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ABSTRACT

We address the problem of synchronization in nonhyperbolic systems. We present a generd method based
on a chaos control strategy and on the Extended Kaman Filter that works for dl classes of those systems and
even in the presence of noise. The method works fine even for sysems that present the phenomena of
Ungable Dimenson Vaiahility (UDV).

INTRODUCTION

The inherent sengtive dependence on initid conditions is a fundamentd characteritic of chaotic systems
(Devaney, 1989). It implies that two trgectories sarting from dightly different initid conditions diverge
exponentidly in time. Despite that, Snce 1983 it has been known tha two chaotic sysems can be
synchronized ( Fujisaka and Y amada, 1983; Afraimovich et a, 1986). Later on, Pecora and Carol (Pecora
and Carall, 1990) gave a condition for the synchronization of two identicd chaotic sysems Using
appropriately chosen dtate variables of a chaotic system (the driver) & input to a replica of the origind
system, the replica subsystem (the dave) might synchronize with the origind system if its Lyapunov exponents
are dl negative. The authors aso pointed out that this phenomenon of chaos synchronization may be used asa
new paradigm to be implemented in communication sysems. Since that work, synchronization in chaotic
systems has become an area of intense activity (Parlitz et a, 1992; Cuomo and Oppenheim, 1992; Cuomo et
a, 1993; Chua et a, 1993; Heagy et a, 1994; Kocarev and Parlitz, 1996; Pecora et a, 1997; Fink et a,
2000).

In this work, we discuss another gpproach for synchronization. This gpproach uses a scdar transmitted sgnd
and is basad on the use of the Extended Kadman Filter (Kaman, 1960; Brown and Hwang, 1997) in
associaion with an OGY inspired method of control of chaos (Ott et a, 1990; Grebogi and Lai, 1997,
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Macau and Grebogi, 2000). As 0, in the dave system, the current state of the driver system is obtained form
the scalar transmitted signa by using the Extended Kaman Filter. Then, a perturbation that depends on the
current states of the both system is gpplied which ends up with the dave system following the driver (Macau
et a, 2002). This approach is cdled active synchronization to emphasize its main difference in rdation to the
more traditiond passve synchronization process in which synchronization happens as a consequence of a
proper coupling scheme. Furthermore, it works properly even on situaions in which al other gpproaches for
synchronization fail, as are the cases for systlems under the occurrence of the phenomenon of the Unstable
Dimension Variability (UDV).

In the next section we review the concepts about hyperbolicity and unstable dimendon variability. After that,
we discuss the fundaments about synchronization and control of chaos. Subsequently, we review the ideas
about control of chaos, introduce our active synchronization method and present the main results.

HYPERBOLICITY AND THE CONCEPT OF UNSTABLE DIMENS ON VARIABILITY

In what follows, we condder just discrete in time maps. This assumptions is, however, not so redtrictive
because those maps can dso be regarded as invertible Poincaré maps of continuous in time flows. Let
f:A™® A™be a diffeomorphism x ® f(x) having an invariant st W, such that if x T W, then any
subsequent forward or backward iterates of x remainin W. The invariant st W is cdled hyperbolic if the
tangent space at apoint x I W, denoted T, , may be decomposed as the direct sum (Devaney, 1989)

T, =E'AE, Q)
where E;' and E; are the ungtable and stable subspaces, respectively, having the following properties:

(@) The decomposition (1) varies continuoudy with x T W, and it isinvariant under the action of the tangent
map such that

Df (E)=E},, 2
Df (E:) = E?(x); €©)
(b) Thereexist congtants K >0and 0 <r <1, such that
[of (| < ke "I if yT EZ, @
||Df '“(x)y" <Kr "|y|if yT E, (5)

meaning that vectors in a amdl neighborhood of EXS(E;‘) under forward (backward) iterations of the tangent
map Df approachesany x 1 W a auniform rate r . The stable (unstable) dimension a apoint x T W is
the dimension of the corresponding stable (unstable) subspace d°® :dim(EXS) (d" = dim(E;‘)). For the
invariant set W of the nonlinear map f (x), the stable W*(x) and the unstable W* (x ) manifolds of the fixed
point x I W are defined as (Devaney, 1989)

we(x)={yT A™: f"(y)® x if n® ¥}, (6)

W(x)={yT A" f"(y)® x if n® ¥}, @
respectively.
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Due to the locd manifold theorem (Devaney, 1989) for a hyperbolic C"-diffeomorphism, the stable and
unstable manifolds are tangent to the stable and ungtable invariant subspace of the tangent map Df (x) at the

fixed points embedded in W. Moreover, in hyperbolic systems the ungtable and stable manifolds intersect
transversdy, i. e, the angle between them is bounded away from zero. Otherwise, the invariant st Wis
nonhyperbolic.

