 SpaceOps 2004 - Conference

Learned Lessons From Software Development to Satellite Control Using Distributed Object Technology

M.G.V. Ferreira, F.N. Kucinskis, V.P. Neto.

Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil.

The inherent complexity of any space mission, allied to a technological evolution employed in each newly built satellite, renders the development of the application used in the mission control more and more complex.

The last years have been marked by significant changes in the way of design, implementing and maintaining the corporative information systems. Such period have started with the birth of monolithic applications, where the programs were developed in a terminal plugged to a mainframe.

The first version of the INPE’s SICS (Satellites Control System), used to control the two first Brazilian satellites has been designed during this period and, therefore, it aggregates all the characteristics of a monolithic application. This environment had been superseded by a client-server computation because of its inefficiency and maintenance high cost. The client-server architecture have employed in the development of the SICS second version.

Currently, the Distributed Object Technology breaks down client-server applications into objects that are able to operate with heterogeneous operating systems and heterogeneous network environment, adding additional advantages such as greater flexibility and availability.

The purpose of this article is to show an architecture, which uses the distributed object technology, and to describe its implementation in the two current main platforms for distributed object development: Sun’s Java 2 Enterprise Edition (J2EE) and Microsoft .NET Framework. A SICS prototype was developed for each platform.

The data access, transaction control, communication middleware, system requirements and other characteristics were evaluated and are described here.

1 THE PROPOSED ARCHITECTURE

The proposed architecture models the satellite control application in objects and distributes them throughout a pre-defined network. The initial location of these objects instances is defined in the system load. From that moment on they may migrate from a node (“node” is used here to express a computer connected to the pre-defined network) to another, according to the demand of services requests, that is to say, they do not stay statically in the nodes initially allocated to them.

The satellites control application objects communicate among themselves through a middleware, and it is possible to exist more than one copy of an instanced object in different nodes of the network.

The users interact with the distributed objects through a middleware. A broker receives the users service requests and locates the object that can meet a certain request.

The use of more than one copy of an object in more than one network node is related to the amount of users who make use of the available services of this object. For example, telemetry is the most requested object because there are several users interested in visualizing the satellite on board condition. The users in charge of the sun panels are interested in visualizing the telemetries showing the satellite position relatively to the sun. The users in charge of the battery want to check the voltage and the energy generated by it. Other objects such as the telecommand do not need to have more than one copy, since only one user utilizes its services each time.

The architecture proposed for satellites control software comprises the application objects such as telemetry, ranging, telecommands, etc, and the available services, that is to say, the services of the Agents, Persistency, Security, Connection and Balancing. Figure1 sketch a view of the proposed architecture displaying the above-mentioned services [01].

[image: image1.jpg]

Figure 1: A view of the proposed architecture with its services

1.1 Agents Service

The agents are responsible for keeping updated the necessary information of the different network nodes, in order to allow the satellites control software to work as a dynamic and flexible application. Several information are generated by the agents and stored in a Configuration Database, as the physical localization of each instanced object, the condition of an object which may be “ready” if it is available to receive services requests from the system, or, “failed”, otherwise, the CPU and I/O load of a certain “node”, the amount of a present object connections, etc.

The service agents appear as services suppliers to the Balancing Service, that is to say, based on the information collected by the agents, the Balancing Service acts in the system, trying to optimize the existing computer resources. Among the main requirements answered by the agents’ service, the following can be pointed out:

· Supervise the objects in several nodes, get information about each object / node, send messages to each object / node;

· To allow a global overview, as to the information about the object from any node;

· Support the Balancing Service decision.

1.2 Balancing Service

The Load Balancing Service is responsible for the analysis of the data collected and stored by the Agents Service. The main purpose of this service is to distribute the processing among the pre-defined nodes in the network, trying to optimize the available computer resources.

It analyses, at a pre-defined time interval, the data stored in the Configuration Database. The result may trigger the load balancing process, which, normally, consists in making more copies of an object or migrating an object from one node to another one.

