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Abstract

Estimation algorithms are presented for the consistent determination inflight of focal-
plane distortion parameters and alignment parameters for attitude sensing instruments. The
ambiguity in the specification of the parameter sets is demonstrated and a simple prescrip-
tion, called SMARTCAL, is given for removing it for the case of polynomial representations
of the focal-plane distortion. We demonstrate that independent calibration of attitude-sensitive
scientific instruments by the investigator followed by the independent alignment of the atti-
tude determined system by the attitude support team can lead to random walks in the calibra-
tion and alignment parameters of all instruments and sensors. Modalities are presented which
avoid these parameter instabilities.

Introduction

The practical use of scientific instruments and attitude sensors on spacecraft gen-
erally requires that these be recalibrated after launch. In addition, due to changes in
the spacecraft structure arising from thermal flexure and zero-gravity effects, the
alignment of these devices must also be determined. For unmanned spacecraft, the
separation of alignment and distortion corrections is nontrivial. It is made still more
complicated by the fact that we commonly represent spacecraft alignment in terms
of transformations in three dimensions, while distortions of the focal plane are most
conveniently treated in two dimensions. Thus, investigations of the interference of
focal-plane distortion and misalignment are compromised by a fundamental differ-
ence in treatment. Motivated by these concerns, a previous report [1] developed the
representation of rotations in the focal plane. In the present work we develop and
test algorithms which apply this representation to the estimation of sensor focal-
plane distortion parameters and rotational parameters.
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It is not always appreciated that distortion and misalignment are not independent
transformations of the focal plane. Therefore, attempts to calibrate sensors both for
distortion and misalignment corrections sometimes lead to estimates of the parame-
ters which are not meaningful individually. In ground calibration, when the sensor
alignment and the calibration are commonly referred to an optical alignment cube
mounted on the sensor, no ambiguity arises. In space, unfortunately, one no longer
has any knowledge of the orientation of the optical alignment cube, and the unam-
biguous separation of alignment and distortion parameters is no longer possible.

If one is interested only in representing the transformation of sensor data from
the spacecraft to an inertial coordinate system then the inherent ambiguity will not
lead to any errors in the analysis of the data, provided that one can calibrate the
sensor to an arbitrarily high order of fidelity. Unfortunately, the data, in general,
permit only a limited number of calibration parameters to be estimated with confi-
dence. If an unbounded random walk in the estimated alignment angles causes
these to become large, then the number of estimated calibration parameters required
to cancel these unphysical alignment-angle estimates will become excessively
large, as is clear from reference [1], with concurrent degradation of the scientific
data. Likewise, if one wishes to trend the alignments or correlate them with other
spacecraft data, such as temperature, then meaningful results are unlikely to be ob-
tained. The principal purpose of this report is to present a methodology in which
the estimated misalignment and distortion parameters will be meaningful.

We begin by reviewing the representation of misalignment and focal-plane dis-
tortion developed in reference [1]. We then study various ways of combining these
two transformations of the focal plane, demonstrate the fundamental redundancy
between them, and present a simple method which removes the redundancy. The
distortion of a sensor focal plane is most frequently represented by a Taylor series
in the focal-plane coordinates. However, the sensor vendor may sometimes specify
a functional form for the distortion calibration functions derived from the physical
nature of the sensor which are not simple polynomials. In that case one must de-
velop a means of transforming these functions to remove the redundancy. We post-
pone the treatment of an arbitrary parameterization of the focal-plane distortion for
a later report.

Having developed the proper unambiguous representation of alignment and dis-
tortion we develop specific algorithms for estimating these parameters. There are
two cases to consider. In this first case, the rotation parameters characterize the
alignment of one sensor with respect to another. Thus, in this case the rotation pa-
rameters are constant in time and both the rotation and the distortion parameters are
global. In the second case, the rotation parameters characterize the entire attitude.
In this case, therefore, the rotation parameters change as a function of time and are
frame specific, while the distortion parameters are constant and, therefore, global.
Thus, the treatment of data sampled at different times will not be the same in the
two cases. However, the significant component of the present problem is not the
formulation of batch or sequential estimators but of a measurement model which
takes account of the special character of focal-plane distortion and alignment pa-
rameters. Thus, our focus in this paper is on the development of correct parameter
sets and the composite measurement model.

