 546 48
Deleted Output 26 16
Deleted Transition 21 9
Modified input 508 68
Deleted Input 30 16
Modified Initial state 10 4

 1141 161

Table3: Evaluation results
 # Partial models

(FSMs)
External fault

types
Test cases Fault

cases
Mutation

score

TC Verification 5 3 21 86 0.978

OBDH-Exp Prot. 5 4 20 594 1.000

Some difficulties were found in mapping the TC Verification service (ECSS-E-
7041A) into FSMs. This difficulty may be partially explained by omissions in the
service description given in natural language. It points that such standards lack of
testability requirements thus; extra information is necessary to achieve an
applicable set of test cases.

Preliminary results pointed out that the methodology is simple and effective
specially for creating fault cases based in a fault model. Additionally, on
establishing the test architecture and the points of control and observation
previously in the test design, as the CoFI methodology states, the tests may help
the identification of lacks even in a publicly recognized space service specification.

References

[1] Lai, R. A survey of communication protocol testing. The Journal of Systems and
S/w, 62, 2002, pp. 21-46.

[2] Binder, R. Testing Object-Oriented Systems-Models, Patterns and Tools –
Addison-Wesley 2000

[3] Ryser, J. Glinz, M. (2000). SCENT: A Method Employing Scenarios to
Systematically Derive Test Cases for System Test. Technical Report, Institut für
Informatik, Universität Zürich.

[4] Rumbaugh, et al. Object-oriented Modeling and Design. Prentice Hall, 1991.

[5] Martins,E; Sabião,S.B; Ambrosio, A.M. ConData: a Tool for Automating
Specification-based Test Case Generation for Communication Systems. S/w
Quality Journal, 8 (4) (1999) 303-319.

Published in DASIA 2005 Conference Proceedings.

[6] European Telecommunications Standards Institute. ETSI ES 2001-873-1.
Methods for Testing and Specification (MTS) - The Testing and Test Control
Notation, v2.2.1, 2003.

[7] European Space Agency- ECSS-E-70-32A - Space engineering Procedure
Language for User in Test and Operations. Issue Draft 5, 2001. Noordwijk: ESA
publication Division.

[8] Management Grou (OMG). UML 2.0 Testing Profile Specification. Disponível
em:<http://www.omg.org/docs >.

[9] Martins, E.; Mattiello-Francisco, M.F. A Tool for Fault Injection and
Conformance Testing of Distributed Systems. In: Latin-American Dependable
Computing Symposim, 1., São Paulo, Brasil, october 2003. Lecture Notes in
Computer Science. Berlin: Springer Verlag, p. 282-302, 2003b.

[10] Ambrosio, A.M.; Martins E.; Mattiello-Francisco M.F.; Silva C. S. ; Vijaykumar
N. L. On the use of test standardization in communication space applications. In:
International Conference on Space Operations, SpaceOPs 8., 2004. 17-21 May,
Montreal, Canadá. Proceedings... Montreal:AIAA, 2004. Disponível na
biblioteca digital URLib: <WWW.SPACEOPS2004.ORG>. Acesso em: 2 sep.
2004.

[11] PLAVIS (2005). Plavis - platform for software validation & integration on space
systems. Online in: http://www.labes.icmc.usp.br/plavis/index.html, last access:
29/04/2005.

