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ABSTRACT 
 
Several papers studied the effect of the third body perturbation in a spacecrafts, usually working with 
the Hamiltonian of the system or with the disturbing function expressed in an analytic manner. The 
present paper has the goal of developing a semi-analytical study of the perturbation caused in a 
spacecraft by a third body with a single averaged model to eliminate the terms due to the short time 
periodic motion of the spacecraft. Several plots will show the time histories of the Keplerian elements 
of the orbits involved. One of the most important applications is to calculate the effect of Lunar and 
Solar perturbations on high-altitude Earth satellites. 
 

INTRODUCTION 
 

The effects of the gravitational attractions of the Sun and the Moon in the orbits of Earth’s artificial 
satellites have been studied in many papers. Kozai [13] writes down Lagrange’s planetary equations 
and the disturbing function due to the Sun or the Moon, including both secular and long periodic 
terms, but it only gives explicit expressions for the secular terms. Blitzer [8] ignores the specialized 
techniques of celestial mechanics and it obtains estimates for the perturbations by using methods of 
classical mechanics. Again, only secular terms are included, and it shows that the principal effect is a 
precession of the orbital plane around the pole of the ecliptic. Musen [11] shows two systems of 
formulas for the determination of the long periodic perturbations. The first system uses the theory 
originally developed by Gauss for a numerical treatment of the very long periodic effects in planetary 
motion, and the second method is based on the development of the disturbing function in terms of the 
Legendre polynomials and it finds long periodic terms and the influence on the stability of the orbit. 
Cook [5] studied the perturbations due solely by a third body from Lagrange’s planetary equations by 
integrating over one revolution of the satellite. The rates of change of the orbital elements averaged 
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over one revolution are then written and all first order terms (secular and long-period) are retained in 
the analysis. The theory is limited to satellites whose semi-major axis does not exceed one tenth of the 
Moon’s distance from the Earth. 
After that, Giacaglia [6] obtained the disturbing function for the Moon’s perturbations using ecliptic 
elements for the Moon and equatorial elements for the satellite. Secular, long-period and short-period 
perturbations are then computed, with the expressions kept in closed form in both inclination and 
eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are 
also given, assuming small values of the eccentricity. 
Hough [10] used the Hamiltonian formed by a combination of the declination and the right ascension 
of the satellite, the Moon, and the Sun. After that he averaged the Hamiltonian in small and moderate 
fluctuations and studied periodic perigee motion for orbits near the critical inclinations 63.40 and 
116.60. The theory predicts the existence of larger maximum fluctuations in eccentricity and faster 
oscillations near stable equilibrium points. Delhaise and Morbidelli [4] investigated the Lunisolar 
effects of a geosynchronous artificial satellite orbiting near the critical inclination, analyzing each 
harmonic formed by a combination of the satellite longitude of the node and the Moon’s longitude of 
the node. He demonstrates that the dynamics induced by these harmonics does not show resonance 
phenomena. 
Other researches developed by Broucke [12] and Prado and Costa [1] show general forms of the 
disturbing function of the third body truncated after the term of second and fourth order, respectively, 
in the expansion in Legendre polynomials. After that, Costa [7] expanded the order of this model to 
order eight.             
 

MATHEMATICAL MODELS 
 
Our model can be formulated in a very similar way of the formulation of the planar restricted three-
body problem: 
- There are three bodies involved in the dynamics: one body with mass m0 fixed in the origin of the 
reference system, a second massless body in a three-dimensional orbit around m0 and a third body in a 
circular orbit around m0 (see Figure 1). 
- The motion of the spacecraft (the second massless body) is Keplerian and three-dimensional, with its 
orbital elements perturbed by the third body. The motion of the spacecraft is studied with the single 
averaged model, where the average is performed with respect to the true anomaly of the spacecraft (f). 
The disturbing function is then expanded in Legendre polynomials. 
This section derives the equations used during the simulations. The main body m0 is fixed in the 
center of the reference system X-Y. The perturbing body m' is in a circular orbit with semi-major axis 
a' and mean motion n' (n'2 a'3 =G(m0 +m')). The spacecraft is in a three dimensional orbit, with  orbital 
elements: a, e, i, ω, Ω, and mean motion n (where n2 a3 =Gm0 ). 
In this situation, the disturbing potential that the spacecraft has from the action of the perturbing body 
is given by (using the expansion in Legendre polynomials and assuming that r'>>r) (Broucke [12]): 
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The parts of the disturbing potential due to P2 to P4  are: 
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The next step is to average those quantities over the short period of the satellite. The definition for 
average used in this paper is: 
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Fig. 1. Illustration of the third body perturbation. 

