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$EVWUDFW�� 1RZDGD\V� DQ� LQFUHDVLQJ� QXPEHU

RI� VSDFH� PLVVLRQV�DUH� XVLQJ� VDWHOOLWHV� ZLWK� D
ULJLG� KXE� DQG� ORQJ� DQG�RU� ZLGH� IOH[LEOH

DSSHQGLFHV�� VXFK� DV� VRODU� SDQHOV�
FRPPXQLFDWLRQ� DQWHQQDV�� WHOHVFRSLF
VWUXFWXUHV�� URERWLFV� IOH[LEOH� DUPV�� 7KH

LQFUHDVLQJ�QHHG� IRU�EHWWHU�SRLQWLQJ�DFFXUDF\
RI�DQWHQQDV�FRQQHFWHG�WR�WKH�ULJLG�SDUW�RI�WKH

VSDFHFUDIW� OHDGV� WR� D� UHTXLUHPHQW� IRU� PRUH
HIILFLHQW� FRQWUROOHUV�� ZKHUH� PRUH� DFFXUDWH
LGHQWLILFDWLRQ�SURFHVV�SOD\�DQ� LPSRUWDQW�UXOH

LQWR� WKH� FORVHG� ORRS� V\VWHP�� 7R� PHHW� WKH
UHTXLUHPHQWV� IRU� SRLQWLQJ� DFFXUDF\�� IOH[LEOH

SDUDPHWHUV� DV� HODVWLF� GLVSODFHPHQW�� ZKLFK
DUH� RI� JUHDW� LPSRUWDQFH� IRU� FRQWURO� WDVNV
VKRXOG�EH�FRQWLQXRXVO\�LGHQWLILHG�LQ�WKH�VSDFH

HQYLURQPHQW�� 7KLV� SDSHU� SUHVHQWV� DQ
LQYHVWLJDWLRQ� UHVXOWV� RI� HODVWLF� GLVSODFHPHQW

LGHQWLILFDWLRQ� XVLQJ� WKH� .DOPDQ� )LOWHU
PHWKRGRORJ\�� $� IOH[LEOH� (XOHU�%HUQRXOOL
EHDP��FRQQHFWHG�WR�D�ULJLG�FRUH�ZLWK�WRUTXHV

DV�LQSXW�DQG�DQJOHV�DQG�DQJXODU�YHORFLWLHV�DV
RXWSXWV�LV�XVHG�DV�VLPSOH�PDWKHPDWLFDO�PRGHO

RI� D� ULJLG�IOH[LEOH� VDWHOOLWH� WR� DSSO\� WKH
.DOPDQ� ILOWHU� LGHQWLILFDWLRQ� DOJRULWKP

SURSRVHG�� 7KH� .DOPDQ� ILOWHU� LV� WHVWHG� XQGHU
VHYHUDO�FRQGLWLRQV�FRQVLGHULQJ�FROG�VWDUW�ZLWK
FRDUVH� LQLWLDO� NQRZOHGJH� DQG� YDULHG

PHDVXUHPHQW� QRLVH� OHYHOV�� $W� WKH� HQG
FRPPHQWV�DUH�GUDZQ�DERXW�WKH�UREXVWQHVV�RI

WKH� SURSRVHG� SURFHGXUH� DQG� IHDVLELOLW\� RI
LPSOHPHQWDWLRQ� ZLWKLQ� WKH� FRQWURO� V\VWHP
ORRS�

���,QWURGXFWLRQ

The use of small satellites has been a fast,
simple and of low cost way of reaching the space
in missions with the most several applications1, 2,
however, in order to conquer the space it is
necessary to launch spacecraft that involves
rigid/flexible structures. These missions are more
complex because the satellites have a great
number of components like, solar panels,
antennas, cameras and mechanical manipulators.
As a results, the influence of the flexibility of such
structure play a important role in the dynamics
behavior as well as in the performance of the
Attitude Control System (ACS).3 Others important
aspects in the study of the dynamics and control
of flexible space structures are: the degree of
interaction between the rigid and flexible motion,
maintenance of the ACS performance in face the
uncertainties of the mathematical model, damping
residual vibrations in order to keep pointing
precision and dynamic parameters identification.4

