1. Identity statement | |
Reference Type | Thesis or Dissertation (Thesis) |
Site | mtc-m16.sid.inpe.br |
Holder Code | isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S |
Identifier | 6qtX3pFwXQZ3P8SECKy/y9gQA |
Repository | sid.inpe.br/jeferson/2003/05.14.14.55 |
Last Update | 2019:02.19.19.01.30 (UTC) simone |
Metadata Repository | sid.inpe.br/jeferson/2003/05.14.14.55.56 |
Metadata Last Update | 2024:12.26.14.39.49 (UTC) administrator |
Secondary Key | INPE-9878-TDI/874 |
Citation Key | Cardenuto:2003:AeCoCo |
Title | Aeronaves configuradas por controle do tipo preditivo neural  |
Alternate Title | Aircraft configured by control of the predictive neural type |
Course | CAP-SPG-INPE-MCT-BR |
Year | 2003 |
Secondary Date | 20031403 |
Date | 2003-03-14 |
Access Date | 2025, May 10 |
Thesis Type | Tese (Doutorado em Computação Aplicada) |
Secondary Type | TDI |
Number of Pages | 144 |
Number of Files | 295 |
Size | 12066 KiB |
|
2. Context | |
Author | Cardenuto, Nei Cardoso |
Group | CAP-SPG-INPE-MCT-BR |
Committee | Ramos, Fernando Manuel (presidente) Rios Neto, Atair (orientador) Rosa, Reinaldo Roberto Carrara, Valdemir Curvo, Marcelo Yoneyama, Takashi |
University | Instituto Nacional de Pesquisas Espaciais (INPE) |
City | São José dos Campos |
History (UTC) | 2008-08-21 20:58:53 :: administrator -> jefferson :: 2009-04-27 18:47:25 :: jefferson -> administrator :: 2009-05-02 03:09:23 :: administrator -> marciana :: 2009-05-11 14:56:18 :: marciana -> administrator :: 2009-06-16 17:20:55 :: administrator -> marciana :: 2009-06-18 17:14:09 :: marciana -> administrator :: 2009-06-18 17:44:40 :: administrator -> marciana :: 2009-06-19 14:48:00 :: marciana -> administrator :: 2009-06-23 18:37:32 :: administrator -> banon :: 2009-06-23 18:54:39 :: banon -> administrator :: 2009-07-08 21:18:38 :: administrator -> marciana :: 2012-07-18 12:14:55 :: marciana -> administrator :: 2018-06-05 01:20:25 :: administrator -> marciana :: 2003 2018-06-08 14:34:55 :: marciana -> sergio :: 2003 2019-10-08 18:03:15 :: sergio -> simone :: 2003 2019-10-08 18:03:42 :: simone -> administrator :: 2003 2024-12-26 14:39:49 :: administrator -> :: 2003 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Keywords | neural controle de aeronave predição controle ótimo controle de inclinação neural aircraft control prediction optimal control pitch atitude control |
Abstract | Este trabalho desenvolve e testa uma abordagem de controle de aeronave em manobras não típicas conhecido como "control configured vehicle", ou veículo (aeronave) configurado a controle, onde a abordagem proposta é controle preditivo neural. As manobras não típicas normalmente são obtidas desacoplando modos normalmente acoplados em dinâmica de voo de aeronaves. A técnica mais usual é a atribuição de auto-estrutura, que trata de alocar simultaneamente autovalores e autovetores, sendo estes determinados de acordo com uma referência pré-estabelecida para o desacoplamento desejado. Na técnica de auto-estrutura, o sistema é linear e seu modelo é conhecido, limitando sua aplicação. A proposta de se utilizar controle preditivo com redes neurais visa obter ao mesmo desacoplamento sem a necessidade do conhecimento do modelo da planta, treinando a rede neural para modelar os modos dinâmicos da aeronave. O desempenho desta abordagem é demonstrado e os resultados são apresentados comparando-se: três redes treinadas, resultados de controle preditivo convencional e neural, gradiente analítico e numérico para a otimização, e horizontes de predição e controle. ABSTRACT: This work develops and tests a predictive neural control technique applied in the aircraft non-typical maneuvers known as the control configured vehicle (CCV). These maneuvers are performed with flight dynamics mode decoupling. The usual approach is the eigenstucture assignment with eigenvalues and eigenvectors placement, which is restricted to a known and linear systems model. The predictive control with neural nets approaches looks at the mode decoupling without the plant model knowledge by using neural net training in order to emulate the aircraft dynamic. The performance of the adopted approach is demonstrated and the results presented by considering and comparing: three neural nets, predictive control and neural predictive control, analytic and numeric gradient in the optimizing calculations, and prediction and control horizons. |
Area | COMP |
Arrangement | urlib.net > BDMCI > Fonds > Produção pgr ATUAIS > CAP > Aeronaves configuradas por... |
doc Directory Content | access |
source Directory Content | publicacao.pdf | 19/02/2019 16:02 | 779.6 KiB | |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/6qtX3pFwXQZ3P8SECKy/y9gQA |
zipped data URL | http://urlib.net/zip/6qtX3pFwXQZ3P8SECKy/y9gQA |
Language | pt |
Target File | publicacao.pdf |
User Group | administrator marciana sergio simone |
Visibility | shown |
Copyright License | urlib.net/www/2012/11.12.15.10 |
Rightsholder | originalauthor yes |
Copy Holder | SID/SCD |
Read Permission | allow from all |
Update Permission | not transferred |
|
5. Allied materials | |
Next Higher Units | 8JMKD2USNNW34T/4CL6M65 8JMKD3MGPCW/3F2PHGS |
Citing Item List | sid.inpe.br/bibdigital/2013/10.12.22.16 2 |
Dissemination | NTRSNASA; BNDEPOSITOLEGAL. |
Host Collection | sid.inpe.br/banon/2003/08.15.17.40 |
|
6. Notes | |
Empty Fields | academicdepartment affiliation archivingpolicy archivist callnumber contenttype creatorhistory descriptionlevel doi e-mailaddress electronicmailaddress format isbn issn label lineage mark mirrorrepository nextedition notes number orcid parameterlist parentrepositories previousedition previouslowerunit progress readergroup resumeid schedulinginformation secondarymark session shorttitle sponsor subject tertiarymark tertiarytype url versiontype |
|