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ABSTRACT 
 
We address the problem of synchronization in nonhyperbolic systems. We present a general method based 
on a chaos control strategy and on the Extended Kalman Filter that works for all classes of those systems and 
even in the presence of noise. The method works fine even for systems that present the phenomena of 
Unstable Dimension Variability (UDV). 
 

INTRODUCTION 
 

The inherent sensitive dependence on initial conditions is a fundamental characteristic of chaotic systems 
(Devaney, 1989). It implies that two trajectories starting from slightly different initial conditions diverge 
exponentially in time. Despite that, since 1983 it has been known that two chaotic systems can be 
synchronized ( Fujisaka and Yamada, 1983; Afraimovich et al, 1986). Later on, Pecora and Carol (Pecora 
and Carroll, 1990) gave a condition for the synchronization of two identical chaotic systems: Using 
appropriately chosen state variables of a chaotic system (the driver) as input to a replica of the original 
system, the replica subsystem (the slave) might synchronize with the original system if its Lyapunov exponents 
are all negative. The authors also pointed out that this phenomenon of chaos synchronization may be used as a 
new paradigm to be implemented in communication systems. Since that work, synchronization in chaotic 
systems has become an area of intense activity (Parlitz et al, 1992; Cuomo and Oppenheim, 1992; Cuomo et 
al, 1993; Chua et al, 1993; Heagy et al, 1994; Kocarev and Parlitz, 1996; Pecora et al, 1997; Fink et al, 
2000). 

In this work, we discuss another approach for synchronization. This approach uses a scalar transmitted signal 
and is based on the use of the Extended Kalman Filter (Kalman, 1960; Brown and Hwang, 1997) in 
association with an OGY inspired method of control of chaos (Ott et al, 1990; Grebogi and Lai, 1997; 

ADVANCES IN SPACE DYNAMICS 4: CELESTIAL MECHANICS AND ASTRONAUTICS, 
H. K. Kuga, Editor, 123-132 (2004). 
Instituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos, SP, Brazil. 
ISBN 85-17-00012-9 

goto-/sid.inpe.br/marciana/2004/09.13.15.57
goto-/sid.inpe.br/marciana/2004/09.14.09.26
goto-/sid.inpe.br/marciana/2004/09.14.09.36


 124

Macau and Grebogi, 2000). As so, in the slave system, the current state of the driver system is obtained form 
the scalar transmitted signal by using the Extended Kalman Filter. Then, a perturbation that depends on the 
current states of the both system is applied which ends up with the slave system following the driver (Macau 
et al, 2002). This approach is called active synchronization to emphasize its main difference in relation to the 
more traditional passive synchronization process in which synchronization happens as a consequence of a 
proper coupling scheme. Furthermore, it works properly even on situations in which all other approaches for 
synchronization fail, as are the cases for systems under the occurrence of the phenomenon of the Unstable 
Dimension Variability (UDV). 

In the next section we review the concepts about hyperbolicity and unstable dimension variability. After that, 
we discuss the fundaments about synchronization and control of chaos. Subsequently, we review the ideas 
about control of chaos, introduce our active synchronization method and present the main results. 

 

HYPERBOLICITY AND THE CONCEPT OF UNSTABLE DIMENSION VARIABILITY 
 

In what follows, we consider just discrete in time maps. This assumptions is, however, not so restrictive 
because those maps can also be regarded as invertible Poincaré maps of continuous in time flows. Let 

mm ℜ→ℜ:f be a diffeomorphism ( )xfx →  having an invariant set Ω , such that if Ω∈x , then any 
subsequent forward or backward iterates of x remain in Ω . The invariant set Ω  is called hyperbolic if the 
tangent space at a point Ω∈x , denoted xT , may be decomposed as the direct sum (Devaney, 1989) 

 s
x

u
xx EET ⊕= , (1) 

where u
xE  and s

xE  are the unstable and stable subspaces, respectively, having the following properties: 
(a) The decomposition (1) varies continuously with Ω∈x , and it is invariant under the action of the tangent 

map such that 
 ( ) ( )

u
xf

u
x EE =Df , (2) 

