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ABSTRACT
This paper describes an application of the

Generalized Extremal Optimization (GEO) algorithm
to the inverse design of a spacecraft thermal control
system. GEO is a recently proposed global search
meta-heuristic [1], [2], [3] based on a model of natural
evolution [4], and specially devised to be used in
complex optimization problems [5].  Easy to implement,
GEO has only one free parameter to adjust, does not
make use of derivatives and can be applied to
constrained or unconstrained problems, non-convex or
even disjoint design spaces, with any combination of
continuous, discrete or integer variables. The
application reported here concerns the optimum design
of a simplified configuration of the Brazilian Multi-
mission Platform (in Portuguese, Plataforma Multi-
Missão, PMM) thermal control subsystem, comprising
five radiators and one battery heater. The PMM is a
multi-purpose space platform to be used in different
types of missions such as Earth observation, scientific
or meteorological data collecting. The design procedure
is tackled as a multi-objective optimization problem,
considering two critical, operational hot and cold cases.
The results indicate the existence of non-intuitive, new
and more efficient design solutions.

LIST OF SYMBOLS
F(X)= Objective function;
Gi,j = Conductive conductance between panels i and j;
k = Ranking position for a given bit;
L = Total number of bits used to codify the

variables using GEO;
Lj = Number of bits used to codify the j-th

variable using GEOvar;
N = Number of design variables;
Pk = Mutation probabilit y for the k-th ranked bit;
qext[1:5] = External radiation flux incident on

panels 1 to 5;
Qint[1:5] = Heat generated by the equipments on

panels 1 to 5;
Ri,j = Radiative conductance between panels i and j;

T∝ = Deep space absolute temperature;
T[1:6] = Vector containing the absolute

temperatures on panels 1 to 6;
TCC = Vector containing the Cold Case (CC)

temperatures on panels 1 to 6;
TCHC = Vector containing the Cold and Hot Case

(CHC) temperatures on panels 1 to 6;
THC = Vector containing the Hot Case (HC)

temperatures on panels 1 to 6;
TMIN = Vector containing the lower limits for

the temperatures on panels 1 to 6;
TMAX = Vector containing the upper limits for

the temperatures on panels 1 to 6;
TT = Vector containing the target

temperatures for panels 1 to 6;
X[1:5] = Design variables 1 to 5. (radiator areas

of panels 1 to 5, respectively);
X[6] = Sixth design variable. (battery heater power);
XMIN = Vector containing the lower limits for

the design variables;
XMAX = Vector with the upper limits for the

design variables;
α = Absortivity of the radiator coating;
ε = Emissivity of the radiator coating;
τ = Free parameter of the GEO and GEOvar

algorithms;
τ* = τ optimum value for a given F(X);

INTRODUCTION
Many numeric techniques have been

developed to address optimization problems in
science and engineering [6], [7], [8]. In the very
beginning, the main concern was to find a
solution, by starting from a given point (or a set
of points) in the search space and using
information from the vicinities of that  point(s). In
that sense, a solution was a point where no
additional improvement could be made on the
defined objective function, because all points on
the neighborhood of the solution point led to a
worse value of the objective function.  Nowadays,
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those solutions are called local solutions, local
extremes, or suboptimal solutions of the
optimization problem, because they are totally
dependent on the location of the starting point(s)
and there is no guarantee of any kind they are, in
fact, the optimal (global) solutions. These earlier
methods are called local search optimization
methods. There is no doubt about the usefulness
of such methods, since, by any means, a locally
improved solution is better than a non-improved
one. Unfortunately, it is also known, that many,
perhaps the majority, of the scientific and
engineering optimization problems are nonlinear,
multimodal and most of them subject to several
restrictions on the variables [9]. This fact, plus the
increasing computational power of nowadays
computers, have increased the interest for global
optimization methods [7], where the main concern
is not to find only a locally improved solution, but
a globally improved one, that is, the optimal
solution. In the last twenty years, a considerable
number of global methods have been developed.
Most of them are based on natural phenomena
analogies, trying to copy the efficiency and
simplicity of observed self-optimized processes in
nature. Algorithms based on the evolution of
species [10], [11], on the annealing of metals [12], on
the functioning of the brain [13], on the immune
system [14] and even on the social behavior of ants
[15] have been developed and used to get
optimized solutions for many science and
engineering problems. Among them, perhaps the
most commonly used are Simulated Annealing
(SA) [12], Genetic Algorithms (GAs) [10] and their
derivatives. More recently, it has been seen an
increasingly number of references formulating
and dealing with optimization problems as
multiobjective ones [16]. Despite of being
computationally costly, a multiobjective approach
brings a complete set of optimal compromise
solutions to the problem, the so-called Pareto[17]

Frontier, and this is a powerful information to the
designer.