Generally, alignment and distortion calibration activities are carried out by dif-
ferent groups which communicate incompletely with one another. Neither of these
two groups is concerned necessarily with the problem of parameter redundancy,
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since each uses a nonredundant parameter set for its own purposes. We show, how-
ever, that this practice can lead to random-walk effects in the estimates of both the
distortion and the alignment parameters. We defeat these random-walk effects by
developing an improved calibration procedure, which we call SMARTCAL.

Geometry of Alignment and Distortion

Generally, we represent a direction in space by the matrix of its com-
ponents with respect to a basis. For this study we will choose the right-hand ortho-
normal basis so that the z-axis is perpendicular to the focal plane of the sensor and
passes through the origin of the focal plane and the origin of coordinate system,
which is separated from the focal plane by a distance f. Hence, the x- and y-axes
lie nominally in the focal-plane. We say nominally because distortion and mis-
alignment make these statements somewhat inexact. The purpose of a distortion/
alignment calibration is to find corrections which theoretically make this descrip-
tion exact.

We write, therefore, for a general direction in three-dimensional space

(1)

The caret denotes a unit vector. Let us imagine that our sensor behaves like a per-
fect pin-hole camera (i.e., without diffraction effects) with the focal plane at a dis-
tance f from the origin. Then a straight line through the origin in the direction of 
will intersect the focal plane at coordinates in such a way that the propor-
tionality holds. Hence

and (2)

or

and (3)

These equations may be inverted to give

(4)
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given by
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In this way we achieve a representation of the distortion which does not depend ex-
plicitly on the dimensions of the pin-hole camera. In fact, these specific focal-plane
coordinates do not depend on the instrument at all and may be used to represent the
data for any focal-plane sensor, no matter what its construction. Thus, we have a
universal set of coordinates

Parameterization of Distortion and Alignment

Part of the confusion surrounding alignment and distortion is that the two are
represented in two different spaces. Generally, distortion is represented in terms of
the focal-plane parameters, which we can write in terms of focal-plane vectors as

(8)

or in terms of components as

(9)

Here is the observed focal-plane vector without correction for instrument distor-
tion (i.e., the distorted vector), and x is the true (i.e., ideal) focal-plane vector with-
out any distortion effects. Generally, one assumes that the two functions and

are given by polynomial series

(10a)

(10b)

Frequently, one terminates the series at second order, which leads to six terms in
each component, or at third order, which leads to ten terms in each component (ex-
pansions to sixth order, or 28 terms in each component, are not unheard of). The
functions and assume very small values over the focal plane of the
sensors. Apart from the effects of misalignments, whose effect we will soon exam-
ine in detail, the largest terms will most likely be and which arise from ther-
mal expansion of the focal plane.

The use of polynomial coefficients as calibration parameters is convenient for the
present work, but not always ideal. In particular, their use is practical only for
sensors with small fields of view. Note also that polynomial coefficients are espe-
cially unsuited for focal-plane sensors whose errors due to miscalibration are sinu-
soidal. We expect, however, that the main results of this work will apply to any
choice of the calibration function, although the implementation of those results may
be much more difficult than for the case of polynomial calibration coefficients.

Alignment, on the other hand, is a pure rotation, and we tend to represent it in
the full three-dimensional space as an orthogonal transformation [2, 3], which we
may write as [4]

(11)

where � is the angle of rotation and a unit vector, is the axis of rotation. As in
references [2] and [3], denotes the antisymmetric matrix
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The Taylor expansions of equations (10), if carried out to all orders can represent
any transformation of the focal plane. Therefore, it must be true that a rotation of
the focal plane about any of the three axes of the focal-plane coordinate system,
must be expressible in terms of equations (10) for the appropriate values of the co-
efficients These coefficients are, in fact, derived to all
orders in reference [1]. Therefore, it is trivially obvious that the rotations are re-
dundant with distortions.