Several conditions will be able to cause the triggering of the load balancing services, such as:

· A node is jammed, in other words, several objects have been created and the CPU level availability in this node tends to zero. In this case a search is made among the remote nodes to identify which of the remote node has the greatest number of connections with the jammed node. A copy of the most requested object in the remote node is instanced, therefore;

· If there are idle nodes in the network, it is possible to instantiate copies of objects from saturated nodes to these idle nodes;

· An operational need, such as a computer maintenance requiring its deactivation;

· A node failure;

· New node insertion.

1.3 Persistence Service

The Persistence Service makes available to the application the storage, the retrieval and exclusion operation in the Configuration Database. The application persistent objects don’t need to contain the implementation of these operations; they, simply, operate the persistence services through messages, which takes on the task of finding out where this object has to be stored.

As the proposed architecture is dynamic, the persistent objects will not always be instanced in the node where they have to be stored. In this way the Persistence Service aim is to make the access and the localization of the node which contains the database transparent and to store the object in the node that have the greatest I/O availability level.

1.4 Security Service

The Security Service consists in making the access to the system only for the previously authorized people, as well as to make sure that the users have access only to the previously defined functions according to their profile. For example, the function made available by the system for a satellite engineer is different from the ones available to a satellites controller.

The proposed architecture allows objects to migrate from one node to another, so the security mechanisms must be utilized to make sure that only previously authorized objects can migrate to remote nodes.

1.5 Connection Service

The Connection Service allows a client or an instantiated object of the system to request services from another instantiated and available object, without being necessary to know its location. This service was implemented using information managed by the Configuration Database. The basic function of the Connection Service consists of determining which instance of the requested object will have better conditions to execute the requested service, returning a reference to this instance.

2 THE TARGET PLATFORMS

Currently, there are two main platforms to the distributed object development: the J2EE and the .NET Framework. Each of then has great resources to the object distribution and data access. They are very similar, but with important particularities that can be crucial for the decision of which one to use.

To explore and compare these platforms, a prototype of a new SICS, here called SICSD (of “Distributed”) was developed in each one. But before describe the prototypes, a brief presentation of the platforms are necessary.

2.1 J2EE

Based on the Sun’s Java Platform, the J2EE (Java 2, Enterprise Edition) is a specification created to develop, build and deploy enterprise and web-based applications. The J2EE consists of a set of services, APIs and protocols that provide support to multitiered applications.

Java has as main characteristic the portability to many operating systems. This, allied to the fact that Java is an open standard, helped the growing of the platform in the last years. Today, J2EE is the most used platform to develop enterprise applications.
2.2 .NET Framework

Created by Microsoft in response to Java’s popularity, the .NET Framework consists, as Java, of a set of services, APIs, protocols and Enterprise Services to create and manage applications, including enterprise and web-based.

Currently running only on Windows operating systems (see item 2.3), .NET was created based on open protocols, such HTTP and SOAP, and targeting XML Webservices.

The .NET Framework can be used by many different languages, such as C#, VB.NET, C++ and even Cobol and Eiffel. While Java is platform-independent, .NET is language-independent.

2.3 A Word About Portability

Microsoft has trying to make the .NET platform a more attractive option to developers, following the Sun’s Java example. The .NET Common Language Infrastructure (CLI, a substantial subset of the .NET Framework) and the C# language are published under a “shared source” license (it is allowed to see the code, but not modify it) and have been submitted to the ECMA (European Computer Manufacturers Association) for standardization. The ECMA approved them as standards in December 2001. Based on this code, Ximian, Inc. launched the Mono project, an effort to create an open-source, UNIX and Linux-based implementation of the .NET development framework. It’s important to note that Microsoft does not support the Mono project. Therefore, Microsoft has launched their own porting project, called Rotor, which is based on the same code that Mono. Rotor includes a C# compiler and an implementation of the CLI, and runs on Windows XP and FreeBSD operating systems.
2.4 General Comparison