This paper presents an identification procedure
using the Kalman Filter methodology that may be
used to identify the elastic displacement and/or
system parameters in space. Section 2 presents a
mathematical model of a simple spacecraft based
on a flexible Euler-Bernoulli beam connected to a
rigid core. The equations of motion are also
derived where the torque is used as input and
angles and angular velocities as outputs. Section 3
presents the Kalman filter identification
algorithm. Section 4 presents the simulation
where the Kalman filter is tested under several
conditions considering cold start with coarse
initial knowledge and varied measurement noise
levels. Section 5 concludes the paper.

,$)�,$&����,�����
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The satellite mathematical model used is
composed of a rigid platform with two flexible
appendixes and masses in the extremities of the
appendices. The appendices are identical and
opposite, being considered as beam connected to
the platform, and subjects to rotational and
vibrational motion. In order to derive the
equations of motion for this model, one applies
the Lagrange methodology, starting from the
expression of the kinetics and potential energy of
the system. Fig. 1 illustrates the system composed
by rigid hub, an elastic appendage with a mass in
the extremity.

FIGURE 1. SATELLITE MODEL COMPOSED BY A RIGID
HUB, AN ELASTIC APPENDAGE WITH A MASS IN THE
EXTREMITY.

One considers that the inertial reference
system, coincides with the origin of the fixed
reference system in the rigid body and it is
represented by the axes n1, n2, n3. The fixed
reference system in the rigid body, coincides with
the center of mass of the rigid body, which is
characterized by the axes b1, b2, b3. The vector r
represents the radius of the rigid body. The vector
x represents a position of a measured mass
element along the appendix in the no deformed
form, in relation to the appendage reference
system. The vector position of any point in the
appendage relative to the inertial reference system
is given by R. The vector of elastic displacement
(elastic deformation) measured perpendicular to
the axis b1 is represented by y (x, t). Therefore, the
vector position of any point in the deformed
appendage form, relative to the inertial reference
system is given for:

( ) 211 b̂yb̂xrR ++=                                 (1)

and its velocity vector is

( ) ( ) RR
td

d
R

td

d
R BN ×ω+==         (2)

Considering that θ�  is the satellite angular
velocity and substituting Eq. (1) into (2), one has

( )[ ] 21 b̂yxrb̂yR ���� ++θ+θ−=        (3)

�����(TXDWLRQ�RI�0RWLRQ

The total kinetics energy of the system is
given by
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                                                                                     (4)

where J1 is the rigid body moment of inertia of
the, ρ is the density of mass of the appendage, and
L is the length of the appendage, mt and  Jt  are the
mass and moment of inertia of the mass at the end
of the appendage and y(x, t) represents the elastic
displacement.

The total potential energy V is considered as
entirely due to the elastic deformations of the
system and it is given by
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                                                                             (5)

where E represents the module of elasticity
(module of Young) and I the moment of inertia of
the beam. The discretization of the system is done
using assumed mode method.5 Therefore, the
elastic displacement y(x,t) is substituted by

( ) ( ) ( )tqxt,xy
N

1
jij∑ φ=                            (6)

where φj(x) are the admitted functions and qji(t)
are the generalized coordinates. The equations of
motion are found for the rotation ( )tθ  and elastic

( )tq  motion, using the Lagrange formulation

n1
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Substituting the kinetic and potential energy
expression into Eq.(7) and after some
manipulation the equations of motion are given by
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The equations of motion in the matrix form is
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                                                                          (10)

where Ĵ is the total inertia moment of the system,

qM θ represents the  sub-matrix associated with

the rigid and flexible motion, qqM  represents the

sub-matrix associated with the flexible motion and

qqK  represents the sub-matrix associated with

flexible body.  The matrix form in compact form
is given by

uDxKxM =+��                                             (11)

where M is the mass matrix,  K is the stiffness
matrix of the system and D is the control
influence matrix.5 Eq.(12) in state space modal
form is given by

uD
~

)t(K
~

)t(C
~

)t(M
~ =η+η+η ���               (12)

where M
~

, C
~

, K
~

and D
~

represents mass,
damping, stiffness and control influence matrices
in modal form.

