Close

1. Identity statement
Reference TypeConference Paper (Conference Proceedings)
Sitemtc-m16.sid.inpe.br
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier6qtX3pFwXQZsFDuKxG/F3c9M
Repositorysid.inpe.br/marciana/2005/02.01.09.41
Last Update2005:02.01.02.00.00 (UTC) banon
Metadata Repositorysid.inpe.br/marciana/2005/02.01.09.41.58
Metadata Last Update2018:06.05.01.21.31 (UTC) administrator
Secondary KeyINPE-12151-PRE/7492
Citation KeyOliveiraLore:2004:DePrAr
TitleDetecting promising areas by evolutionary clustering search
FormatOn-line
ProjectAlgoritmos genéticos
Year2004
Access Date2024, Dec. 27
Secondary TypePRE CN
Number of Files1
Size294 KiB
2. Context
Author1 Oliveira, Alexandre C. M.
2 Lorena, Luiz Antonio Nogueira
Resume Identifier1
2 8JMKD3MGP5W/3C9JHMQ
Group1 LAC-INPE-MCT-BR
Affiliation1 Universidade Federal do Maranhão, Departamento de Informática (UFMA)
2 Instituto Nacional de Pesquisas Espaciais, Laboratório Associado de
Conference NameBrazilian Symposium on Artificial Intelligence, 17 (SBIA).
Conference LocationSão Luiz
Date29 Sept. - 01 Oct.
PublisherINPE
Pages10
Book TitleProceedings
History (UTC)2005-06-09 17:05:07 :: jefferson -> administrator ::
2015-04-02 18:24:59 :: administrator -> banon :: 2004
2015-04-02 18:25:24 :: banon -> administrator :: 2004
2018-06-05 01:21:31 :: administrator -> banon :: 2004
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
KeywordsCOMPUTAÇÃO APLICADA
Algoritmos genéticos
Otimização
Pesquisa de Agrupamento Evolucionário
COMPUTER SCIENCE
Genetic algorithms
Optimization
Evolutionary Clustering Search
AbstractA challenge in hybrid evolutionary algorithms is to define efficient strategies to cover all search space, applying local search only in actually promising search areas. This paper proposes a way of detecting promising search areas based on clustering. In this approach, an iterative clustering works simultaneously to an evolutionary algorithm account- ing the activity (selections or updatings) in search areas and identifying which of them deserves a special interest. The search strategy becomes more aggressive in such detected areas by applying local search. A first application to unconstrained numerical optimization is developed, show- ing the competitiveness of the method.
AreaCOMP
Arrangementurlib.net > BDMCI > Fonds > Produção anterior à 2021 > LABAC > Detecting promising areas...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Contentthere are no files
4. Conditions of access and use
data URLhttp://urlib.net/ibi/6qtX3pFwXQZsFDuKxG/F3c9M
zipped data URLhttp://urlib.net/zip/6qtX3pFwXQZsFDuKxG/F3c9M
Languageen
Target Fileecs.pdf
User Groupadministrator
banon
jefferson
Reader Groupadministrator
banon
Visibilityshown
Copy HolderSID/SCD
Read Permissionallow from all
Update Permissionnot transferred
5. Allied materials
Next Higher Units8JMKD3MGPCW/3ESGTTP
Citing Item Listsid.inpe.br/mtc-m21/2012/07.13.14.54.04 4
Host Collectionsid.inpe.br/banon/2003/08.15.17.40
6. Notes
Empty Fieldsarchivingpolicy archivist callnumber contenttype copyright creatorhistory descriptionlevel dissemination doi e-mailaddress edition editor electronicmailaddress isbn issn label lineage mark mirrorrepository nextedition notes numberofvolumes orcid organization parameterlist parentrepositories previousedition previouslowerunit progress publisheraddress rightsholder schedulinginformation secondarydate secondarymark serieseditor session shorttitle sponsor subject tertiarymark tertiarytype type url versiontype volume
7. Description control
e-Mail (login)banon
update 


Close