

A Practical Approach for Automated Test Case Generation using Statecharts*

Valdivino Santiago1, Ana Silvia Martins do Amaral1, N. L. Vijaykumar1, Maria de Fátima
Mattiello-Francisco1, Eliane Martins2 and Odnei Cuesta Lopes3

1National Institute for Space Reseach, 2University of Campinas, 3DBA Engenharia de Sistemas
valdivino@das.inpe.br, {anasil, vijay}@lac.inpe.br, fatima@dss.inpe.br, eliane@ic.unicamp.br,

olopes@dba.com.br

* This work was supported in part by Financiadora de Estudos e Projetos (FINEP) through Qualidade do Software Embarcado em Aplicações

Espaciais (QSEE) project.

Abstract

This paper presents an approach for automated test
case generation using a software specification modeled
in Statecharts. The steps defined in such approach
involve: translation of Statecharts modeling into an
XML-based language; and the PerformCharts tool
generates FSMs based on control flow. These FSMs
are the inputs for the Condado tool which generates
test cases. The idea is to demonstrate that by using a
higher-level technique, such as Statecharts, complex
software can be represented with clarity and rich
details. A case study was on an implementation of a
protocol specified for communication between a
scientific experiment and the On-Board Data Handling
Computer of a satellite under development at National
Institute for Space Research (INPE).

1. Introduction

Software for satellite’s on-board computers is
reactive by nature, responding to stimuli known as
events. Such software is complex due its close
interaction with the computer hardware, sensors,
actuators and other devices present in the satellite, and
hard to be replaced in case of faults due to the
unmanned aspect of the mission. Due to this fact,
verification and validation play an important role
during the whole software life cycle.

Wrong interpretations of complex software from
non-formal specification can result in incorrect
implementations leading to testing them for
conformance to its specification standard [1]. Besides,
tests by introducing errors into input data, for example,
are particularly important in order to see its behavior in
the presence of non-specified events. In order to
conduct both verification and validation or even to

determine its performance, the software shall be
represented formally to be handled through a computer.
Finite State Machines (FSMs) [2] are popular, formal
and are a natural choice to represent reactive systems.
They consist of states (vertices) moving to other states
by means of transition arcs (edges) triggered by events
and are depicted through state transition diagrams.
Several methods [1] and [3] have been proposed to
generate test sequences from a FSM representation. In
a similar way, if a reactive system is represented as a
FSM and shown that it is a Markov chain, one can use
an analytical approach to obtain performance measures
[4].

Complex software usually deals with parallel
activities. Representation of encapsulation would be an
additional advantage. FSMs cannot explicitly represent
such features, so, this leads to considering higher-level
techniques. However, these techniques must be formal
so that they can be computationally handled. At this
stage, one has to bear in mind that a price has to be
paid in order to deal with such specifications, as there
might not be a straightforward solution to handle test
sequences or performance evaluation. This means that
this matter has to be evaluated by the user before taking
a decision whether to use FSM or move to a higher-
level technique. It is expected that the decision, in most
cases, will depend on the complexity of the system to
be verified or validated.

The focus of this paper is towards test sequence
generation from a specification of a reactive system, a
space application software, in Statecharts [5] and the
use of PerformCharts [6]. In order to adapt
PerformCharts to generate test sequences, it has been
associated to a test case generation method switch
cover implemented within the Condado tool [7]. A case
study on a real satellite’s scientific experiment is
explored to explain the overall process from

specification to test sequence generation. The paper is
organized as follows. Section 2 briefly explains both
PerformCharts and Condado. Section 3 discusses how
these tools have been integrated in order to deal with
test sequence generation. Section 4 addresses the case
study of a protocol implementation used for
communicating a scientific experiment and the On-
Board Data Handling Computer (OBDH) of a Brazilian
scientific satellite. Section 5 shows some results while
section 6 concludes the paper.