Clearly, one could treat the transformation of the sensor focal plane totally in
terms of distortions and never introduce a rotation matrix into our representation.
Unfortunately, while the distortions of the focal plane arising from thermal distortion,
zero gravity, and other environmental effects are small, the rotation of the sensor
focal plane (particularly, if we measure this rotation from inertial axes) can be quite
large. Therefore, the Taylor series would require an infinite number of terms. The
intelligent approach, therefore, is to treat the rotation to all orders by expressing it
in terms of the rotation matrix (or the quaternion, or the Euler angles, etc.),
and removing those degrees of freedom from the distortion equation, equa-
tions (10), so that the expansion will be nonredundant. The ultimate goal of this
work is to show exactly how to accomplish this.

In order to speak about rotations and distortions together, we must be able to
speak about them first in the same terms. It will be easier to represent rotations in
terms of focal-plane coordinates than to express focal-plane distortions in terms of
a matrix.

Consider the equation

(13)

The third component of the vector U is obviously not unity, and therefore the first
two components of U do not correspond to the focal-plane coordinates. To make the
third component unity, however, we simply divide the right member of equa-
tion (13) by the third component to obtain

(14)

or

(15)

This is the focal-plane representation of a rotation in three dimensions. Equations (15)
hold for any linear homogeneous transformation, although in this case, R is the ro-
tation matrix. Equations (15) are known generally as the collinearity equations and
play an important role in satellite photogrammetry [5, 6].

Alignment and Distortion for Inifinitesimal Rotations

Let us examine an infinitesimal rotation, which we write as
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From reference [1] we know that the focal-plane distortion coefficients for a pure
infinitesimal rotation, keeping only terms linear in the infinitesimal angles, are
given by

(17a)

(17b)

so that eight of the first twelve distortion terms are affected by infinitesimal rota-
tions. These same equations follow also by inserting equation (16) directly into
equations (15). Within an infinitesimal region of the center of the focal plane, cor-
responding to we have that

(18)

In any practical application (see examples below), we will wish to drive the three
angles to zero. Thus, these are the only terms we have to consider infinitesimally
near the center of the focal plane.

Clearly, if we wish to remove the redundancy between the distortion parameters
and rotational parameters from an examination of the behavior of the coordinates
at the center of the focal plane, then we must set

(19)

since the action of these parameters is indistinguishable from that of and .
For the argument is slightly more complicated. If we rewrite the first few terms
of equation (10) as

(20a)

(20b)

Then we see that at the center of the field of view the action of an infinitesimal 
is indistinguishable from that of . Therefore, to remove the redun-
dancy, we must set

(21)

This is not the only choice we could have made. For example, we might have cho-
sen to set

(22)

since and are also affected linearly by the infinitesimal rotations. Mathe-
matically, this is a perfectly acceptable prescription, since it leads to a nonredun-
dant set of variables. Physically, however, such a choice would be disastrous, since
it would lead to the rotation parameters being influenced enormously by nonlinear
distortions of the focal plane and what we would physically consider to be the mis-
alignment of the center of the focal plane would dominate several of the focal-plane
distortion parameters. The distortion parameters would then be very sensitive to the
attitude of the sensor, and could therefore be very large. Such a prescription is
mathematically consistent, but it would not accomplish the goal of suppressing a
strong attitude dependence in the distortion parameters, and would be even more
confusing than using the complete set of distortion parameters without explicit
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parameterization of a rotation. We choose, therefore, as our focal-plane parameters
set the three parameters of the attitude and the distortion parameters with the con-
straint that

(23)

Order of Distortion and Alignment Transformations

Let E denote the inertial frame and I denote the instrument frame. Likewise, let
D denote the distortion transformation and R denote the rotation transformation
expressed in focal plane coordinates. Thus, we may write the change in focal plane
coordinates due to distortion alone by

(24)

where � denotes the totality of distortion parameters (except, naturally for and
, which now vanish identically and for , which is given identically by ).

