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ABSTRACT

In this work, we consider the problem of two-impulse orbital transfers between coplanar elliptical orbits with
minimum fuel consumption but with a time limit for this transfer. This time limit imposes a new characteristic to
the problem that rules out the majority of transfer methods available in the literature. Then, as a first method
(Rocco1, Rocco et al.2), we used the equations presented by Lawden3. Those equations furnishes the optimal
transfer orbit with fixed time for this transfer, between two elliptical coplanar orbits considering fixed terminal
points. We adapted the method to cases with free terminal points and solved those equations to develop a
software for orbital maneuvers. As a second method (Rocco1, Rocco et al.4), we used the equations
presented by Eckel and Vinh5, that provides the transfer orbit between non-coplanar elliptical orbits with
minimum fuel and fixed time transfer; or minimum time transfer for a prescribed fuel consumption; considering
free terminal points. But in this work we consider only the problem with fixed time transfer, the case of
minimum time for a prescribed fuel consumption was already studied in Rocco et al.6 Then, we modified the
method to consider cases of coplanar orbital transfer, and develop a software for orbital maneuvers.
Therefore, we have two software that solve the same problem using different methods. The first method uses
the primer vector theory. The second method uses the ordinary theory of maxima and minima. So, to test the
methods we choose the same terminal orbits and the same time as input. We could verify that we didn't obtain
exactly the same result. Therefore, comparing and testing the results we could select the best method to solve
the problem of coplanar orbital transfer with time limit.

1 - INTRODUCTION

The majority of the spacecrafts that have been placed in orbit around the Earth utilize the basic concept of
orbital transfers. During the launch, the spacecraft is placed in a parking orbit distinct from the final orbit,
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which the spacecraft was designed. Therefore, to reach the desired final orbit the spacecraft must perform
orbital transfer maneuvers. Beyond this, the spacecraft orbit must be corrected periodically because there are
perturbations acting on the spacecraft. In Brazil, we are going to have important applications with the launch
of Remote Sensing Satellites RSS1 and RSS2 that belongs to the Complete Brazilian Space Mission and with
the launch of the China Brazil Earth Resources Satellites CBERS1 and CBERS2.

In this work, we consider the problem of two-impulse orbital transfers between coplanar elliptical orbits with
minimum fuel consumption but with a time limit for this transfer. This time limit imposes a new characteristic to
the problem that rules out the majority of transfer methods. Then, we used the equations presented by
Lawden3 (method 1) and by Eckel and Vinh5 (method 2), modified them, considering cases with different
geometries, and solved those equations to develop two software for orbital maneuvers. The original methods
developed by Lawden and by Eckel and Vinh were presented without numerical results. Thus, the
modifications considering cases with more complex geometry, the implementation and the solutions using
these methods are contributions of this work.

2 - PRESENTATION OF THE METHODS

2.1- Method 1

The bases for this method are the equations presented by Lawden3, that furnish: the transfer orbit between
coplanar elliptical orbits with minimum fuel and fixed time transfer. The equations were presented in the
literature but the method was not implemented neither tested by Lawden3 in that paper. Thus, the extension to
other cases, the implementation and the solutions using this method are contributions of this work. Therefore,
the method was implemented to develop a software for orbital maneuvers. By varying the time spent in the
maneuver the software developed furnishes a set of results that are the solution of the problem of bi-impulsive
optimal orbital transfer with time limit.

Fig. 1 – Geometry of the Maneuver



Given two coplanar terminal orbits, as showed in figure 1, we desire to obtain a transfer orbit with minimum
fuel consumption and fixed time transfer. The orbits are specified by their orbital elements (subscript 1: initial
orbit; subscript 2: final orbit; no subscript: transfer orbit):

a =  Semi-major axis;
e =  Eccentricity;
l =  Semi-latus rectum;

ω =  Longitude of the periapsis;
i =  Inclination;
Ω =  Longitude of the ascending node;

From Lawden3 we have an equation system composed by twelve equations which represent the optimal
conditions:
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Solving this equation system by the Newton Raphson Method (cf. Rocco1), we obtain the transfer orbit that
performs the maneuver spending a specific time but with minimum fuel consumption.

2.2- Method 2

The bases for this method are the equations presented by Eckel and Vinh5, that furnish: the transfer orbit
between non-coplanar elliptical orbits with minimum fuel and fixed time transfer; or minimum time transfer for
a prescribed fuel consumption; but in this work we consider only the problem with fixed time transfer. The
equations were presented in the literature but the method was not implemented neither tested by Eckel and
Vinh5 in that paper. Thus, the modifications considering the coplanar case and other cases with more complex
geometries, the implementation and the solutions using this method are contributions of this work. Therefore,
the method was implemented to develop a software for orbital maneuvers. By varying the time spent in the
maneuver the software developed furnishes a set of results that are the solution of the problem of bi-impulsive
optimal orbital transfer with time limit.

Given two terminal orbits we desire to obtain a transfer orbit with minimum fuel consumption and fixed time
transfer. The orbits are specified by their orbital elements (subscript 1: initial orbit; subscript 2: final orbit; no
subscript: transfer orbit):

a =  Semi-major axis;
e =  Eccentricity;
p =  Semi-latus rectum;
ω =  Longitude of the periapsis;

i =  Inclination;
Ω =  Longitude of the ascending node;
M =  Mean anomaly;
E =  Eccentric anomaly.



The geometry of the maneuver is shown in Figure 2.

initial orbit

transfer orbit

equatorial plane

vernal point

final orbit

ascending node of the final orbit

ascending node of the initial orbit

Fig. 2 – Geometry of the Maneuver.

