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In this work the possible chaotic nature of the atmospheric turbulence, above a
densely forested area in the Amazon region, is investigated. To this end, we use high
resolution temperature data obtained during a micrometeorological measurement
campaign in the Brazilian Amazonia. The existence of chaos in the atmospheric
boundary layer is confirmed by estimates of the correlation dimension (Ds = 3.50+
0.05) and of the largest Lyapunov exponent, (A\; = 0.050 + 0.002). Our findings
indicate that this low-dimensional chaotic dynamics is associated with the presence
of the coherent structures within the boundary layer right above the canopy top,
and not to the atmospheric turbulence per se, as previously claimed.
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1. Introduction

Amazonia is one of the last great tropical forest domains, the largest hydrological
system in the planet, and plays an important role in the function of regional and
global climates. A subject of great relevance for understanding how the Amazon
terrestrial biosphere interact with the atmosphere is the correct modeling of the
turbulent exchange of heat, humidity, greenhouse gases, and other scalars at the
vegetation-air interface. However, this issue, as many other aspects of this fragile
and highly complex system, remains unclear for the scientific community. This is
partly due, on one hand, to the lack of high-frequency, detailed in situ measure-
ments, and, on the other hand, to the fact that turbulence has been a notoriously
difficult problem to grasp.

In the last decades, several studies have handled the problem of turbulence - and
of atmospheric turbulence, in particular - with the tools of chaos theory. Perhaps
the most paradigmatic example of this approach is the work of E. N. Lorenz (Lorenz
(1963)), based on a simplified model of the dynamics of a convective fluid layer. Soon
after this landmark paper, it was conjectured that the atmosphere might also be
governed by a low-dimensional chaotic attractor (Weber et al. (1995)). Since then,
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various works reported the existence of low-dimensional chaotic attractors based on
the analysis of climatic or weather time series (Nicolis & Nicolis (1984); Fraedrich
(1986); Fraedrich & Leslie (1989); Gober et al. (1992); Poveda-Jaramillo & Puente
(1993); Fraedrich (1986); Xin et al. (2001); Gallego et al. (2001)). However, in spite
of the growing empirical evidence, the subject remains controversial. Grassberger
(1986) objected to the validity of some early findings because of the small number
of data points used in the analyses. Later, Weber et. al (1995) found no evidence
of a low-dimensional attractor on wind velocity turbulent time series with several
million data points long. Lorenz himself found unlikely that weather or climate
systems possess low-dimensional attractors because of their intrinsic complexity
(Lorenz (1991)). In his opinion, however, positive claims were not meaningless but
resulted from the fact that the atmosphere “might be viewed as a loosely coupled
set of lower-dimensional subsystems”. In other words, as speculated by Ruelle and
Takens (1971), although the phase spaces of many dynamical systems in nature are
infinite-dimensional, the dynamical invariant sets responsible for many observable
phenomena of physical interest may lie in some low-dimensional manifold (Lai et
al., (2003)).

Within the context above we set two objectives to this work. First, investigate
the existence (or not) of a low-dimensional chaotic attractor in the atmospheric
turbulence above a densely forested area in the Amazon region. Second, examine the
role played by coherent structures (or eddies) - here viewed as the lower-dimensional
subsystems conjectured by Lorenz (1991) - in the predictability properties of the
atmosphere. Turbulent flows in canopies are dominated by such coherent structures
of whole canopy scale (Finnigan (2000)), which might be responsible for up to 75%
of the turbulent fluxes in the atmospheric surface layer (Krushe & Oliveira (2002)).
Under convective conditions, coherent structures are recognized in time series of
temperature and other scalars by the presence of ramp-like patterns, i.e. a gradual
rise in the signal, followed by a sudden fall (Antonia et al. (1979)). To attain our
goals, we used fast-response experimental data obtained during a field campaign of
the large-scale biosphere-atmosphere experiment in Amazonia (known as the LBA
project), carried out during the wet season (January-March), in the southwestern
part of the Brazilian Amazonia.

This paper is organized as follows. In Section 2 we describe the data and the
experimental site. Section 3 describes the analytical tools used on the data, and the
corresponding results are presented and discussed. Finally, in Section 4 we present
our conclusions.