2. PerformCharts and Condado

Statecharts extend state-transition diagrams with
notions of hierarchy (depth), orthogonality (parallel
activities) and interdependence/synchronization
(broadcast communication) [5] and [8]. Statecharts
consist of states, conditions, events, actions and
transitions. Their subset was used in performance
evaluation [6]. Events are interpreted as: they can be:
internal (or immediate) and triggered automatically
(not explicitly stimulated) taking zero time when
enabled; or external events that are stochastic (follow
an exponential distribution) and are explicitly
stimulated. Statecharts specification is converted into a
Markov chain by: from an initial configuration (basic
states of each orthogonal component in the initial
instant), enabled immediate events are triggered and
new configurations are obtained; for these new
configurations, enabled stochastic events are stimulated
yielding new configurations; once a configuration is
obtained, internal events, if enabled, are triggered,
firing transitions to yield new configurations; this
stimulation goes on until all the configurations have
been expanded. The result is a set where each element
consists of a source configuration, stimulated stochastic
event (along with its transition rate with exponential
distribution), and the target configuration. This set is a
Markov chain and when solved steady-state
probabilities are obtained [4]. Figure 1(a) shows an
example with three parallel components that
correspond to two machines (E1 and E2) and a
supervisor (Supervisor) to repair any eventual failure of
the machines. The corresponding Markov chain is
shown in Figure 1(b).

Note that the number of configurations obtained
(10) is less than the product (27) of the three machines
in Fig.1. Details of the application of Statecharts in
performance models can be seen in [6].

Statecharts specification is written in XML-bassed
language PerformCharts Markup Language (PcML) [7]
and scripts developed in Perl interpret PcML and
generate a main program in C++ language that creates

the necessary data structures to hold the specification
and calls to methods to produce the Markov chain and
its solution (steady-state probabilities).

Condado is a test case generation tool for FSM.
Condado stems from “control” and “data”. The control
aspect is related to the valid sequences of events that
the machine represents. The data aspect allows
parameters of events to be generated. For the control
part, Condado implements the switch cover method [3].
A switch is a transition-to-transition pair. The method
generates test cases to cover all pairs of transitions in
the model. State transition diagrams are directed
graphs. Therefore, algorithms from graph theory can be
used in order to traverse automatically.

The algorithm implemented in Condado is known as
sequence of “de Bruijn”. The FSM of Figure 2(a) will
help to illustrate the algorithm whose steps are:

Step 1 – A dual graph is created from the original
one, by converting arcs into nodes;

Step 2 – By considering all nodes in the original
graph, where there is an arc i arriving and an arc j
leaving, an arc is created from i to j in the dual graph
(Figure 2(b));

Step 3 – The dual graph is transformed into a
“Eulerized” graph by balancing the polarity of the
nodes. This balance is obtained by duplicating the arcs
in such a way that the number of arcs arriving becomes
equal to the number of arcs leaving the node. This
“Eulerized” graph that corresponds to Figure 2(b) is
shown in Figure 2 (c);

Step 4 – Finally, the nodes are traversed registering
those that are visited, generating the following test
sequences: abf, abrbf, cf, crbf.

In order to use Condado, the FSM must be: a Mealy
machine; initially connected; no need to be complete;
and minimum, that is, does not contain redundant
states.

In order to keep the number of test cases
manageable, the number of states and inputs must be
kept small; otherwise, the number of test cases may
explode. In the next section a method is presented that
allows a reduced machine to be used as input to
Condado.

3. Integrating PerformCharts and
Condado

In order to use PerformCharts for test sequence
generation, some additional elements from Statecharts
such as Variables and Expressions have been included.
PerformCharts is used in the same fashion as it is used
for performance evaluation.

(a)

W1,P2,WS

P1,P2,WS

f1

a2
W1,W2,WS

r1

B1,B2,C2

a1f2
W1,B2,C2

f2
r1

a1

s2

P1,B2,C2

s2

f2

r2

B1,B2,C1

a2

a1

f1

B1,W2,C1

f1
P1,W2,WS

r2

a2

s1

B1,P2,C1

s1

s2 s1

r1 r2

(b)

Figure 1. Statecharts representation. (a) System with two machines and a repairer; (b) Resulting
Markov Chain

(a)

(b)

(c)
Figure 2. Condado algorithm. (a) FSM example; (b) Dual graph with arcs; (c) “Eulerized” Graph.