The change in focal-plane coordinates due to rotation alone is given by

(25)

where � is the (finite) rotation vector characterizing the rotation. These equations
are simply a shorthand for equations (9) and (15). If we consider the effect of both
misalignment and distortion, then we are led to describe the combined effect either
by writing

(26)

for the alignment transformation computed first followed by the distortion or

(27)

with the transformations taking place in the opposite order. Thus, we either first
misalign and then distort or we first distort and then misalign. If � is large, then
clearly there will be a large difference between the instrument frame and the iner-
tial frame. If we perform the distortion first, then effectively, we are computing the
distortion coefficients with respect to inertial axes, which makes little sense. Also,
distortion is a phenomenon which we identify with the instrument itself, while mis-
alignment is associated more with the spacecraft structure. But if we distort the
focal plane before rotating it, then the focal-plane parameters will depend on the at-
titude, which we want to avoid. Thus, physically the first alternative, equa-
tions (26), is more natural, and from a practical standpoint it is much simpler.

Frames of Reference

Consider first the case in which the rotational parameters represent the align-
ment. The convention which was adopted in references [2] and [3] for misalign-
ment is not entirely suited to the study of misalignment and distortion. Let 
denote the l-th vector observed by sensor i at time in the sensor coordinate sys-
tem and let and be the corresponding column vectors in inertial coordi-
nates and body coordinates. Then the attitude matrix causes the transformation

(28)

while the alignment transformation causes the transformation
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Ŵi, k, lV̂i, k, l

tk
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Here is the measurement noise. (Note that the measurement noise appears
only implicitly in equation (29).) Clearly, the attitude must depend on the time but
not on the specific sensor, and the alignment matrix depends on the sensor but not
on the time. The last statement is an idealization, because in practice alignments
can change with time due, for example, to changes in the thermal loading of the
spacecraft.

In reference [2], if was an a priori value of the alignment matrix, and was
the correct alignment, then the misalignment matrix (written as in refer-
ences [2] and [3]) was defined so that

(30)

From equation (29) it is clear that is a transformation from an a priori body frame
to the correct body frame. Combining equations (28), (29), and (30) we have that

(31)

It is the parameters of that we wish to estimate from the measurements .
These, obviously, are not convenient because of the transformation . We there-
fore define an instrument-referenced misalignment according to
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so that
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Writing in the usual way

and (34)

it follows that
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Thus, we can write

(36)

where

(37)

is the a priori value of the instrument measurement in the instrument frame given
the a priori alignment matrix and the attitude.

In practical calculations, one does not know but only , the estimated atti-
tude, given by
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o � 	Ûi, k, l

 � Mi
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(39)

which leads to

(40)

where now (dropping higher-order terms)

(41)

and there is an extra noise term.
In general, the complete set of absolute alignments cannot be determined with

high confidence [3]. Therefore, it is common in practice to define one of the mis-
alignment matrices to be equal to the identity matrix. This effectively defines
the spacecraft body coordinate system as a fixed rotation from the coordinate sys-
tem of sensor i, and the sensor alignments become effectively coalignments.

Equation (36) assumes that , the spacecraft attitude matrix, is known from
some source. This may not always be the case, for example, if we wish to compute
instrument coalignment and distortion coefficients by first computing instrument
attitude and distortion coefficients for each sensor (this assumes that each sensor
can measure multiple directions) and then computing the alignments from the indi-
vidual instrument attitudes. In that situation, we define

(42)

as the instrument attitude. Then

(43)

where is the a priori attitude of the instrument and is the attitude correc-
tion, which we hope is also a small correction.

The complete set of transformations which we apply to obtain the distorted and
misaligned datum from the given a priori knowledge is as follows:

• Given and the a priori instrument attitude (or ,
, the spacecraft attitude and the a priori instrument alignment

matrix) we compute , , and we write

, ,

where denotes (or ).
• Using equation (6) we compute x, the focal-plane representation of .
• Using equation (17) we compute the focal-plane coordinate corrected for

misalignment.
• Using equation (10) and the reduced set of coefficients (equation (18)), we

compute the distorted focal-plane coordinates .