 ( ) ( )
s

xf
s
x EE =Df ; (3) 

(b) There exist constants 0>K and 10 << ρ , such that 

 ( ) yyxDf nn Kρ<  if s
xEy ∈ , (4) 

 ( ) yyxDf nn Kρ<− if u
xE∈y , (5) 

meaning that vectors in a small neighborhood of ( )u
x

s
x EE  under forward (backward) iterations of the tangent 

map Df approaches any Ω∈x  at a uniform rate ρ . The stable (unstable) dimension at a point Ω∈x  is 
the dimension of the corresponding stable (unstable) subspace ( )s

x
s Ed dim=  ( ( )u

x
u Ed dim= ). For the 

invariant set Ω  of the nonlinear map ( )xf , the stable ( )xsW and the unstable ( )xuW  manifolds of the fixed 
point Ω∈x  are defined as (Devaney, 1989) 

 ( ) ( ){ }∞→→ℜ∈= nW nms if: xyfyx , (6) 
 ( ) ( ){ }∞→→ℜ∈= − nW nmu if: xyfyx , (7) 
respectively. 
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Due to the local manifold theorem (Devaney, 1989) for a hyperbolic rC -diffeomorphism, the stable and 
unstable manifolds are tangent to the stable and unstable invariant subspace of the tangent map ( )xDf  at the 
fixed points embedded in Ω . Moreover, in hyperbolic systems the unstable and stable manifolds intersect 
transversely, i. e., the angle between them is bounded away from zero. Otherwise, the invariant set Ω is 
nonhyperbolic. 

Nonhyperbolic systems encompass the majority of dynamical systems of physical and technological interest, 
and can be classified in two types. For the first type, the splitting of the phase space into expanding and 
contracting subspaces is invariant along a trajectory except at the tangencies of the stable and unstable 
manifolds., where the angles between subspaces are zero (Hammel et al, 1987; Grebogi et al, 1990; Sauer 
and Yorke, 1991).  

The second type of nonhyperbolicity is the due to the presence of the a phenomena known as unstable 
dimension variability (UDV) (Abraham and Smale, 1970; Dawson et al, 1994; Dawson, 1996; Kostelich 
et al, 1997; Lai et al, 1999). It is related to the presence of unstable periodic orbits with different numbers of 
unstable directions embedded within the chaotic attractor. The sets of periodic orbits are densely mixed so 
that a typical trajectory experiences different numbers of unstable and stable directions as it evolves. As a 
consequence, the continuous splitting of the phase space into expanding and contracting subspaces is no 
longer valid. The unstable dimension variability is reflected by a finite-time Lyapunov exponent fluctuating 
about zero due to visits of the trajectory to regions of the attractor with a varying number of stable and 
unstable directions (Dawson et al, 1994; Sauer et al, 1997; Pikovsky et al, 1997). 

UDV has been first described by Abraham and Smale (Abraham and Smale, 1970) for a diffeomorphism in 
22 ST ×  whose invariant set has two fixed points with different unstable dimensions. However, the first 

observation of UDV for a dynamical system of physical interest appears in 1992, when its  existence was 
incidentally reported for the kicked double rotor, a four-dimensional invertible map (Romeiras et al, 1992). 
This system consists of two connected massless rods. The first rod rotates about a fixed pivot; the second rod 
pivots about the ends of the second rod at a constant interval. This system is modeled by the following four-
dimensional map, which describes the dynamics of the rotor relating the state of the system just after 
consecutive kicks: 

 ( ),
,
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In Eqs. (8) to (10), )2,1(x are the angular positions of the rotors ate the instant of the ith kick, while 
)4,3(x are the angular positions of the rotors, L  and M  are 22 ×  constant matrices whose elements 
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depend on the physical parameters of the rotors, 1c  and 2c  are two parameters that are proportional to the 
kicking strength f. In what follows, we choose there parameters so that ,21 fcc ==  and we use for L  and 
M  the same values that appears in (Romeiras et al, 1992). Thus, the only parameter that can vary is the 
kicking strength fm which is used as the externally adjustable control parameter. 

