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Abstract. Approximate solutions of the Grad-Schlüter-Shafranov equation based on variational methods
are developed. The power series solutions of the Euler-Lagrange equations for equilibrium are compared
with direct variational results for a low aspect ratio tokamak equilibrium.

1. Introduction
The accurate solution of the nonlinear Grad-Schlüter-Shafranov (GSS) equation for plasma
equilibria requires, in general, numerical iterative methods. Nevertheless, approximate
analytical solutions are still very useful for calculating global plasma equilibrium parameters
and for simulating the equilibrium evolution in tokamaks. The use of ux coordinates is
particularly convenient in this respect. They allow the source term in the GSS equation to be
easily described in terms of any convenient pair of input proles, extending the range of possible
solutions [1] . Moreover, using appropriate spectral representations for the transformation
functions R(½,µ), Z(½,µ), from cylindrical to ux coordinates, the dependence upon the poloidal-
angle µ can be exactly removed in the calculation of ux surface averaged quantities [2] . Then,
the radial Fourier coefcients in the coordinates transformation can be evaluated by variational
methods that render the internal energy U(a) of the plasma stationary [3] [4] [5] . In this way, the
problem of nding the ux coordinates is reduced to the solution of one-dimensional equations
for the spectral coefcients in the radial coordinate ½.
Following the Lagrangian approach, the variational procedure leads to a set of coupled,

nonlinear Euler-Lagrange (EL) equations for the radial Fourier coefcients [3] . This system
of equations can be solved numerically in a straightforward manner according to the variational
moment method [4] . Alternatively, in the direct variational or Rayleigh-Ritz method one strives
for parametric forms of these coefcients that lead to a stationary value of U(a) [2] [5] .
This paper compares power series solutions of the EL equations with direct variational

solutions for the spectral coefcients. In Section 2 the variational principle, basic denitions
and the EL equations for the spectral coefcients are briey reviewed. In Section 3 the power
series solutions of the EL equations are presented. In Section 4 approximate solutions obtained
using the direct variational method are described. Finally, in Section 5 a comparison and a short
discussion of the previous results are made.

2. Variational methods
The equilibrium solution of an axially symmetric plasma conguration is described by the GSS
equation. The solution of this equation, inside a given constant ux surface, corresponds to the
extremum of the internal energy of the plasma [3] [5]
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where BP , BT , B0, and p denote the poloidal, toroidal and external magnetic eld components,



and the plasma pressure, respectively. The volume V (a) extends to the boundary magnetic ux
surface denoted by the minor radius a of the plasma. The ux surface averaging procedure leads
to the one-dimensional form
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where p(½) and IT (½) are the plasma pressure and toroidal current proles, respectively.
The geometry dependent quantities V (½), L(½) and K(½) are given in terms of the metric
coefcients in the transformation (R, Z) ! (½, µ) by [6]
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Now, if C(½) denotes one of the Fourier coefcients in the spectral representation for R(½,µ)
and Z(½,µ) it follows that V = V (½; C), L = L(½; C) and K = K(½; C; C 0) [3] . The EL
equation for C(½) becomes
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3. Variational power series solutions
The ux surfaces of a tokamak plasma are well represented by the truncated Fourier series
R(½; µ) = R0(½) + ½ cos(µ) ¡ 1
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which include displacement, elongation and triangularity effects. Quadrangularity and higher
order effects can also be included in a straightforward manner. Furthermore, the radial and
poloidal integrals dening the geometric coefcients in (3) can be performed analytically for an
arbitrary number of terms in the spectral representation [2] .
For each one of the coefcientsR0(½),E(½) and T (½) in the representation dened by (5) one

can write an EL equation in the form of (4). Taylor series expansions of these equations were
performed to generate second, fourth and sixth order power series expansions of the Fourier
coefcients in the radial coordinate ½. The second order approximations are

R0(½) »= Rm + 1
2
R00
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2
E00(0)½2; and T (½) »= T 0(0)½; (6)

where Rm and Em correspond to the major radius and elongation at the magnetic axis,
respectively. The poloidal ux function, in this same approximation, is
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Now, to this order the EL equation for R0(½) gives the following relation between coefcients
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while the equation for E(½) gives
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Fig. 1. Shafranov shift, geometric elongation and triangularity proles, and ux surfaces contours
for an ETE equilibrium, comparing results obtained with power series solutions of increasing order. The
dotted line in this gure corresponds to the second order expansion, the dashed line to the fourth and
the continuous line to the sixth order solution.

The EL equation for T (½), to this order, gives the same equation (8) since the triangularity
vanishes at the magnetic axis. The pair of equations (8) and (9) relate fRm, Emg to the values of
the derivatives fR00

0(0),E00(0), T 0(0)g at the magnetic axis. Taking the expansions of the Fourier
coefcients up to fourth order in ½, the EL equations generate three new relations fR00

0(0),
E00(0), T 0(0)g ! fR

(4)
0 (0), E(4)(0), T (3)(0)g, which are linear in the higher order derivatives.

Finally, taking expansions to sixth order in ½ one obtains three more relations fR
(4)
0 (0), E(4)(0),

T (3)(0)g ! fR
(6)
0 (0), E(6)(0), T (5)(0)g, which are again linear in the higher order derivatives.