���.DOPDQ�)LOWHU�,GHQWLILFDWLRQ��$OJRULWKP

The Kalman filter is a computational
algorithm containing a sequence of time and
measurement updating of the estimates of the
system state.6 The Kalman filter can incorporate
dynamic noise in the dynamical model of the
state. It is a real time estimator supplying the
estimates for the instant that the measurement is
available. The filter consists of two cycles:

• Time update

• Measurement update

In synthesis the Kalman filter processes
measurements to produce an estimate of minimum
variance of the state of a system using the
knowledge of the dynamics of the system, and of
the measurement, the statistics of the noise of the
dynamic system, and errors of the measurements,
besides the information of the initial condition.7

������6WDWH�'\QDPLFV�0RGHO

Let state dynamical model be represented by:

ω+= GxAx�                                                (13)

where ( )q,,q,x ��θθ=   is the state

continuously variant in the time, G is a matrix of
addition of dynamic noise, w is the continuous
dynamic noise and A is named the system matrix
that relates the state timely and linearly, given by:



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
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

−−

−−−−−−
Ι
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|0

A                                          (14)

The system matrix is formed by the identity

matrix I, by { }2
2,0diagK

~ ω=  the matrix

containing the squared natural frequencies, and

the modal damping matrix { }222,0C
~ ωξ= .
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The measurement model is given by:

ν+= xHy                                                          (15)

where y is the measurement vector composed by

the angle ( )θ  and angular velocity ( )θ�

observable. The measurements θ  and θ� are
collected by a position and velocity sensor. For
the angular position and velocity it was assumed
nominally a standard deviation of 0.10 and 0.010/s,
respectively. The H matrix relates the
measurements to the state by:









=

0100

0001
H                                                       (16)

and ν represents a white noise vector to model the
errors during the measurement process, with the
following statistical characteristics

( )01.0,0N=νθ   and   ( )s/01.0,0 0=ν θ
�                (17)

������7LPH�XSGDWH

In this filter cycle, the state and covariance
estimates are computed by using the dynamical
model of the system. The time updated state x ,

and covariance P are computed by:

xAx =�                                                                    (18)

with initial condition 1k1k x̂x −− = , and

tt GQGAPPAP ++=�                                (19)

with initial condition 1k1k P̂P −− = . Equation (19)

is known as the continuous Riccatti equation. In
this work, Eq. (18) and (19) are solved
numerically using the Runge-Kutta method
embedded in the Matlab package.

������0HDVXUHPHQW�XSGDWH

This cycle updates the state and covariance
matrix at instant k due to measurement yk, by
means of the measurement model given by
Equation (15). The measurements of instant k

provide the information to update the state and
covariance. The equations that follow describe the
measurement update cycle of Kalman filter:

( ) 1tt RHPHHPK
−+=                               (20)

( )PHKIP̂ −=                                                 (21)

( )xHyKxx̂ −+=                                     (22)

where K represents the Kalman gain, and P̂ and

x̂  are the covariance and the state updated. The
errors between the actual state and the estimated
state will be used to evaluate the algorithm
performance for the tests carried out. The
estimated error standard deviation were defined
by:

2
1

iii Pˆ =ε∆                                                      (23)

and the actual error

iii x̂x −=ε∆                                                 (24)

���6LPXODWLRQV

The aim of the simulations is to implement
and test the proposed Kalman filter methodology
for identification of the flexible mode (elastic
displacement) of a rigid flexible satellite. The
analysis is performed through the utilization of the
dynamical model equation (13) and Equations
(15) to (22), which represent the time and
measurement update of the state and covariance
via the Kalman filter. The simulations were
carried out by computational implementation of
the software in Matlab language.