The Measurement Model

We are now prepared to estimate alignment and distortion parameters, that is, the
parameters of and the reduced set of distortion parameters 
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being the same for every frame of data (i.e., every value of k). All of the parame-
ters being estimated in this case are global. However, in the case where attitude is
being determined from the same data, then (i.e., in this case) will be differ-
ent in every frame. We must, therefore, estimate a mixture of global and frame-spe-
cific parameters. We will develop a linearized measurement model suitable for both
batch estimation and the Kalman filter.

We compute the measurement model (i.e., the measurement sensitivity matrix)
in three steps. In each case above we are given an a priori rotation, which we de-
noted here by , and a set of a priori measurement vectors , .
From this and the a priori directions we compute the a priori focal-
plane coordinates, according to equation (15). We then apply the (infinitesimal)
rotation correction , which in focal-plane coordinates is accomplished by

(44)

Finally, we apply the distortion correction

(45)

and

(46)

with the restriction that

and (47)

For simplicity we have not written the subscripts for each pair of focal-plane
coordinates.

The measurement is given by
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where is the measurement noise, which we assume generally to be white and
Gaussian.

We denote the complete set of parameters (rotation plus distortion) by
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Clearly,

(53)

and

(54)

The individual partial derivatives are given by

(55)

(56)

for or (57a)

for or (57b)

(57c)

In all of the above formulas we emphasize once more that and
In the formulas above we have adopted the convention that the deriva-

tive of a scalar with respect to a column vector is a row vector.

Numerical Examples

To illustrate the need to estimate alignment and non-redundant distortion pa-
rameters we have considered a typical example. Normally, the flight operations
team will estimate the attitude and the sensor alignments, assuming a given set of
distortion parameters, while (redundant) distortion parameters will be estimated by
the instrument teams, each assuming given attitude and sensor alignments. We call
this the “common” method, although many groups have abandoned this method
since the present work was first presented a decade ago. Generally, each team will
use different data sets and carry out their operations at different times. Since each
team’s parameter sets are well defined for its limited activities, there will be no per-
ceived problem of redundancy for each individual team, and each instrument team
uses the redundant distortion parameter set without worry. Communication between
each team is usually limited to transmitting the estimated parameter sets. This is the
normal mode of operations for almost all spacecraft known to the authors before
the first presentation of the present work. (In fact, this was the normal mode even
if the distortion coefficients and the misalignments were being estimated by the
same team!)

Clearly, there will be a redundancy of parameters between the flight operations
team and the instrument teams (of which there is only one in our numerical exam-
ple) but not for each individual team’s activities. In the figures which follow we
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have considered the “common” method and two other methods. The SMARTCAL
method, developed in this work, is identical to the common method except that the
focal-plane distortion coefficients have been constrained to have

In the third method, the “ideal” method (also developed in this work), the align-
ments and constrained (non-redundant) distortion coefficients are estimated simul-
taneously. Generally, because of organizational considerations, the “ideal” method
cannot be implemented in any practical manner. From a theoretical standpoint,
however, it should be the most accurate of the three methods, and for that reason it
is presented for comparison.

We assume that the true value of all of the distortion coefficients is zero and the
attitude matrix of the sensor is the identity matrix, which means that the true value
of the misalignments is zero. For sixteen frames of data, 50 directions were mea-
sured in each frame. It is assumed that the error in each direction measurement is
1 . The sensor field of view is 20 deg full-width in each direction.

Since the true value of all of the parameters is zero, the estimates are equivalent
to the estimate errors. Ten experiments were simulated for each method and the
sampled covariance computed. Figure 1 shows the results for the estimate of .
The solid line shows the result of estimating the misalignment and the reduced
(non-redundant) set of distortion parameters simultaneously (the “ideal” method).
The dashed line gives the case of alternate estimation of the misalignments and the
redundant distortion coefficients (the common method). The dotted-and-dashed

�1

deg�axis

a0,0 � b0,0 � a0,1 � b1,0 � 0
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FIG. 1. Estimation of .�1



line shows the SMARTCAL method, in which alternately one estimates the mis-
alignments and the non-redundant set of distortion parameters. The results for the
“ideal” and the SMARTCAL methods are barely distinguishable, while the com-
mon method shows a large random walk. The same phenomenon is apparent in the
estimation of and , shown in Figures 2 and 3. Figure 4 shows the performance
of the three methods for the estimate of which is not expected to be as sensi-
tive to the redundancy with the misalignment parameters. In fact, the estimate errors
for this quantity shows the same behavior for all three methods.