These relations become increasingly cumbersome, having been derived usingMathematica. In
order to close the solution the set of values fR

(6)
0 (0), E(6)(0), T (5)(0)g is calculated so that

the expansions for fR0(½), E(½), T (½)g satisfy the given xed boundary conditions fR0(a),
E(a), T (a)g. Then, the EL relations are used to calculate all the coefcients backwards to
the magnetic axis fRm, Emg. Basically, this is the same procedure that would be used in the
numerical solution of the Euler equations. The lowest order approximation is obtained simply
by taking fR00

0(0), E00(0), T 0(0)g = f2(R0(a) ¡ Rm)=a2, 2(E(a) ¡ Em)=a2, T (a)=ag.
This method gives very fast, convergent results even for a low aspect ratio tokamak as

shown in gure 1, which illustrates an application to the ETE Spherical Tokamak Experiment
(R0(a) = 0:30m, a = 0:20m, ·(a) = 1:6, ±(a) = 0:3, IT (a) = 0:30MA, p(0) = 10 kPa,
B0 ¸ 0:21T). A quasi-uniform current distribution was used in these calculations[7] .

4. Direct variational solutions
The direct variational method provides a global solution of the problem. The method relies
on the construction of trial functions for the spectral coefcients, which depend on a few
parameters to dene a stationary point of the internal energy U(a). It is possible to develop
a scheme of trial functions based on polynomials, by increasing the order of the power series
solutions of Section 3 and making use of the full set of EL relations. The parameters that are
more conveniently varied are the derivatives of the radial Fourier coefcients at the plasma edge,
less one derivative that is calculated from the set of EL equations. In fact, using polynomials it



Fig. 2. Shafranov shift, geometric elongation and triangularity proles, and ux surfaces contours
for an ETE equilibrium, comparing results obtained with different trial functions. The dotted line in this
gure corresponds to c = 1, the dashed line to c = 2 and the continuous line to c = 2:65, close to the
minimum value of U(a) that can be attained considering the binomial family of trial functions for the
equilibrium considered.

is not possible to nd a stationary point varying all the derivatives at the same time. This follows
because the extremum of the energy is reached asymptotically, and an essentially innite order
polynomial or power series is required to arrive at the exact solution of the problem. The edge
derivatives of the Fourier coefcients correspond to the Neumann conditions at the boundary,
providing a link with the external magnetic eld for future applications.
In this paper a set of relatively simple trial functions based on binomial functions is

presented, which can determine stationary values ofU(a) through the variation of one parameter
for each Fourier coefcient. The binomial trial functions are
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with the exponents ®R and ®E dened by
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These trial functions satisfy the symmetry and boundary conditions. The exponents °R, °E and
°T are the parameters to be varied, whileRm andEm are determined in consistence with (8) and
(9). The forms adopted for ®R and ®E are such that, at the stationary values of °R and °E (of
order unity), the solution is also stationary with respect to Rm and Em, close to the extremum
of U(a). The parameter c »= 2 may be adjusted up to the limit where real stationary points can
still be determined. This limit corresponds to the minimum value that can be reached by the
internal energy of the plasma with the binomial trial functions meaning, in principle, the “best”
solution to the equilibrium problem. Again, it is not possible to vary all the parameters °R, °E,
°T , Rm and Em at the same time, since a simultaneous stationary result can only be attained
with the exact solution and minimum absolute value of U(a).



2nd 4th 6th c=1 c=2 c=2.65
Rm (m) 0.3220 0.3273 0.3285 0.3312 0.3310 0.3309
Em 1.5053 1.5116 1.5150 1.5011 1.5153 1.5285
`i 0.3648 0.3570 0.3541 0.3536 0.3506 0.3483
¹I 0.7116 0.4357 0.4295 0.4285 0.4270 0.4259
¯I 0.1775 0.1911 0.1952 0.1968 0.1977 0.1983bU(a) 0.5046 0.4024 0.4019 0.4053 0.4035 0.4023

Table 1. Comparison of results obtained for the ETE equilibrium using the variational power series
of second, fourth and sixth order, and direct methods.

Figure 2 shows the results of the direct method for different values of c and the same
equilibrium presented previously in gure 1. The power series and direct methods were also
applied to high aspect ratio tokamak congurations. In this case even the lowest order power
series solution gives reasonable results as can be inferred examining gure 1.

5. Discussion
The results of the calculations presented in this paper are summarized in table 1. The accuracy
of the solutions can be measured by the last row, which gives the normalized internal energybU(a) = U(a)=(¹0aI2

T (a)). The table lists also the values of the internal inductance, the current
diamagnetism and the current beta parameters, dened by, respectively,
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The “best” solutions in each case are indicated in boldface. Convergence of the power series
solution is clear, with a maximum deviation between the last two successive approximations
of 2% for ¯I , and less for all other parameters. The deviation is even smaller for the direct
approximations. However, the decrease in energy between the last two cases in the direct
method relates essentially to the increase inEm, resulting from a stiffer prole of the elongation.
This is a limitation due to the very simple dependence of the trial functions on the radial
coordinate ½. Figure 2 shows that the main difculty with the direct method is to reproduce
correctly the elongation prole. Otherwise, application of the direct method has no restrictions,
in aspect ratio for example.
The time required by Mathematica for computing the stationary point, using the power

series method, is »1 s in a 600MHz PC, making this method very attractive for future studies
concerning the plasma evolution. The direct method is slower, but has a simpler formulation.
Possibly the greatest advantage of both methods is the simple analytic expressions obtained,
which can be used in the calculation of all plasma equilibrium proles.
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