For the double-rotor mar, numerical experiments (Romeiras et al, 1992) show that the system goes through a 
cascade of period-doubling bifurcation for 75.61 ≈< ff  and becomes chaotic with one positive Lyapunov 
exponent at 1f . For values of f near 0.8=f , there is a transition from one positive Lyapunov exponent to 
two positive ones, while the finite-time exponents shows fluctuations (Dawnson et al, 1994; Lai et al, 1999) 
between one and two positive exponents. For parameter f values much above the the transition value, such as 
the case for 0.9=f , the second Lyapunov exponent becomes positive. Thus, there is unstable dimension 
variability for values of f near 0.8=f , and for 0.9=f  the double-rotor is a hyperchaotic system. 

 
SYNCHRONIZATION IN CHAOTIC AND IN CHAOTIC AND NONHYPERBOLIC SYSTEMS 

 

Under well know conditions, two chaotic systems can synchronize (Pecora and Carroll, 1990; Pecora and 
Carroll, 1991). Let us consider a transmitter system (driver) such as  

 ).,,(),,,(),,,( zyxh
dt
dz

zyxg
dt
dy

zyxf
dt
dx

===                           (11) 

The receiver system has the same dynamics as the transmitter, and it receives as a signal one of the state 
space variables of the transmitter, say y, that act on the receiver as the driver. Note that there are many ways 
to apply this signal to the receiver. Thus, the receiver can be described by  

 ),,,(),,,( zyxh
dt
zd

zyxf
dt
xd ′′=

′
′′=

′
                                         (12) 

where the primed variable are the response only and we have applied the drive only in the y of the response 
subsystem. It has been shown (Pecora and Carroll, 1990) that if the Lyapunov exponents in the receiver 
system are negative, then 0→−′ yy  as ∞→t . This means that the chaotic evolution of the transmitter can 
be recovered by the receiver if just a proper chosen signal is transmitted over the communication channel. 

In regard to synchronization in chaotic systems with more than one positive Lyapunov exponent (hyperchaotic 
systems), there was a general belief that to achieve synchronization the number of variables to be transmitted 
should be equal to that of positive Lyapunov exponents in order to account for the same number of unstable 
directions along the trajectory (Pyragas, 1993). Peng and coworkers (Peng et al, 1996) showed that this 
belief is incorrect and the synchronization could be possible, in some cases, using a signal constructed in the 
form of the linear combination of the original phase space variables. Subsequent works introduced 
modifications to Peng et al assertion, modifications related to the form of the transmitted signal should be 
constructed (Tamasevicius and Cenys, 1997), or to the parameters of the transmitted signal (Ali and Fang, 
1997; Johnson et al, 1998), or to the coupling between the transmitted signal and the receiver (Pecora et al, 
1997). In general, all those proposed approaches uses feedback strategies whose parameters are fixed and 
calculated using empirical strategies or optimization algorithms. As a consequence, none of those strategies 
can be considered to work for sure with any hyperchaotic system.. 
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In all the ideas previously discussed, the requirement of a hyperbolic structure for the systems to be 
synchronized is implicit. If it is not the case, those approaches may not work. Thus, the presence of 
tangencies can cause the synchronized systems to lose the synchronization near a tangency point. It happens 
because, under the presence of noise or parameter mismatch, one of the trajectories can be pushed across 
the stable manifold, while the other stays on the unstable set. If this happens, the trajectories tend to separate 
exponentially on average from each other and so the synchronization is destroyed. The situation is even worst 
for systems having unstable dimension variability and in the presence of noise or even small parameter 
mismatches . As the trajectories move from one neighborhood to another having unstable periodic orbits with 
different number of expanding directions the synchronized trajectories tend to separate exponentially from 
each other and so the synchronization is destroyed. What makes the situation hard for this case of 
nonhyperbolicity is the fact that the sets of periodic orbits with different number of expanding directions are 
densely mixed (Kostelich et al, 1997). As a consequence, the regions where the synchronization is highly 
susceptible to being destroyed due to the presence of noise are extended over most of the attractor. In this 
scenario, the proposed methods for synchronization of hyperchaotic systems are extremely inefficient. As a 
consequence, another efficient approach is required. 