2. Data and Experimental Site

The experimental site is located in Rondodnia, Brazil, roughly 3000 kilometers north-
west from Rio de Janeiro, inside the Jaru Biological Reserve (10°46’S, 61 °56°W),
a densely forested area with 270 thousand hectares. Fast response wind speed mea-
surements, in the three orthogonal directions, and temperature measurements were
made at a sampling rate of 60 Hz, over periods of 30 minutes, using sonic anemome-
ters and thermometers. The data was gathered during an intensive micrometeoro-
logical campaign, part of the LBA project. The experiment was carried out during
wet season, from January to March 1999. The LBA Project, acronym for Large Scale
Biosphere-Atmosphere Experiment in Amazonia, is an international initiative led
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by Brazil, aimed at understanding the climatological, ecological, biogeochemical,
hydrological functioning of Amazonia, studying the impact of land use change, es-
pecially deforestation, in these functions, and analyzing the interactions between
Amazonia and the Earth system.

The measurements were made with the help of a micrometeorological tower,
simultaneously at three different heights: above the canopy, at 66 m; at the canopy
top, at 35 m; and within the canopy, at 21 m. Two distinct measurement periods
have been selected: from noon to 1:00 p.m., when the forest crown is heated by
the sun, the top of the canopy is hotter then the surroundings, and thus the above
canopy region is unstable; and from 11:00 p.m. to midnight, when we have the
opposite condition, and the above canopy region is stable. In order to verify the data
quality, we applied the quality control procedure proposed by Vickers and Mahrt
(1997). Since we were primarily interested in the dynamical characteristics of fully-
developed turbulence, we checked our data for the existence of a sizable inertial
sub-range. Finally, we also checked the validity of Taylor’s hypothesis verifying the
turbulence intensity inside the inertial sub-range.

3. Methods and Results

(a) Selection and Filtering of the Data

The first step of our analysis was to select among the set of available time
series those that presented clear signs of ramp-like patterns, an unequivocal evi-
dence of the presence of coherent structures in the flow, and that obeyed minimal
requirements of quality and stationarity. Figure 1 (top) shows the only time se-
ries selected by this procedure (called here “tS1200”), that corresponds to more
than 100,000 temperature data points, measured above the canopy, during day-
time (under convective, unstable conditions). Two other temperature time series,
measured simultaneously with “¢S1200” but that do not display ramp-like patterns,
were also considered: “tM1200”, measured at the canopy top; and “tI1200”, below
the canopy.

The second step was to decompose “tS1200”, using Haar wavelet transform, into
a coherent, low-frequency signal and a high-frequency, apparently incoherent one.
The so-called coherent part bears the main features that characterize the ramp-like
patters present in the original time series, while the incoherent, structureless part
looks like a random sequence of temperature fluctuations (see Figure 1, middle and
bottom).

Figure 2 presents the corresponding Global Wavelet Spectra (GWS) of the three
parts. Note that these spectra present all a “broad band” aspect, with no domi-
nant frequency. This is a necessary but not sufficient condition for a time series
being related to chaotic dynamics (Tufillaro et al. (1992)). Remark also that even
the incoherent part has a power-spectrum with a clear —5/3 scaling, typical of
fully-developed turbulence. This result shows that the phenomenon of turbulence
permeates all scales of the original time-series, and that the apparently random part
is not just a “colored” noise. This result is consistent with other studies that used
a similar procedure to decompose a turbulent signal into coherent and incoherent
parts (Farge et al. (2001); Ramos et al. (2004)). The rationale behind our decom-
position approach is straightforward: in case of finding a low-dimensional chaotic
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Figure 1. Original (top), coherent (middle) and incoherent (bottom) temperature time
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Figure 2. Global Wavelet Spectra of the original, coherent and incoherent time series.

attractor in the original time series, it will be possible to attribute it to the presence
of coherent structures in the flow, to the atmospheric turbulence, or to both.