The Generalized Extremal Optimization
algorithm (GEO) [1], [2], [3], li ke SA and GA, is a
stochastic algorithm, but unlikely these ones, it

has only one free parameter (τ) to be set, instead
of three or more. In this paper, the GEO algorithm
is used to found optimized radiator areas for the
PMM spacecraft considering two critical hot and
cold operational cases. In the following, both GEO
and PMM are described with further details.

THE GEO ALGORITHM
The Generalized Extremal Optimization

(GEO) algorithm is a global search meta-heuristic
[1], [2], [3], based on a model of natural evolution [4],
and specially devised to be used in complex
optimization problems [5]. It has its fundaments on
the Self-Organized Criticality (SOC) theory,
which has been used to explain the power law
signatures that emerge from many complex
systems [18].

A flowchart for GEO and its variant GEOvar

(see next paragraph) is presented in the Figure 1.
In the flowchart, F(X) is the objective function, k
is the ranking value of the bit and Lj is the
number of bits of the design variable “ j” .

Rank the bi ts of each
variable separately,
according to their f i tness
values  (N rankings)

For each bi t attribute a fi tness value
proportional to the gain or loss that F(X ) has
i f the bi t mutates, compared to the best F(X )
value found so far

Ini tial ize randomly L bits that codi fy N
design variables

Rank the bits (al l )
according to their
f i tness values (one
ranking)

M utate one  bi t of
the population wi th
probab. Pk ∝  k -τ

,  k = 1, ... , L

 Return the best  solution found during the search

Y es

Stopping
cri terion satisfied?No

M utate one  bi t of
each variable
with probab. Pk ∝
k -τ , k= 1,..., L j

G EO G EOvar

Figure 1 – Flowchart for GEO and GEOvar.

The GEO algorithm, as the SA and the GA, is
a stochastic method, does not make use of
derivatives and can be applied to non-convex or
disjoint problems. It can also deal with any kind
of variables, either continuous, discrete or integer.
The only one τ free parameter allows the
practitioner to set up the determinism degree of
the search, from a random walk (τ = 0) to a
deterministic search (τ → ∞). It has been
observed there is a τ best value for each problem
(sometimes a range), such that the global search
efficiency is maximal. In this sense, such τ value
can be called τ optimum, τ* . For most problems



Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

tackled with GEO, what has been seen is that τ*
remains in the 1 to 5 interval.  GEO has one
variant, called GEOvar. A detailed explanation of
them, including application examples, can be
found in [2], [3]. Here, both GEO and GEOvar will
be used for the addressed optimization problem.

THE PMM SPACECRAFT
The Multi -Mission Platform (in Portuguese,

Plataforma Multi-Missão - PMM) is a multi-
purpose space platform to be used in different
types of missions such as Earth observation,
scientific or meteorological. The PMM is a
concept of satellit e architecture that consists of
assembling in a platform all the necessary
equipment essential to the satellite, independent
of the orbit or pointing mode. In this kind of
architecture, there is a physical separation
between platform and payload modules, which
can be developed, constructed and tested
separately, before the integration and final test.
There is also the advantage of reuse of the
platform project and reduction of the cost for the
development of new satellit es.

 Table 1. Multi -mission Platform characteristics
Characteristics Value

Dimensions 1m x 1m x 1m
Mass 250 kg
Power Consumption 150W
Payload Power Supply 175W
Orbit Inclinations near equatorial (i<15º)

and sun-synchronous
Orbit altitudes 600 km to 1200 km
Attitude Earth, Sun or inertial

pointing
Maneuver capabilit ies ∆V=150 m/s
Data storage capabilit y 2 Gbits

Figures 2 and 3 ill ustrate the PMM
configuration.

Payload

Multi-Mission Platform

3 4

Figure 2 – Schematics of a payload attached to
the Multi-Mission Platform PMM.
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Figure 3 – Simpli fied view of the PMM and its
panels 1 to 5 showing some internal devices.