The investigation philosophy is, first of all,
to analysis the nominal case using the initial
conditions and parameters shown in Table 1.
Next, the same conditions used in the nominal
case are applied to analyze the behavior of the
filter when non-typical measurement errors are
imposed to the system. In particular, two cases
comprising precise and imprecise measurements
are shown and compared to the nominal case. It
should be mentioned that in the space area the
Kalman filter approach has been used for
estimation of states associated with angular
position and angular velocity and it is not of the
autors´ knowledge that this approach has been
used before for flexible states estimation like
displacements and its variation.
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TABLE 1. INITIAL CONDITIONS AND TUNNED
PARAMETERS OF THE KALMAN FILTER

Symbol Initial
Values

Symbol Initial
Value

Symbol Initial
Value

G I4

θ
�P (0/s)2 (10)2

θ
�Q (0/s)2 10-6

θR   (0)2 (0.1)2

0θ  (0)
(0.1) Pθ       (

0)2 (10)2

θ
�R (0/s)2 (0.01)2

0θ�  (0/s)
(0.01)

 qQ � ( 0/s)2 10-8

θQ  (0)2

10-6 qQ  (0)2 10-8

q,qP � (0, /s)2 (10)2

�������1RPLQDO�&DVH

Figure 2 shows the actual and standard
deviations for the angular position, elastic
displacement, angular velocity, and rate of elastic
displacement, in degrees and degrees/s
respectively. Errors were calculated according to
Eqs (23)-(24). From Figure 2, one notices that
most of the actual errors are within one standard
deviation of Eq. (23). Convergence was attained
quickly (less than 20s) for all but the angular
position, although it was within 0.05° from then
on.

FIGURE 2.  ANGULAR ERROR, ELASTIC
DISPLACEMENT ERROR, ANGULAR VELOCITY
ERROR, AND RATE OF ELASTIC DISPLACEMENT
ERROR.

Figure 3 shows the behavior of the

measurement residuals on θ  and θ�  for the
nominal case. In this case the residuals are in good
shape with one standard deviation around 0.1° and
0.01°/s, respectively.

FIGURE 3. RESIDUALS IN ANGULAR POSITION, AND
RESIDUALS IN ANGULAR VELOCITY, NOMINAL
CASE.

������2YHU�DFFXUDWH�PHDVXUHPHQWV

In is case measurements are simulated with
one order better accuracy. The aim is to verify if
there is some relevant gain of accuracy in the
identification filter when more accurate sensors
are used. It can be observed in Figure 4 an
apparent improvement in the residuals profile, one
order better than the nominal case of Figure 3.
This suggests better state estimates with respect to
the nominal case. For this case the angular
position and velocity measurements were
corrupted with random gaussian noise of  0.01° e
0.001°/s, respectively.

FIGURE 4. RESIDUALS IN ANGULAR POSITION AND
RESIDUALS IN ANGULAR VELOCITY, OVER
ACCURATE MEASUREMENTS CASE
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In the same way, one investigated the effects
of less accurate (than nominal) measurements,
with the aim of verifying if the accuracy is
degraded up to the extent the filter does not
estimate the states correctly. From Figure 5 it can
be seen the influence of increasing the
measurement errors in the behavior of the
estimation scheme. From the simulations it can be
seen that even losing sensors accuracy the filter
shape did not degrade when compared to the
nominal case, in terms of convergence. The
measurement errors in this case were random
gaussian with 1° and 0.1°/s of standard deviation,
respectively. The behavior of the residuals in this
under accurate measurement case is shown in
Figure 5. Consistently the residuals RMS also
increased one order of magnitude with respect to
the nominal case. Moreover, the states were
estimates without sign of divergence of the
Kalman filter.