(b) Phase-space reconstruction

The technique of phase-space reconstruction is a powerful tool in the analysis
of nonlinear dynamical systems with chaotic behavior. The basic theorem behind
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this technique (Takens (1981)) states that in the phase-space formed by the axes
z(t),z(t +7),2(t + 27),...,2(t + (m — 1)7), where 7 is a suitable time delay, the
reconstructed attractor is topologically equivalent to the system’s unknown one, of
which only a discrete record of the state variable x is known.

(i) Choosing the time delay T

Takens (Takens (1981)) demonstrated that for an infinite time series of z and
in the absence of noise, the choice of the time delay 7 is in most cases arbitrary.
Experimental time series, however, are finite in size and usually contaminated with
noise. In practical applications, thus, the correct choice of 7 is crucial. Several works
have considered this issue (Fraser & Swinney (1986)). The most popular criterion,
also used in this work, sets 7 as a modest fraction (say, 1/20) of the first zero-
crossing of the autocorrelation function (Baker & Gollub (1996)). Applying this
criterion to the original, coherent and incoherent time series we found 7 = 369,
7 =402 and 7 = 3, respectively (in discrete time-steps units).

(ii) Computing the correlation dimension Dy

The correlation dimension Ds is one of the main tools used to identify the
existence of chaotic dynamics. Deterministic chaos might exist in a stationary series
if the slope of the correlation integral C(r) converges to a saturation value, as
r — 0 and the embedding dimension m increases (Grassberger & Procaccia (1983)).
The correlation integral counts the relative frequency in which two vectors f-; =
(z(t;),z(t; + 7),...,z(t; + (m — 1)7) in phase-space are separated by an Euclidian
distance no larger than r; for small values of r, it behaves as a power law C(r) ~
rP2. In deterministic time series with chaotic behavior, the value of D, reaches a
maximum value due the low-dimensional dynamics of the system. In other words,
D, is a good approximation of the fractal dimension Dy, and through the relation
m > 2Dy + 1 (Takens (1981)) may be used to estimate the value of the embedding
dimension m that allows the system’s attractor to be adequately unfolded, avoiding
any trajectories crossings.

Figure 3 shows the curves C(r) versus r for the original, coherent and incoherent
time series, for embedding dimensions ranging from 1 to 10. The corresponding D-
values, estimated by linear regression, are presented in Figure 4. As expected, D,
for a purely random process (white noise) grows linearly with m. The correlation
dimension for the incoherent signal does not saturate too. On the other hand, the
curves for the original and coherent time series converge to the values (averaged over
5 realizations) of Dy = 3.50+0.05 and Dy = 3.21 £ 0.04, respectively. Accordingly,
the associated attractor is well represented in an embedding space of dimension
m = 8. Note that we have Dy < D,_. = 2log;y N, where N = 100,000 is the
number of points of the time series, and D __  is the maximum value that can
reliably be estimated from a data set of size N (Eckmann & Ruelle (1992)). Our
D, results compare well with those published in the literature, for similar weather-
related time series (see Table 1). More important, they imply that the fingerprint of
a low-dimension chaotic dynamics in our data does not come from the atmospheric
turbulence but from the presence of coherent structures in the flow.
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Figure 3. Correlation integral for the original, coherent and incoherent time series.
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Figure 4. Correlation dimensions of the original, coherent and incoherent time series, and
a white noise.

It is well known that certain “colored” noises may also generate correlation di-
mensions that converge to a finite value (Osborne & Provenzale (1989)). To check
this possibility, we also computed the correlation dimension for surrogates of the
original and coherent time series, after randomly shuffling their phases in the Fourier
space, a procedure that does not modify the power-spectra of the signals (Proven-
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zale et al. (1992)). Now the correlation dimensions, presented in Figure 5, do not
converge to a finite value anymore, which represents an additional evidence of the
existence of low-dimensional chaotic attractor in our data.
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Figure 5. Correlation dimensions for the original and coherent surrogate time series, and
a white noise.