The main goal of the thermal design of a
spacecraft is to keep the temperature of the elements
of the vehicle within their required ranges. One of
the most important issues the satellite thermal
engineer has to address is the definition of the size
and position of the radiators. Radiators are areas of
the satellite covered with high emissivity coating, so
that they can reject heat to space to keep the
temperature of the spacecraft equipment within their
required design range during periods of high heat
dissipation in the electronic equipment and/or high
external thermal loads. On the other hand, these
areas must not be exceedingly large so that, during
periods of low heat loads, the temperatures do not go
below the allowed minimum. In the case of the
PMM, radiators can be positioned in 5 of the 6 sides
of the platform body, since the top side does not
“see” the space due to the payload mounted on it
(see Figure 2).

In satellite thermal design two critical situations
are usually identified, where minimum and
maximum temperatures are expected to occur: i)
The Cold Case (CC), when the external heat loads
(solar radiation, earth radiation and albedo) are
minimal, the satellite is operating with the lowest
heat dissipation in the electronic equipment, and the
thermal optical properties of its coatings are non-
degraded and; ii) The Hot Case (HC), when the
external heat irradiation is maximal, the satellite is in
operational mode with the highest heat dissipation
and the optical properties of the coatings are
degraded. The thermal design shall manage the heat
flow in a way that, in both situations, the
temperatures of all elements remain within the
required range of temperature. There are many
variables, such as the size of radiators, that affect the
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temperature distribution, and the thermal engineer
has to find a combination of these variables to reach
a satisfactory design. This task needs a lot of
simulations and analysis, considering the large
numbers of variables involved.

In equipment where a strict control of the
temperature is required, such as in the batteries of
the PMM (panel 2), heaters are frequently used to
warm the equipment during the CC.  On the other
hand, as the electrical power supply is very limited
in a satellite, the power spent on the heaters must be
the least possible.

In this study a specific mission of the PMM was
analyzed, defined by equatorial orbit with altitude of
600 km and having the battery panel always
pointing to Earth along the orbit.

FORMULATION OF THE INVERSE DESIGN
PROBLEM

The objective of the application of GEO to the
PMM thermal design is to reduce the time spent by the
engineer to find, not only a satisfactory but also an
optimum (or quasi-optimum) design, a process that is
done traditionally “manually”, with the thermal
designer running multiple analysis cases. In this paper,
a design is a set comprising five radiator areas and one
battery heater power.

The optimization problem consists in, by varying
the area of the radiators on each one of the 5 panels,
minimize the difference between the temperatures
calculated for the CC and HC and given target
temperatures for each panel, and at the same time
minimize the battery heater power dissipation.

As the satellite is still in the early stages of
development, a simplified numerical model was made
only considering the six PMM sides, with the
equipment simulated as heat sources over their
respective panels. Panels 1 to 5 exchange heat with
each other, by conduction and/or radiation, and with the
space environment, by radiation, through the radiators
placed on them. The top panel (not shown in Figure 3)
makes the interface with the payload and is thermally
isolated from it, but exchange heat with the other panels
of the PMM.

Using the lumped parameter
representation[19] and assuming steady state
condition with orbit average heat loads, the heat
balance at each one of the six panels leads to the
following equations:
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For a given X, the solution of the system of
algebraic equations (1) to (6) results in two set of
temperatures: TCC(X)[1:6] if CC conditions were
applied (minimum values of Qint , qext and α) and
THC(X)[1:6] if HC conditions were applied (maximum
values of of Qint , qext and α). The  coefficients of the
equations (1) to (6) and the solution of the system of
equation are obtained by mean of INPE PCTER
thermal software package[20], which was coupled to the
optimization algorithm.

Constraints are posed to the panels temperatures,
which must lie inside required design intervals. The
target temperature and allowed range for each panel are
defined as a function of the thermal requirements of the
equipment mounted on the respective panel.

Mathematically, the multiobjective problem of
minimizing the differences between the target and the
operational temperatures for both CC and HC, and of
minimizing the battery heater power is formulated as a
mono-objective optimization problem, assuming
unitary weighting factors [16] before each term of the
objective function:

Minimize  F(X)= ||TCC(X)-TT||
2

                          + ||THC(X)-TT||
2
 + X[6] (7)

Subj. to: XMIN    ≤        X         ≤    XMAX

TMIN    ≤    TCC(X)    ≤    TMAX

TMIN    ≤    THC(X)    ≤    TMAX
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Hereafter, the complete optimization problem wil l
be referred to as the Cold and Hot Case (CHC).