Nonhyperbolic systems encompass the mgority of dynamicad systems of physical and technologicd interest,
and can be classified in two types. For the firg type, the splitting of the phase space into expanding and
contracting subspaces is invariant dong a trgectory except a the tangencies of the stable and unstable
manifolds.,, where the angles between subspaces are zero (Hamme et a, 1987; Grebogi et a, 1990; Sauer
and Yorke, 1991).

The second type of nonhyperbolicity is the due to the presence of the a phenomena known as unstable
dimension variability (UDV) (Abraham and Smale, 1970; Dawson et a, 1994; Dawson, 1996; Kostelich
et a, 1997; La et d, 1999). It is related to the presence of unstable periodic orbits with different numbers of
unstable directions embedded within the chaotic attractor. The sets of periodic orbits are densay mixed so
that a typica trgectory experiences different numbers of ungtable and stable directions as it evolves. As a
consequence, the continuous splitting of the phase space into expanding and contracting subspaces is no
longer valid. The ungable dimengon variahility is reflected by a finite-time Lyapunov exponent fluctuating
about zero due to vidts of the trgectory to regions of the attractor with a varying number of stable and
unstable directions (Dawson et a, 1994; Sauer et al, 1997; Pikovsky et a, 1997).

UDV has been firgt described by Abraham and Smde (Abraham and Smde, 1970) for a diffeomorphism in
T2 S* whose invariant set has two fixed points with different unstable dimensions. However, the first
observation of UDV for a dynamicd system of physicd interest gppears in 1992, when its  existence was
incidentally reported for the kicked double rotor, a four-dimensond invertible map (Romeiras et d, 1992).
This syslem conssts of two connected masdess rods. The first rod rotates about a fixed pivot; the second rod
pivots about the ends of the second rod at a congtant interval. This system is modeled by the following four-
dimensond map, which describes the dynamics of the rotor reating the date of the system just after
consecutive kicks:

T, =MF, +T,,
F.=LF +G(T,,) ®
i+1 — i i+ /)
where
Dé d6.
T:?()% S F:gx( % A" A, 9
X(2) g X(4) g
end

&, sin(x(1) 6

(T)=g . T

c,sin(x(2))5

In Egs. (8) to (10), x(1,2) are the angular postions of the rotors ate the ingant of the ith kick, while
X(3,4) are the angular postions of the rotors, L and M are 2° 2 congtant matrices whose eements

(10)



depend on the physical parameters of the rotors, ¢, and c, are two parameters that are proportiona to the
kicking strength f. In what follows, we choose there parameters so that ¢, =c, = f, andweusefor L and

M the same values that appears in (Romeiras et a, 1992). Thus, the only parameter that can vary isthe
kicking strength fm which is used as the externdly adjustable control parameter.

For the double-rotor mar, numerica experiments (Romeiras et a, 1992) show that the system goes through a
cascade of period-doubling bifurcation for f < f, » 6.75 and becomes chaotic with one positive Lyapunov

exponent & f,. For valuesof f near f =8.0, thereis a transition from one positive Lyapunov exponent to

two pogtive ones, while the finite-time exponents shows fluctuations (Dawnson et a, 1994; La et a, 1999)
between one and two positive exponents. For parameter f values much above the the trandtion value, such as
the case for f =9.0, the second Lyapunov exponent becomes positive. Thus, there is ungable dimenson

vaidbility for vauesof f near f =8.0, andfor f =9.0 the double-rotor is a hyperchaotic system.

SYNCHRONIZATION IN CHAOTIC AND IN CHAOTIC AND NONHYPERBOLIC SYSTEMS

Under well know conditions, two chaotic systems can synchronize (Pecora and Carroll, 1990; Pecora and
Carrall, 1991). Let us consder atransmitter system (driver) such as

dx dy dz

—=f(x,vy,2), ==9(X,¥,2), —=h(xY,2). 11

OIt(y)dtg(y)dt(y) (1D)
The recaiver system has the same dynamics as the transmitter, and it receives as a Sgnd one of the date
gpace variables of the tranamitter, say y, that act on the receiver as the driver. Note that there are many ways
to apply this Signd to the recaiver. Thus, the receiver can be described by

dx(¢ dz¢
- = ¢ — =
” f(x¢y, z0, m h(x¢y, z0, (12)

where the primed variable are the response only and we have gpplied the drive only in the y of the response
subsystem. It has been shown (Pecora and Carroll, 1990) that if the Lyapunov exponents in the receiver
sysem are negative, then y(- y® 0 as t® ¥ . Thismeansthat the chaotic evolution of the tranamitter can

be recovered by the receiver if just a proper chosen signd is transmitted over the communication channd.