 
 

Figure 2 shows the relations between the orthogonal set of vectors P
)
, Q
)
, R
)
 and the orbital plane 

coordinate system, where 'r)  and r)  are unit vectors pointing from the central body to the perturbing 
body and of central body to the satellite, respectively. M is the mean anomaly of the satellite and M' is 
the mean anomaly of the perturbing body. The results are for the special case of circular orbits for the 
perturbing body and with the initial mean anomaly of the perturbing body equal to zero. The 
following relations are available (Broucke [12]): 
 
       )'M(Sin)(Sin)i(Cos)'M(Cos)(Cos −Ωω−−Ωω=α            (6) 
       )'M(Sin)(Cos)i(Cos)'M(Cos)(Sin −Ωω−−Ωω−=β            (7) 

 
With those relations it is possible to relate the angle S with the positions of the perturbing and the 
perturbed bodies. 



 50

 
       )f(Sin)f(Cos)S(Cos β+α=               (8) 

 
After of process of average the results available are: 
 

       ))(e
4

15)1)(
2
3)(e

2
31(()

'r
'a(

2
'na'R 2222223
22

2 β−α+−β+α+
µ

>=<          (9) 

       ]
8

e)1e(75
8

)e43(e25
8

)e34(e15[)
'r
'a(

'a2
)'n()a('R

22232
4

23

3
α−β

+
+α

−
+αµ

>=<                  (10) 

       
))1)e((35

))e(6)e(51(70))e(3)e(4(10))e(8)e(121(35

))e(18)e(414(10))e(15))e(408((
)'r(64

)'n()a()'a('3R

224

4222422424

42242
5

243

4

−β+

−+βα+−−β−++α+

++α−++
µ

>=<

     (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 2. The orthogonal set P

)
, Q
)

, R
)

 and the orbital plane coordinate system.  
 
 
 

The next step is to obtain the equations of motion of the spacecraft. From the Lagrange's planetary 
equations, that depends on the derivatives of the disturbing function (see Taff [9] ). It is noticed that 
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the semi-major axis always remains constant. This occurs because, after the averaging, the disturbing 
function does not depend on Mo: 
 

RESULTS 
 
Looking for the behavior of the orbital elements for values of the initial inclination above and below 
the critical value, it is visible that the inclination oscillates with a varied amplitude. The so called 
"critical angle of the third-body perturbation" is a value for the inclination between the orbital planes 
of the perturbing and the perturbed bodies, such that any near-circular orbit with inclination below 
this remains near-circular. 
 
From the evolution of the inclination for a initial value of 20 deg, it is clear that the amplitude of the 
variation is of the order of  0.0007 (see Figure 3). Figure 4 shows the evolution of the inclination for a 
initial value of 35 deg, that is a value near critical (39.231 deg). It is possible to identify a periodic 
behavior with an amplitude of 0.0011. It is also visible that for the case showed in Figure 3 the 
oscillations occur around a line of constant inclination and in Fig. 4 these oscillations occur around a 
line that also has a sinusoidal shape. The results available in the literature regarding the double 
averaged problem confirm and explain this behavior (Prado [2]).  
 