	Characteristic
	Java / J2EE
	.NET Framework

	Responsible
	Sun and the Java Community Program partners
	Microsoft

	Operating Systems
	Windows, Unix, Linux, Solaris, Mac OS, Palm OS, etc
	Windows (98, ME, XP, NT, 2K, CE), Linux and FreeBSD (don’t supported by Microsoft)

	Languages
	Java
	VB.NET, C++, C#, J#, Cobol, Eiffel#, etc

	Compilation
	Just-In-Time
	Just-In-Time or Deployment Time (during installation)

	Server Components
	Enterprise JavaBeans
	COM+ (not native .NET)

	Communication Middleware
	RMI, JMS, Web Services
	.NET Remoting, MSMQ, Web Services

	Distributed Objects
	Interfaces
	Classes

	Data Access
	JDBC / SQLJ
	ADO.NET

	Deployment Components
	Packages (.jar, .ear, .war)
	Assemblies (.dll, .exe)

Table 1: A general platform comparison

3 THE PROTOTYPES

Due to time availability, the Balancing Service, the Connection Service and a Satellite Simulator Software were implemented to evaluate the proposed architecture. Four nodes in network, the Connection and Balancing services, a Configuration Database, a Scenario Manager, a Satellite Simulation application and a Load Service composed the complete development environment.

The Configuration Database stores the information necessary to enable the application objects for satellite control to be created in the available nodes. The Load Service helps in the creation process of these objects. The “scenarios” are the several configurations, which can be formed by the objects, related to their placement in the nodes, or else, the way the objects can be distributed in the four nodes presented in Figure 2. Thus, the scenario manager software creates these various scenarios managing the correct configurations in the correct Configuration Database.

[image: image2.wmf]

Figure 2: The development environment

The SICSD is a distributed system and independents of a server or central node for initialization. Each node presents its Load Service responsible for the load objects from that node. This information is recovered from the Configuration Database. Once the initialization process is finished, the Balancing Service starts being executed locally in background in each of the network nodes.

The Balancing and Connection services were described before in more details in item 1. They need to be instantiated locally, in order to be available locally to applications and to communicate with the other nodes in the network.

In order to make the application objects (Telecommand, Telemetry, Ranging, etc.) available in all nodes, the Connection Service class was included with these objects’ classes in one single deployment component (a .jar file in J2EE and a .dll in .NET), published in each node. The Balance Service was included in a separate deployment component, with some auxiliary classes.

Finally, a Load Service was created in both platforms, and implemented by a .jar file in J2EE and an .exe in .NET). This service is responsible to access the Configuration Database and instantiate the application objects locally, as defined in a Scenario Manager application.

The Scenario Manager application was developed with the aim of setting the environment and showing the decisions made by the Balancing and Connection services. This application allows the access to the Configuration Database and shows graphically the load state of each node. Using it, an administrator can also command the maintenance of a node. In this case, the node itself verifies its state in the Configuration Database and, if the maintenance command is detected, the node transfers its objects to other nodes and ends the execution of its local services. This procedure is performed by the Maintenance class, which works as an auxiliary of the Balancing.
3.1 The J2EE Version

Concerning the J2EE specification, an application server is required to publish application objects and to manage their transactions, data access and other services. The Borland Enterprise Server was chosen and installed in each node. As the server manages the objects lifecycle, the Balancing Service don’t need to create or destroy objects, just manage the loads of each node and guides the Connection Service. The objects were created as Session Beans, with Bean-Managed Persistence.

The J2EE middleware is RMI. The RMI architecture consists on three layers: a stub/skeleton layer, which is responsible to made easy the communication between the client and server and to manage the return function types and parameters, a remote reference layer, which creates and maintains remote references, and finally a transport layer, which transfer data in binary format over the media.

The data access was implemented in JDBC. JDBC has a connected architecture, maintaining its connections opened until an explicit command to close. The J2EE allows the creation of a connection pool by publishing connections via JNDI, which optimizes the use of server resources. A DriverManager makes the bridge between the JDBC methods and the database engine. It receives a connection string and asks each of its database drivers. The first that recognizes the connection string will be responsible by the connection.