FIGURE 5. RESIDUALS IN ANGULAR POSITION  AND
RESIDUALS IN ANGULAR VELOCITY, CASE OF
UNDER ACCURATE MEASUREMENTS

Table 2 lists the mean and the standard
deviation of the states corresponding to the rigid
body and the flexible part of the satellite. Through
the table it can be observed that for the three
cases, namely nominal, over-accurate, and under-
accurate measurements, the state components
regarding the flexible body, q (elastic
displacement) and q� , did not suffer any

meaningful change in the mean and in the
standard deviation error. Nevertheless, the state
components of the rigid body, θ  (angular

position) and θ�  (angular velocity), suffered as
expected with the variation of the noise in the
measurement. In relation to the nominal case, all
the cases tested converged to the expected level of
errors, showing the robustness of the filter under
several levels of measurement accuracy.

TABLE 2. MEAN AND STANDARD DEVIATION OF
STATE ERRORS

1RPLQDO

θ (0) (10-3) ± (2x10-1)

q  (0) (3 x10-2) ±(1.6x10-1)

θ� (0/s) (2.7 x10-4) ± (6x10-2)

q� (0/s) (-1.23 x10-1) ± (4 x10-1)

2YHU�DFFXUDWH

θ (0) (-3.6x10-4)   ±  (6 x10-2)

q �(0) (3x10-2)    ±  (1.6x10-1)

θ� (0/s) (-5 x 10-3)   ±   (6x10-3)

q� (0/s) (-1.2 x10-1)   ±   (4x10-1)

8QGHU�DFFXUDWH

θ (0) (1.6x10-2)  ±  (1x100)

q  (0) (3x10-2) ± (1.6x10-1)

θ� (0/s) (7x10-2)  ±  (1.9x10-1)

q� (0/s) (-1.2x10-1)   ±  (4x10-1)

���&RQFOXVLRQ

In this work a satellite composed of a central
rigid body and two flexible appendages was
mathematically modeled to be used in an
identification methology based on Kalman filter.
A Lagrangian formulation was used to derive the
equations of motion of the satellite. A
discretization of the elastic motion was performed
by the assumed mode method. In the sequel the
Kalman filter methology using the Matlab
package was implemented in order to identify  the
satellite rigid and flexible mode (states) composed
of the rigid and elastic displacement and their
variation in time. Throughout several simulations
it was possible to investigate the behavior of the
state estimation errors for three distinct cases. In
the first one, called nominal case, typical data
were considered as the initial conditions of the
filter. In this case, it was verified that the satellite
position and angular velocity error estimates are
within the errors allowed by the filter, being
observed a great time for the convergence of the
filter in the angular position component. For the
elastic displacement and rate the convergence has
occur in less than 20 seconds.
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Afterwards, two simulations considering non-
typical conditions, that is, over accurate
measurements and under accurate a measurement
has been investigated. For the over accurate case
(as expected) it was detected a remarkable
improvement in the real and estimated states with
respect to the nominal case, that fact is due to the
more accurate sensors. In the under-accurate case,
it was detected that even with less accuracy of the
sensors, the estimated state errors were not so
degraded with respect to the nominal case,
keeping the filter convergence in acceptable level.
Having in mind the complexity of putting a sensor
on the elastic parts of the satellite, the application
of the Kalman filter methology has been showed a
good approach to identify indirectly the flexible
parameters of a rigid-flexible satellite. That
approach becomes more promising when it is
necessary to feedback the elastic measurements
into the control system in order to assure better
pointing conditions and/or better system
performance. The Kalman filter has also shown to
be a robust methology since in the under-accurate
case tested, it has maintained a good performance.
Therefore, being an important tool in the
parameters identification phase of similar control
systems.
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