 
EXTENDED KALMAN FILTER AND ACTIVE SYNCHRONIZATION 

 
For nonhyperbolic hyperchaotic systems, a synchronization strategy will work only if it is capable of 
continuously keeping track of the local changes of the system as the trajectory evolves through the sets of 
periodic orbits with different number of expanding directions and changes its parameters accordingly. Thus, 
the main point here is to have a synchronization procedure with a built-in adjustment mechanism which 
monitors the system local dynamics and adjust its coefficients to keep the systems synchronized. Herewith we 
propose a synchronization method based on a chaos control strategy that implements exactly this principle. 

A schematic illustration of our method to actively synchronize tow chaotic systems is showed in Fig. 1. We 
extend the pole placement control of chaos strategy (Romeiras et al, 1992) to stabilize a chaotic strategy of 
one system (System B) about a chaotic orbit of the other system (System A) to achieve synchronization of the 
two systems. We assume that some parameter of the system can be externally adjustable, and that we have 
complete access to the state variable of the slave system (System B). The Extended Kalman Filter allows us 
to estimate the current state of the driver system with the  
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Fig1: Schematic illustration of our strategy of active synchronization. Based on measures from the state variables of System 

A the parameter p of System B is adjusted so that it is kept synchronized with System A. The current state of the driver 
System A is obtained from the scalar transmitted signal z by using the Extended Kalman Filter. dp is the small perturbation 

applied on some parameter of the System B to make it synchronize with System A. 

transmitted scalar signal. Let us consider two almost identical chaotic systems that are described by the 
following maps on the Poincaré surface of section: 

    System A: ( ),, pi1i YFY =+                                                      (13.a) 

System B: ( ),, pi1i XFX =+                                                   (13.b) 

where iX , Nℜ∈iY , F is a smooth function in its variables, p  for System A is a fixed parameter value 
and p for System B is a externally adjustable parameter whose value is restrict to lie in some small interval, 

,lmpp δ<−                                                                  (14) 

about p , where lmδ is a small number defining the range of parameter variation. Suppose that the two 
systems start with different initial conditions. The resulting chaotic trajectories are completely uncorrelated. 
Some time later, due to ergodicity, the two trajectories can get arbitrarily close to each other. Consider that 
this event take places at the time i. The difference between the trajectories in the next iteration can be 
calculated using the following equation: 

( ) ( ).,, pp ii1i1i YFXFYX −=− ++                                            (15) 
For values of p close to p , and as iX falls in a small neighborhood of iY , the previous equation can be 
approximated in the neighborhood of iY  by the linear map 

[ ] ( ),ppi −+−=− ++ i
p

iii
p

1i1i BYXAYX                                  (16) 
where iA is an nn ×  Jacobian matrix and iB  is an n-dimensional column vector, 

( ) ,|,
, pp

p
==

= p
iYZZi ZFDA                                             (17) 
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( ) ,|,
, ppp p

==
= p

iYZi ZFDB                                             (18) 

and these partial derivatives are evaluated at p
iYZ = and pp = . Consider that the point of the trajectory of 