Finally, the transaction control has the functionality of do partial rollbacks, using savepoints. This renders JDBC a powerful tool to implement atomicity.

3.2 The .NET Version

The language chosen to the .NET prototype was the C# because of its syntax similarity with the Java language. Any other .NET language could be used, and even more than one, since all of then generates the same Intermediate Language (a pre-compiled .NET assembly).

In .NET Remoting, there is no application server to publish objects. Proxies make the communication between processes, as well as computers, via communication channels. The Proxy is the core of Remoting architecture. When a client activates a remote object, it gets a proxy to the object. This proxy guarantees that all calls will be directed to the correct instance of the remote object. There is no need of interfaces, as the proxy acts as an interface on the client side.

Despite of the nonexistence of servers, a publisher application is needed to turn the objects available to remote calls. So, in the SICSD .NET version, the Balancing Service instantiates the application objects as need. While the Balancing process is running, the objects are available. In .NET, the application objects were created as Managed Objects.

ADO.NET is the data access component for the .NET Framework. It uses a disconnected architecture, which frees the connection as soon as possible, and does another connection when necessary. This kind of connection saves resources from the server.

There is no driver manager; the connection to the database driver needs to be declared explicitly in code. A SQL Server connection object is different from an Oracle connection object.

The connection pooling is implemented in a different way from J2EE: all connections using exactly the same connection string from the same client will be redirected a unique server connection; it only works optimizing the connections of a single client. As JDBC, ADO.NET has a great transaction control service. They are very similar, including the use of savepoints to implement partial rollbacks.

Finally, ADO.NET has an easy and intuitive set of classes to work with disconnected data. The Dataset class acts as an in-memory database, allowing the management of different versions of a record and the synchronization with the original data source.

4 COMPARISON BETWEEN THE PROTOTYPES

4.1 Session Beans versus Managed Objects

The Enterprise JavaBeans (EJBs) are currently a mature and largely proved technology. The lifecycle management and the services provided by the application servers renders the EJBs one of the best options to enterprise applications. However, there are many classes (home, remote, implementation, helpers, stubs, skeletons) and deployment descriptors to manage, which render the application creation and maintenance more difficult.

On the other side, the .NET Managed Objects are easier to develop and manage without, however, have the same resources available by the J2EE servers. Any service implementation needs to be created by the developer.

If the application needs a great scalability, the EJBs are a better choice; if not, the Managed Objects simplicity may be the best option.

4.2 The Middlewares

The throughput in J2EE is bigger than in .NET Remoting, because there are more layers to cross. However, the RMI Socket Factories make the communication simpler than Remoting, without the need of defines a specific port to communicate among processes. In Remoting, each pair of processes communicates using a pre-defined communication port.

Another difference between the middleware is that the RMI, and performs a connection at the moment of the request while the Remoting keeps the connection data in memory, performing the connection only at the moment of the first call to the remote object.

4.3 Data Access and Transaction Control

Both JDBC and ADO.NET have great components to access and manage data, despite of its fundamental differences. Its important to notice that it is possible to work in a disconnected mode in JDBC (with CachedRowsets, a wrapper to Resultsets) as in a connected mode in ADO.NET (using Datareaders and Commands).

The ADO.NET driver management declares in code what database management system (DBMS) will be used by the application. This sacrifices the database independency of the application. Once compiled, the only way to change the DBMS used is to change the code and recompile it. To get independency of the DBMS in ADO.NET, an OleDbDataProvider or an ODBCDataProvider can be used, but it includes one more layer to the data access.

4.4 Performance Comparison

The environment used to develop the prototype is formed by four nodes (Anafi, Lefkas, Skopelos and Zitise). In each node there is a Balancing Service communicating with the other, trying to distribute loads, or else, the application objects for satellite control. The following comparative graphics shows some scenarios in both platforms. The Y-axis represents the CPU availability and the X-axis, the time.