From Eckel and Vinh5 we have an equation system composed by three equations which represent the optimal
conditions:
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For the coplanar case we should substitute the two previous equations by the following:
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Solving the equation system composed by the equations 17, 20 and 21 by the Least Squares Method (cf.
Rocco7), we obtain the transfer orbit that performs the maneuver spending a specific time but with minimum
fuel consumption.



3 - RESULTS

Figures below present the results obtained. The graphs were obtained through the variation of the total time
spent in the maneuver. Thus, each point was obtained executing the software to the specific time. For
example, we utilized the maneuver between two terminal orbits with the following characteristics:

Initial orbit:

1a =   7000.00000 km;

1e =         0.10000;
1i =         0.00000 rad;

1p =   6930.00000 km;
1ω =         2.50000 rad;

1Ω =         0.00000 rad.

Final orbit:

2a =   7100.00000 km;

2e =         0.30000;
2i =         0.00000 rad;

2p =   6461.00000 km;
2ω =         2.50000 rad;

2Ω =         0.00000 rad.

Fig. 3 – Semi-Major Axis vs. Time

Fig. 5 – Longitude of the Periapsis vs. Time

Fig. 4 – Eccentricity vs. Time

Fig. 6 – True Latitude vs. Time



Fig. 7 – Velocity Increment vs. Time Fig. 8 – Velocity Increment vs. Transfer Angle vs.
Time

1 METHODvm∆  is 4,74634959 % larger than 2 METHODvm∆

Fig. 9 – Medium Velocity Increment.

4 - CONCLUSION

In the previous figures we can verify that the transfer orbits obtained by the application of the methods 1 and
2 are similar. In a general way, we can notice that when the maneuver spends more time the transfer angle
increases while the semi-major axis, the eccentricity and the velocity increment decrease. When the maneuver
spends less time the transfer angle decreases while the semi-major axis, the eccentricity and the velocity
increment increase: T ↑↑ ↓↓  ⇒⇒   ∆θ ↑↑ ↓↓ ; a ↓↓ ↑↑ ; e ↓↓ ↑↑ ;  ∆v ↓↓ ↑↑ .

From the analysis of the graphs we can conclude that both methods presented satisfactory results. The
solutions obtained were tested and it was verified that they are feasible. The precision demanded in both



methods was of 10-16, for a maximum of 1000 iterations. Thus, the solutions obtained are the roots for the
systems of equations that represent the optimal conditions for the methods 1 and 2.

However, the method 2 presented better solutions than the method 1, as shown in the Figure 9. The method
1 is composed by a system of 12 non-linear equations while the method 2 is composed by a system of 3 non-
linear equations. In this way, it is easier to solve the equation system of the method 2 than the equation system
of the method 1. Thus, the search area of the method 2 becomes, in the practice, larger, because it is more
probable that happen problems of convergence in a system with 12 equations than in a system with 3
equations. For this reason, the method 1 found a local minimum and it was not capable to find another better
solutions as the method 2.

Thus, both methods were studied, implemented and tested with success. The simulations showed that the
software developed can be used in real applications and it is capable to generate reliable results.

6- REFERENCES

1. Rocco, E. M.  Transferências Orbitais Bi-Impulsivas com Limite de Tempo.  Master Thesis, INPE,
1997.

2. Rocco, E.M.; Prado, A.F.B.A.; Souza, M.L.O. Bi-Impulsive Orbital Transfers Between Coplanar
Orbits with Time Limit. AIAA/AAS Astrodynamics Specialist Conference. Boston, Massachusetts,
EUA. August 10 - 12, 1998.

3. Lawden, D. F.  Time-Closed Optimal Transfer by Two Impulses Between Coplanar Elliptical Orbits.
Journal of Guidance, Control, and Dynamics, 16 (3): 585-587, 1993.

4. Rocco, E.M.; Prado, A.F.B.A.; Souza, M.L.O. Bi-Impulsive Orbital Transfers Between Non-
Coplanar Orbits with Time Limit. PACAM VI Sixth Pan American Congress of Applied Mechanics /
DINAME 8th  International  Conference  on  Dynamic  Problems  in  Mechanics.  Rio de Janeiro - Brazil,
January 4 - 8, 1999.

5. Eckel, K. G. e Vinh, N. X.  Optimal Switching Conditions for Minimum Fuel Fixed Time Transfer
Between Non-Coplanar Elliptical Orbits.  Acta Astronautica, 11 (10/11): 621-631, 1984.

6. Rocco, E.M.; Prado, A.F.B.A.; Souza, M.L.O. Orbital Trasfers Between Non-Coplanar Orbits
Using Bi-Impulsive Maneuvers with Minimum Time for a Prescribed Fuel Consumption. 15th

International Symposium of Spaceflight Dynamics. Biarritz – France, June 26 - 30, 2000.

7. Rocco, E. M.  Manutenção Orbital de Constelações Simétricas de Satélites Utilizando Manobras
Impulsivas Ótimas com Vínculo de Tempo.  Doctorate Thesis, INPE, 2002.


	COMPARISON BETWEEN TWO METHODS OF OPTIMAL COPLANAR ORBITAL TRANSFERS WITH TIME LIMIT
	ABSTRACT
	1 - INTRODUCTION
	2 - PRESENTATION OF THE METHODS
	2.1- Method 1
	2.2- Method 2

	3 - RESULTS
	4 - CONCLUSION
	6- REFERENCES


	indice: 
	artigo anterior: 
	proximo artigo: 
	indice_txt: Inicio
	artigo_ant_txt: artigo anterior
	artigo_prox_txt: próximo artigo