In regard to synchronization in chaotic systems with more than one positive Lyapunov exponent (hyperchaotic
systems), there was a generd bdief that to achieve synchronization the number of variables to be transmitted
should be equd to that of positive Lyapunov exponents in order to account for the same number of ungtable
directions dong the trgectory (Pyragas, 1993). Peng and coworkers (Peng et a, 1996) showed that this
belief is incorrect and the synchronization could be possble, in some cases, usng asgnd congtructed in the
form of the linear combination of the origind phase space variables. Subsequent works introduced
modifications to Peng et a assartion, modifications related to the form of the transmitted sgna should be
congructed (Tamasevicius and Cenys, 1997), or to the parameters of the transmitted signa (Ali and Fang,
1997; Johnson et d, 1998), or to the coupling between the transmitted signa and the receiver (Pecora et d,
1997). In generd, all those proposed approaches uses feedback strategies whose parameters are fixed and
caculated using empirica drategies or optimization agorithms. As a consequence, none of those drategies
can be considered to work for sure with any hyperchaotic system..
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In dl the idess previoudy discussed, the requirement of a hyperbolic structure for the systems to be
synchronized is implicit. If it is not the case, those approaches may not work. Thus, the presence of
tangencies can cause the synchronized systems to lose the synchronization near a tangency point. It happens
because, under the presence of noise or parameter mismatch, one of the trgectories can be pushed across
the stable manifold, while the other stays on the unstable set. If this happens, the trgectories tend to separate
exponentially on average from each other and so the synchronization is destroyed. The Situation is even worst
for sysems having undable dimenson variability and in the presence of noise or even amdl parameter
mismatches . As the trgectories move from one neighborhood to another having unstable periodic orbits with
different number of expanding directions the synchronized trgectories tend to separate exponentidly from
esch other and s0 the synchronization is destroyed. What makes the Stuation hard for this case of
nonhyperboalicity is the fact that the sets of periodic orbits with different number of expanding directions are
densdly mixed (Kogelich et d, 1997). As a consequence, the regions where the synchronization is highly
susceptible to being destroyed due to the presence of noise are extended over most of the attractor. In this
scenaio, the proposed methods for synchronization of hyperchaotic systems are extremely inefficient. As a
consequence, another efficient approach is required.

EXTENDED KALMAN FILTER AND ACTIVE SYNCHRONIZATION

For nonhyperbolic hyperchaotic systems, a synchronization drategy will work only if it is capable of
continuoudy keeping track of the local changes of the system as the trgjectory evolves through the sets of
periodic orbits with different number of expanding directions and changes its parameters accordingly. Thus,
the main point here is to have a synchronization procedure with a built-in adjusment mechanism which
monitors the system local dynamics and adjust its coefficients to keep the systems synchronized. Herewith we
propose a synchronization method based on a chaos control strategy that implements exactly this principle.

A schemdic illudration of our method to actively synchronize tow chaotic sysems is showed in Fig. 1. We
extend the pole placement control of chaos dtrategy (Romeiras et d, 1992) to stabilize a chaotic strategy of
one system (System B) about a chaotic orbit of the other system (System A) to achieve synchronization of the
two systems. We assume that some parameter of the system can be externdlly adjustable, and that we have
complete access to the State variable of the dave system (System B). The Extended Kaman Filter dlows us
to estimate the current state of the driver system with the
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Figl: Schematic illustration of our strategy of active synchronization. Based on measures from the state variables of System
A the parameter p of System B is adjusted so that it is kept synchronized with System A. The current state of the driver
System A is obtained from the scal ar transmitted signal z by using the Extended Kalman Filter. dp isthe small perturbation
applied on some parameter of the System B to make it synchronize with System A.

transmitted scdar sgnal. Let us condder two dmost identica chaotic systems that are described by the
following maps on the Poincaré surface of section:

SystemA: Y,,, = F(Y,, D), (13.8)

System B: X,,, =F (X,, p), (13.b)

where X,, Y, T A", Fisasmooth function in its varidbles, p for System A is afixed parameter value
and p for System B is a externdly adjustable parameter whose valueisredrict to lie in some smal intervd,

|p- P <dip, (14)

about P, where d, isasmall number defining the range of parameter variation. Suppose thet the two
systems gart with different initid conditions. The resulting chaotic trajectories are completely uncorrel ated.
Some time later, due to ergodicity, the two trgjectories can get arbitrarily close to each other. Consder that
this event take places at the timei. The difference between the trgjectoriesin the next iteration can be
caculated usng the following equation:

Xi+1_Yi+1:F(Xi'p)_ F(Yi’ﬁ)- (15)
For valuesof p closeto P, and as X, fdlsin asmal neighborhood of Y, the previous equation can be
approximated in the neighborhood of Y, by the linear map

X1 Yi?l =A |_xi - YiT)J+ B, (pi - 5), (16)
where A isan n” n Jacobian matrix and B, isan n-dimensond column vector,
A =D,F(Z,P)l o5 pep (17)
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B, =D,F(Z,p)l, (18)
and these partia derivatives are evauated & Z =Y,Pand p = p. Consider that the point of the trgjectory of
System A u times ahead, has u ungtable directions, and s stable directions in its tangent space. We can
determine vectors {v Vv % } which span the linearized stable subspace of the System A

i+tu,2? ' Yi+u,s

=Y?,p=p’

i+u,l?
trgjectory at the point Y, P, . Let us define the matrix
Fii = A A Avja Al (19)

for j =1,2---,(u- 1). To derive the control action to be applied to the parameter p of system B at each
iteration, we iterate Eq. (15) u times,

Xi+u - Yifu =F i,Ol.xi - YiTJJ"'F i,lBi(pi - E)"‘""" Bi+u-1(pi+u-1 - E) (20)
To make System B synchronizewith System A, X, must land on the linearized stable manifold of System A
trgjectory a the point Y,?,. Thus, the parameter ps must be chosen such that there exists s coefficients
a,a,,-,a, suchtha
X, -YP =ay

1+u

+a,Vv,, , t--+ay, (21)

i+u,l i+u,2 sVi+u,s"

Conddering Egs. (20) and (21), we have a system of u+s< equaions in u+s unknowns varigbles
Piy Piags s Pisy 108,85, 8 5. ThisSystem can be solved for p. to obtain

pi- pP=- Kitl_Xi - Yiﬁ]’ (22)
where K! =LC'F o, L=[-1 00 - 0, and
C. :[- Fi.Bi - -Biu: View - Vi+u'SJ. When this method is gpplied, we find the values of the

parameter p that must be applied to System B at each iteration for the synchronization of the two systems,
e, [X; - YP|® ofor j>i.

In the previous equation, the state variables of the System A are estimated by using the Extended Kaman
Filter (Brown and Hwang, 1997; Macau et a.,2002).

RESULTS

Let us now verify how our proposed method works in a physical meaning Stuation. Let us consder the
double rotor map previoudy described. For L and M matrices, we use the same values that was used by
Romeiras (Romeiras et d., 1992). Depending on the values of the parameters ¢, = ¢, = f , we face different
dynamical behaviors for the sysem. Thus, in Figs. 2 and 3 we show the results of the use of our Strategy to
synchronize two double-rotor systems having parameters vaues of f equal to 8.0 and 9.0, respectively. For
both situations the transmitted signdl used is z, = H(X,,v,) = x(1) + x(2) + x(3) + x(4) + v, where v isa
white noise with normd probability digribution, i. e, p(v) ~ N(0,R) and R o0 that the sgnd to noise
relation is equd to 70dB. For the first case, we are indde the region that occurs the trangtion from one
positive Lygpunov exponent to two positive ones, while the finite-time Lyapunov exponents show fluctuations
(Dawson et d., 1994) between one and two positive exponents. It means that we are in the region that
appears the phenomenon of unstable dimension variability.
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Fig2: Results of the use of our strategy to synchronize adouble-rotor system having parameter value of f=8.0

For f =9.0, the double-rotor is a hyperchaotic system, i.e., the sysem has two postive Lyapunov
exponent..
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Fig 3: Results of the use of our strategy to synchronize a double-rotor system having parameter value of f=9.0

Comparing both results, we can verify that even in the presence of noise, as our synchronization agorithm is
gpplied on the system B its trgjectory approaches the trgectory of system A and then both trgectories
remain synchronized. Note, aso, that the elgpse of time until the trgectories come near to each other so that
our active synchronization strategy can be gpplied is larger for the hyperchaotic regime than for the Stuation
with UDV. Furthermore, form the results, we can verify that the synchronization is robust even in the presence
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of noise. Thus, our active synchronization method based on chaos control strategy and on the Extended
Kaman Filter is capable of keep the systems synchronized as the trgectory evolves through the chaotic
invariant set because it has a built-in adjustment mechanism that monitors the system locd dynamics and
adjust its coefficient according to the loca dynamics.
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