Scenario 1: Nodes being added to the system, one by one

In scenario 1 the Zitise node is overloaded, while the other three nodes are being initialized one by one. It must be observed that to each node inserted in the environment, the balance system tries to redistribute the load among the available nodes.

[image: image3.png]

Figure 3: J2EE and .NET responses in scenario 1
Scenario 2: Three nodes being placed in maintenance sequentially

The system is balanced, but the maintenance process is started in each node. It may be observed that for each node starting the maintenance process the system tries to adapt and distribute the load of this node with the adjacent nodes. This process goes on to the point when the entire system loads is in only one node.

[image: image4.png]

Figure 4: J2EE and .NET responses in scenario 2

Scenario 3: One node with all the objects, three other nodes loading simultaneously

In this case one node is completely overloaded. The load process of other nodes activates the Balancing Service, which acts in this context trying to distribute the load of the overloaded node with the idle nodes. This process goes on to the point when all the other three nodes are initialized. It may be observed that at the end, the load of the first node was distributed with the other three nodes.

[image: image5.png]J2EE

Figure 5: J2EE and .NET responses in scenario 3
5 CONCLUSION

The Proposed Architecture

The SICSD renders the failure of network nodes, as the service unavailability, transparent for the Satellites Control System users. It takes over the responsibility of finding another server object able to continue to answer to the user request, and will make available more than one object responsible for sending commands to the satellite. Besides, these objects will be able to be instanced in different nodes of the system.

The Balancing and Connection Services aggregated to the control satellites application became prevailing factors and provided the creation of an environment able to adapt itself dynamically to the requirements of the controllers and the other users of the system, improving a set of characteristics, like performance, flexibility, reliability and use of the available computer resources.

Impressions About the Platforms

The J2EE specification was created to enterprise applications that need an enormous scalability and availability, as websites and webfarms. This generates a great hardware capacity need, as well renders the development and maintenance process more complex and painful. Many of the available J2EE resources, such as container managed transactions, was not used, because of the fact that a big part of the code and deployment descriptors used to its implementation are out of the reach of the developer, being created automatically buy the IDE or by the deployers.

The Java RMI Middleware is more complex to use, but has much more resources than .NET Remoting. Its socket factories and servers are a most elegant and complete solution than the registered channels and listeners used by Remoting.

The .NET library is clean and complete. Almost any thing that can be done has a namespace in the .NET Framework. Here, there are no primitive types: everything is an object. In Java, primitive types (integer, for instance) cannot be used as objects. To solve this problem, wrapper classes were created, as the Integer class. But the use of these classes makes the code a little bit confuse.

Except for its driver management described in item 4.3, ADO.NET branches because of its very well designed class library. The ADO.NET disconnected architecture is better to the majority of the current applications, including the SICSD prototype, because most of the database maintenance commands and queries are punctual: the application connects to the database, do what it needs and disconnects, freeing the server resources.

The .NET runtime environment consumes fewer resources than J2EE but also is less scalable. It is possible to finish this comparison in one phrase: while .NET is simpler, J2EE is more scalable.

Both platforms are powerful and provide a complete set of resources to any kind of application. The decision of which one will be used in an application is not trivial; several aspects must be taken into account, including market and commercial factors. After develop the described same application in both platforms, the impression is that the choice will be done based in the details of each one, and the needs of the application to be developed.

6 REFERENCES

[01] Ferreira, M.G.V. “An Architecture Flexible and Dynamics to Distributed Objects employed in Satellite Control Software”. Doctor’s Thesis in Computation Science, INPE - 2001.

[02] Orfali, R; Harkey, D. “Client/Server Programming with Java and CORBA”. Wiley Computer Publishing. 657p, 1998.

Montreal, Canada – May 17-21 2004 1 of 10

_1140381585

_1140381670

_1140381798

_1140379692.doc
[image: image1.png]