System A, u times ahead, has u unstable directions, and s stable directions in its tangent space. We can 
determine vectors { }sui ,2,, ,,, ui1ui vvv +++ L  which span the linearized stable subspace of the System A 

trajectory at the point p
ui+Y . Let us define the matrix 

,1, jijiji +++−+−+=Φ AAAA 2ui1ui L                                               (19) 

for ( )1,,2,1 −= uj L . To derive the control action to be applied to the parameter p of system B at each 
iteration, we iterate Eq. (15) u times,  

[ ] ( ) ( ).11,0, pppp uiuiiiiiui −++−Φ+−Φ=− −+−+++ BBYXYX 1i
p

i
p

ui L                        (20) 

To make System B synchronize with System A, uiX + must land on the linearized stable manifold of System A 

trajectory at the point p
uiY + . Thus, the parameter ps must be chosen such that there exists s coefficients 

sααα ,,, 21 L  such that 

.,,21,1 suisui +++++ +++=− vvvYX 2ui
p

uiui ααα L                                     (21) 

Considering Eqs. (20) and (21), we have a system of su +  equations in su +  unknowns variables  
suiii ppp ααα ,,,,,,, 2111 LL −++ . This system can be solved for ip  to obtain  

[ ],p
i

t
ii pp iYXK −−=−                                                (22) 

where 0,
1

ii Φ= −LCK t
i , [ ]0001 L−=L , and 

[ ]suiuiuiii ,1,1, ++−+−Φ−= vvBBC 1i LL . When this method is applied, we find the values of the 

parameter p that must be applied to System B at each iteration for the synchronization of the two systems, 
i.e., 0→− p

jYX j  for ij > . 

In the previous equation, the state variables of the System A are estimated by using the Extended Kalman 
Filter (Brown and Hwang, 1997; Macau et al.,2002). 
 

RESULTS 
 
Let us now verify how our proposed method works in a physical meaning situation. Let us consider the 
double rotor map previously described. For L and M  matrices, we use the same values that was used by 
Romeiras (Romeiras et al., 1992). Depending on the values of the parameters fcc == 21 , we face different 
dynamical behaviors for the system. Thus, in Figs. 2 and 3 we show the results of the use of our strategy to 
synchronize two double-rotor systems having parameters values of f equal to 8.0 and 9.0, respectively. For 
both situations the transmitted signal used is ( ) vxxxxvHz ii ++++== )4()3()2()1(,iX , where v  is a 
white noise with normal probability distribution, i. e., ),0(~)( RNvp  and R so that the signal to noise 
relation is equal to 70dB. For the first case, we are inside the region that occurs the transition from one 
positive Lyapunov exponent to two positive ones, while the finite-time Lyapunov exponents show fluctuations 
(Dawson et al., 1994) between one and two positive exponents. It means that we are in the region that 
appears the phenomenon of unstable dimension variability. 
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Fig2: Results of the use of our strategy to synchronize a double-rotor system having parameter value of f=8.0 

For 0.9=f , the double-rotor is a hyperchaotic system, i.e., the system has two positive Lyapunov 
exponent..  

 

Fig 3: Results of the use of our strategy to synchronize a double-rotor system having parameter value of f=9.0 

Comparing both results, we can verify that even in the presence of noise, as our synchronization algorithm is 
applied on the system B, its trajectory approaches the trajectory of system A and then both trajectories 
remain synchronized. Note, also, that the elapse of time until the trajectories come near to each other so that 
our active synchronization strategy can be applied is larger for the hyperchaotic regime than for the situation 
with UDV. Furthermore, form the results, we can verify that the synchronization is robust even in the presence 
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of noise. Thus, our active synchronization method based on chaos control strategy and on the Extended 
Kalman Filter is capable of keep the systems synchronized as the trajectory evolves through the chaotic 
invariant set because it has a built-in adjustment mechanism that monitors the system local dynamics and 
adjust its coefficient according to the local dynamics. 
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