Figure 5 shows the behavior of (dotted and dashed line), (dashed line) and
(solid line) when these are estimated using the common method. The

obvious random walk in the sample variances of the individual variables contrasts
dramatically with the more or less constant behavior of the sum of the two esti-
mates, as was to be expected.

To understand the random-walk phenomenon, consider the following simple
model

(58)

and is a white Gaussian sequence with covariance R. Here, � represents the mis-
alignments and a represents the corresponding redundant distortion coefficients.
The above model is somewhat simplified but contains the important component that
the two parameter sets are completely redundant. This measurement model is not
far-fetched, however. In practice, it can always be constructed as the maximum-
likelihood estimate of �� � a�.
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If the variable � is estimated at the odd times assuming the previous estimate (or
a priori value) for a, then we obtain for the estimate of 

(59)

Likewise at the next interval, estimating a assuming the previous estimate for �
yields

(60)

Combining these two results yields

(61)

Likewise for the estimates of � one obtains

(62)

Let us suppose that the true and a priori values of � and a are zero. Then both 
and will execute a random walk with covariance 2R (since each interval spans
two time intervals). If calibrations are performed every day over the course of five
years, then, at the end of five years, an estimate error in � and a with covariance on
the order of 1600R will be introduced. The individual instrument and flight opera-
tions teams, on the other hand, will believe incorrectly that their estimate error co-
variance matrices are on the order of R, amounting to an error in confidence in the
standard deviation of a factor of 40. If the single frame estimation error in this case
is on the order of 5 arc seconds, then at the end of five years in the above example,
the random-walk standard deviation will be on the order of 3.5 arc minutes, which
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is generally unacceptable. The solution, of course, is to estimate only a, or better,
only � but not both.

Discussion

We have developed a consistent and practical methodology, SMARTCAL, for es-
timating the alignment and distortion parameters of a focal-plane sensor. This
methodology discards poorly identifiable parameters from the distortion model
which become redundant in the limit that the number of focal-plane distortion pa-
rameters becomes infinite. Specific algorithms have been given for the carrying out
computations efficiently.

What we have not addressed as yet is what actually happens in practice. For
focal-plane sensors with very limited fields of view, this author’s personal experi-
ence has been that a Taylor expansion works well. The random walk effect has also
been observed many times in NASA mission support. One noticed that the sensor
alignments and sensor distortion parameters drifted to unreasonably large values
during repeated incremental correction. However, if one returned to using the ear-
liest (generally small) misalignment results in the calibration process and reinitial-
ized the distortion parameters to zero, then suddenly the optimal estimates of the
distortion parameters would also be small.

Note that the random-walk effect will still occur if some (or all) misalignments
are estimated by the instrument teams if the non-redundant parameter set is used.

Pittelkau [7] has applied this technique to simulation studies of the calibration of
a fine Sun sensor using simulated inflight data and has not achieved good results.
However, a Sun sensor has a very large field of view, so that it cannot be hoped that
a truncated Taylor series expansion of the distortion can be adequate. For such a
sensor one must use calibration functions which reflect the specific mechanical and
thermal properties of the sensor as well as the specific loading of the sensor. The
problem of removing the alignment degrees of freedom for such a sensor will be
much harder. Nonetheless, it must be carried out if stable results are to be obtained
for the alignment and distortion parameters.

Since the original publication of our results [8, 9] the authors have learned that the
Guidance and Control Group of the NASA Jet Propulsion Laboratory also deletes
the same three distortion terms from its inflight calibration of star cameras. The JPL
practice, in fact, preceded the publication of references [8, 9] by several years.
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