 
 

 
Fig. 3. Plots of the Inclination for i(0) = 20 

deg 
Fig. 4. Plots of Inclination for i(0) = 35 deg  

 
For the cases of initial inclinations above the critical value, the inclination starts at the initial value, 
decreases to the critical value and then it returns again to its original value (see Figures 5 and 6). 
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The results are very similar to the ones obtained with the double averaged approach (Prado [2]). The 
reason for that is the scale used in the plots. The difference between both methods is the existence of a 
short period oscillation around the main lines giving by the double averaged method and this 
oscillation is not visible in the scale used in the plots. 
 

 
Fig. 5. Plots of Inclination for i(0) = 55 deg  Fig. 6. Plots of Inclination for i(0) = 70 deg  

 
The next simulations show results for initial inclinations below the critical value. The scales of the 
plots has to be noticed, and they show that the evolution of the inclination can be expressed in straight 
line (see Figure 7). 

 
Fig. 7. Plots of Inclination for i(0) < i critical Fig. 8. Plots of Inclination for i(0) > i critical 
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Fig. 9. Plots of the Eccentricity for i(0) = 20 
deg  

Fig. 10. Plots of the Eccentricity for i(0) = 35 
deg  

 
The evolutions of the inclination for starting values above the critical inclination show curves that has 
the characteristic behavior of starting with an initial value, decreasing to the critical value, then 
returning to its original value (see Figure 8). Now, we measure the effect of increasing the initial 
inclination. The results show that the time for reaching the critical value is reduced. The next step is to 
study the evolutions of the eccentricity. It oscillates with a very small amplitude for values of the 
initial inclination below critical (see Figure 9). The oscillation have an amplitude of 0.003 for the 
initial inclination of 20 deg. Figure 10 shows the evolution of the eccentricity for values of the initial 
inclination near the critical value, and it is possible to identify the evolutions with amplitude of  0.025. 
 

Fig. 11. Plots of the Eccentricity for i(0) = 55 
deg  

Fig. 12. Plots of the Eccentricity for i(0) = 70 
deg  
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It is important to notice that, when the eccentricity reach its maximum amplitude, the inclination reach 
its smaller amplitude for the case of initial inclination near or above of critical value (see the Figures 
4, 5, 6, 10, 11, 12). 
 
 

 
Figure. 13. Plots of the Eccentricity for i(0) < i 

critical 
Fig. 14. Plots of the Eccentricity for i(0) > i 

critical 
 
 
 

 
Fig. 15. Eccentricity vs. Inclination for i (0) = 

55 deg. 
Fig. 16. Eccentricity vs. Inclination for  i (0) = 

70 deg. 
 
When plots of the eccentricity for values of the initial inclination below critical (see Figure 13) are 
made, they show that the amplitudes decrease. This is important to keep the stability of the orbits. 
Figure 14 shows the evolutions of the eccentricity for values of the initial inclination above the critical 
value.  
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Figures 15 and 16 have a characteristic behavior. In these simulations it is shown the plots for initial 
inclination above the critical value. It is possible to identify the evolution of the inclination vs. the 
eccentricity, to notice that, when the inclination reaches it maximum value, the eccentricity reaches its 
minimum value. This curves is periodic for the evolution of the inclination and eccentricity. The 
orbital elements used for those simulation are: a[0]=0.341, e[0]=0.01, Ω[0]=0, ω[0]=0. Remember 
that the time is defined such that the period of the disturbing body is 2π (canonical system of units). 
 

CONCLUSIONS 
 
This paper develops the third body perturbation using a single averaged model, expanding the 
perturbation function up to the fourth order. The results show the behavior of the orbits with respect to 
the initial inclination. The orbital elements present small oscillations and/or secular behavior. This 
semi-analytical model is able to study the evolutions of the orbital elements and the importance of the 
critical inclination in the stability of near circular orbits. The results are compared with the ones 
obtained by the double-averaged model. It confirms the same properties obtained from this model. 
The main difference in the results is the existence of oscillations around a main line given by the 
double-averaged model. Several plots will show the time histories of the Keplerian elements of the 
disturbing function of the third body truncated after the term of fourth and eight order given by 
singular averaged model is development by Solórzano[3]. 
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