Additionally, the CC and the HC are formulated
and solved as optimization problems separately. The
idea is to get some insight by comparing these
separated CC and HC solutions with the combined
Cold and Hot Case (CHC) solutions, defined in
equation 7. Mathematically, the CC and HC
optimization problems are stated as follows.

Cold Case (CC):

Min.  F(X)= Min ||TCC(X)-TT||
2

(8)

Subj. to: XMIN   ≤        X       ≤   XMAX

TMIN    ≤   TCC(X)   ≤   TMAX

Hot Case (HC):

Min.  F(X)= Min ||THC(X)-TT||
2

(9)

Subj. to: XMIN   ≤        X       ≤   XMAX

TMIN    ≤   THC(X)   ≤   TMAX

It is important to notice that in the CC and HC
above, X = X[1:5] = area of radiators on panels 1
to 5, respectively (there is no X[6]). Besides that,
there is no battery heater being used in the CC
and HC stand-alone cases.

RESULTS
Table 2 summarizes the limits on the design

variables, the operational temperature limits, as
well as the internal heat dissipation from the
electronic devices applied to the panels.

Table 2 - Design variable limits, operational
limits and panel heat dissipation.

Parameter Panel

1 2 3 4 5 6 1)

Xmin 0.0 0.0 0.0 0.0 0.0 -Radiator
area limits

(m2) 2) Xmax0.9020.9520.9520.9520.952 -

Tmin -5.0 -10.0 -20.0 -20.0 -10.0 -20.0Temperature
limits (oC)

3) Tmax +50.0+20.0+50.0+45.0+45.0+50.0

Target
temperature

TT

(oC) +22.5+15.0+15.0+12.5+17.5+15.0

CC 15.0 13. 05) 8.6 40.0 20.0 0.0
Internal

heat
dissipation

(W) 4) HC 40.0 47.5 27.2 55.0 90.5 0.0
 1)Top panel of the PMM, thermally isolated from the

payload. 2)The 6th  element of this parameter exists only
for CHC and is not a radiator area. It represents the

heater power on panel 2 for the CHC, with the
following limits: XMIN[6] = 0 W and XMAX[6] = 65 W.
3)The temperature limits of each panel were determined
according to the most restrictive equipment mounted on
it. 4)The internal heat dissipation of each panel is the
summation of the heat dissipation of all equipment
mounted on the respective panel. 5)For the CHC, in
addition to the minimum heat dissipation of the
equipment on this panel, the battery heater dissipates in
the range 0.0 ≤ X[6] ≤ 65.0 W.

Each design variable was encoded in 7 bits, what
means a resolution better than 0.01 m2 and 1.0 W for
the radiator areas and the heater dissipation,
respectively.

The search for optimal designs was made for
different values of τ within the range [0.0, 5.0], using a
0.5 step size, in order to find τ = τ*. As the problem is a
computationally costly one, the number of function
evaluations (NFE) for each τ was set to 5 x 103  and an
average of 25 independent runs was taken. A more
detailed description is given below. The following steps
were performed (here, GEO means GEO/ GEOvar):

a) Run GEO with 5x103 function evaluations, 25
independent runs (25 different seeds) for each τ of
the set {0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0];

b) For each τ in a), calculate the average value of the
25 F(Xbest) found, where Xbest = best solution
found after 5x103 function evaluations. Three
different procedures were used to calculate the
average, as follow (so, three different averages
were obtained):

b.1) From the 25 runs, calculate the average
using only those where a feasible solution
occured;

b.2) Calculate the average using all 25 runs.
For the infeasible solutions, use the value
of the worst feasible solution found;

b.3) From the 25 runs, get the best F(Xbest)
found as the average.

c) Plot the three curves "average F(Xbest) versus τ";
d) For each curve in c), locate the minimum;
e) Calculate the average of the three values obtained

in d) and use it as the τ*.
The Table 3 shows the τ = τ* calculated as

explained above.

Table 3 – τ* found for CC, HC and CHC.

Case CC HC CHC

Algorithm GEO GEOvar GEO GEOvar GEO GEOvar

τ* 2.7 3.2 1.3 1.3 2.0 2.3

After that, the τ* values were used and 25 runs
were performed for each case, each of them stopped
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after 105 function evaluations. The best designs found
with GEO and GEOvar for each case are in Table 4.