(iii) Computing the Lyapunov exponents

Lyapunov exponents contain information about the average rate at which tra-
jectories exponentially diverge or converge within the attractor. A chaotic system is
characterized by an exponential divergence of nearby initial conditions, and there-
fore possesses at least one positive Lyapunov exponent. Here, with the value of
embedding dimension estimated previously (m = 8), we applied Wolf’s algorithm
(Wolf et al. (1985)) to compute the largest Lyapunov exponent A; of the original
and the coherent time series, for different regions of the corresponding attractors.
The values we obtained, respectively, Ay = 0.050+£0.002 and A\; = 0.011+0.001, are
small but positive (even considering the error bars), what confirms the presence of
a low-dimensional chaotic dynamics in both series. Again, a comparison with Lya-
punov exponents estimated by other authors under similar conditions (see Table 1)
does not present large discrepancies.

(iv) Recurrence plots

As a final check of our data, we prepared recurrence plots (Eckmann et al.
(1987)) of the original, coherent and incoherent time series. The resulting plots
are shown in Figure 6. We observe that, while the incoherent part produced a
homogeneous, structureless plot typical from high-dimensional stochastic processes,
the plots of the original and coherent time series display patterns commonly found
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Table 1. Correlation dimensions D2 and largest Lyapunov exponents A1 for different
turbulent time series.

Type of data D, A1 Reference
Temperature (original series) 3.50 0.050 this work
Temperature 450 0.155 Povedo-Jaramillo & Puente (1993)
Longitudinal wind velocity 3.50 0.195 Povedo-Jaramillo & Puente (1993)
Temperature 3.26 0.047 Xin et al. (2001)
Longitudinal wind velocity 3.43 0.120 Xin et al. (2001)
Vertical wind velocity 5.35 0.058 Gallego et al. (2001)

in deterministic chaos, such as the small diagonal structures above and below the
main diagonal (Thiel et al. (2004)).
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Figure 6. RP of the original time serie with m = 8 and € = 0.9507; RP of the coherent
time serie with m = 8 and € = 0.8390; and RP of the incoerent time serie with m = 1 and
e = 0.030.

4. Conclusions

In this work the possible chaotic nature of the atmospheric turbulence above a
densely forested area in the Amazon region was investigated. The analyses carried
out here, based on high resolution temperature data obtained during a micromete-
orological measurement campaign in the Brazilian Amazonia, suggest the existence
of a low-dimensional chaotic attractor in the atmospheric boundary layer, with a
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correlation dimension of Dy = 3.50 £ 0.05. The existence of chaotic dynamics in
the data is confirmed by the estimation of a positive largest Lyapunov exponent,
A1 = 0.050£0.002. More important, our results indicate that this chaotic dynamics
is associated with the presence of coherent structures within the boundary layer
right above the canopy top, and not to the atmospheric turbulence per se. This
claim was evidenced by the process of filtering, using Haar wavelets, applied to the
experimental data, which allowed us to separate the contribution of the coherent
structures from the turbulent background signal. It is important to remark that
two other turbulent temperature time series (“tM1200” and “tI11200”), which do
not possess the ramp-like patterns displayed by “tS1200”, were also analyzed, and
in both cases we found no evidences of the existence of a low-dimensional chaotic
attractor.

Our findings corroborate a conjecture made by Lorenz (Lorenz (1991)), stating
that the connection between chaos and weather (or climate) found by many au-
thors were not simply artifacts but the result of the existence in the atmosphere
of low-dimension chaotic subsystems weakly coupled to a higher-dimensional sys-
tem, more complex and non chaotic. Within the context of the present work, these
low-dimensional subsystems are the coherent structures commonly found in canopy
flows under convective conditions. Naturally, the higher-dimensional system is the
complex and turbulent atmospheric boundary layer. The results obtained in this
work, for the correlation dimension Dy and the largest Lyapunov exponent \;, are
consistent with those published in literature, where evidences of a low-dimensional
attractor in the atmosphere were also detected (Xin et al. (2001); Povedo-Jaramillo
& Puente (1993); Gallego et al. (2001)). Although the presence of coherent struc-
tures is not clearly mentioned, a careful reading of these works provide some indica-
tions that ramp-like structures may also be present in their data (see, for example,
Figure 5 in Povedo-Jaramillo & Puente (1993)).
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