Table 4 – Best designs for CC, HC and CHC.

CaseAlgorit
hm F(X) X[1] X[2] X[3] X[4] X[5] X[6]

GEO 4.0180.0010.0620.0480.2510.030 -
CC

GEOvar4.3600.0080.0620.0350.2710.022 -

GEO 1.4870.0280.4330.1430.3590.457 -
HC

GEOvar1.7890.0280.4330.1290.3720.457 -

GEO 142.1 0.8380.4330.0550.0420.044 57.3
CHC

GEOvar142.5 0.6760.4600.0890.0080.072 49.7
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Figure 4  - Radiator areas for CC, HC and CHC (GEO)
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Figure 6  - Resulting temperatures for CC (GEO)

From the results shown on Table 4 it can be seen
that both GEO and GEOvar have found very close
design solutions for CC and HC. For CHC, the design
solutions differ considerably, but both have very close
F(X) values, meaning, possibly, the existence of several
quasi-optimal solutions.

Figures 4 and 5 present, for GEO and GEOvar,
respectively, the radiator areas obtained for CC, HC
and CHC. The lower and upper limits for the radiator
area of each panel are also presented. Analyzing these
figures, it is possible to conclude that an intuitive
solution based on a linear interpolation between the CC
and HC solutions would not lead to the solution
obtained for CHC.

The temperatures on the panels, calculated with the
data of Table 2 are shown on Figures 6 to 11.
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Figure 5  - Radiator areas for CC, HC and CHC (GEOvar)
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Figure 7  - Resulting temperatures for CC (GEOvar)
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Figure 8  - Resulting temperatures for HC (GEO)
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Figure 10  - Resulting temperatures for CHC (GEO)

What can be readily seen is that, for CC and HC,
the optimized design solutions brought the resulting
panels temperatures very close to the target
temperatures. That is not the case for CHC, where most
panels temperatures are far from the target
temperatures. In fact, some of them are at the
limit temperatures of the respective panel. Despite
of having different values on the design variables,
both CHC solutions had the panels 1, 2 and 5 as
those where temperatures are at the limit.

Another important observation is that, though
being numerically quite close in the F(X) value,
from an engineering point of view, the GEOvar

solution for CHC is quite different from the GEO
solution. The first needs only 49.7 W for the
heater power (X[6]), against 57.3 W of the
second. Remembering that X[6] is the third term
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Figure 9  - Resulting temperatures for HC (GEOvar)
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Figure 11  - Resulting temperatures for CHC (GEOvar)

of F(X) and, as both solutions have almost the
same F(X), the counterpart is that the 49.7 W
solution has a worst performance on the first two
terms (temperature part) of F(X), in order to
reestablish the equality. In our opinion, the main
point is  the  possibility  of  choice  between
these two  equivalent  solutions. The designer can
possibly decide which one is better by
considering other quantifiers, not present in the
formulation of F(X), just because they were not
thought about or even because they were too
difficult to quantify. Examples of such quantifiers
are assembly easiness, durability, and robustness,
just to mention a few. This possibility only exists
if one has some knowledge about the existence of
such equivalent optimal solutions.
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CONCLUSION AND FUTURE DIRECTIONS
In this paper the inverse design of the thermal

control system of the PMM spacecraft was done
successfully. The design solutions found were non-
intuitive ones, unlikely to occur as possibilities for a
human designer. The optimizing procedure chosen,
the GEO algorithm, has shown to be a  valuable
optimal  design  tool, being  not only easy to
implement but also, easy to have its τ parameter set to
the particular application tackled. The application
itself has proven to be a very restrictive one, even
when the HC and CC cases were considered alone.
The unfeasible design space was considerably large.
However, this posed no diff iculties on the GEO
functioning, as expected. Based on the two design
solutions found for CHC, and on the considerations
already made about them, it seems to be valuable as a
future development to formulate and solve the CHC
as a multiobjective problem. For instance, we may
define the sum of the first two terms of the F(X)
equation for CHC as one objective (f1) and the heater
power as the second objective (f2). In this case, the
Pareto frontier is a curve on the f1 x f2 objective space
where each point of the curve establishes an optimal
compromise between these two objectives. This
allows the designer to look at the whole set of such
solutions and choose the most appropriated one. In
fact, the two solutions given by GEO and GEOvar for
CHC belong to the Pareto frontier.
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