However, the output is not a Markov chain (and the

steady-state probabilities) but a state-transition
diagram. The state-transition diagram, after being
converted into a Prolog base of facts, is then fed to
Condado tool so that test cases are generated to be
executed at a later stage [7]. The FSM obtained from
PerformCharts is provided in XML. Then an XSLT
parser was used to generate the required base of facts.
In a nutshell, the methodology to convert Statecharts
specification of a software into test cases can be
described in the following steps: (a)the system
specification must be written in PcML, presented in
section 2; (b)by using a Perl script, the PcML
specification is converted into a text file containing the
C++ main program; (c)a scenario is created by
assigning values to the different fields of a
communication protocol frame. Each scenario has a
unique FSM associated which is generated through the
PerformCharts tool. As mentioned earlier, the Condado
tool implements the switch cover method to generate
test cases. In order to avoid test case explosion a
solution has been adopted which assigns a value of
zero to a selected event. The effect is that the transition
associated to that event is not executed thereby
producing a smaller machine; (d)the FSM generated by

the PerformCharts must be written in the input format
required by Condado tool. The output of the converted
state-transition diagram in XML format is translated by
using XSLT into the input required by Condado; and
(e)finally, Condado tool generates the test cases for the
system initially specified in Statecharts.

4. Case Study

In order to show the integrated use of Condado and
PerformCharts for test case generation, a protocol
specification [9] developed for the communication
between a scientific experiment and the OBDH of a
Brazilian scientific satellite has been chosen. The
Implementation Under Test (IUT) is the command
recognition component of the on-board software for an
astrophysical experiment to be included in the
Equatorial Atmosphere Research Satellite (EQUARS).

Although the main focus of this paper is test case
generation, tests created were executed in a simulated
version of this experiment, developed in Java. The
OBDH was simulated and executed in a different
microcomputer. The communication is in master-slave
mode, where the experiment is totally controlled by

OBDH. The command message sent by OBDH to the
experiment is composed of 6 fields: SYNC (EB9
synchronization value), EID (experiment
identification), TYPE (specifies accepted commands),
SIZE (amount of Bytes in the DATA field), DATA and
CKS (8-bit checksum). SIZE and DATA fields are
optional and depend on the type of command.

The command recognition component behavior of
the communication protocol is shown in Figure 3.
Table 1 provides some mnemonics to help its
understanding.

Referring to Figure 3, the initial configuration is
(Idle, Waiting Sync). All fields of the command
message are verified by the experiment through on-
board software. For instance, suppose a command sent
to the experiment with these values was received
exactly as it was sent (i.e. no data corruption during the
command transmission): SYNC = EB9, EID = 2,
TYPE = 03, CKS = 80. In the B macro-state, the event
EB9 changes its sub-state to Waiting ExpId and the
action starting timing counting makes the A state
change from sub-state Idle to sub-state Counting Time.
After the EB9, the eid rc[eid = 2] event is triggered
because EID = 2. The B state moves from Waiting
ExpId to Waiting Type. As TYPE = 03, the event type
rc [type >=01 and type <= 05] is triggered changing
from Waiting Type to Waiting Checksum. Finally, as
the value of checksum received was correct, the event
cksum rc[cksum OK] is triggered and the B state
switches from Waiting Checksum to Waiting Sync in
order to wait for another command. Also, the action
command received means the message was received
and accepted by the experiment software. It also
changes the A state from Counting Time to Idle. With
this action, the timing counting is interrupted and the
software is able to receive another command.

If the software detects errors in any of the fields of
the command message, the communication is aborted,
the command is discarded and the experiment remains
ready to receive a new command from OBDH. No
message on problems in receiving a command is
reported back to OBDH.

 A timeout mechanism is implemented in both the
computers depicted in state A. For example, if the time
defined for receiving a whole command from OBDH
expires, the waiting time expired [not in (Aborting)]
event is triggered in state A and the action/event
timeout will change the state B from Checking Field to
Waiting Sync.

Table 1 shows the values that can be assumed by the
TYPE field (type and auxiliary variable tp) and those
assumed by the DATA field (data). Also, from Table 1
and Figure 3, it can be noticed that TYPE values 01,

02, 03, 04 and 05 do not have the optional fields SIZE
and DATA in the command message. On the other
hand, TYPE values 07, 1A, 1B and 1F have such fields
(states Waiting Size and Waiting Data in state B).

Table 1. Mnemonics in Figure 3.

Mnemonics Meaning

EB9 Synchronism value
rc Received. Indicates an event has happened
eid Experiment identification

tp, sz Auxiliary variables
cksum Checksum

x x = a or b or c or d
a tp = 07 and (data = 00 or data = 01)
b tp = 1A and (initial_address <= final_address)
c tp = 1B and (address >= loading pointer)
d tp = 1F and (data = 30 or data = 31 or data = 32

or data = 33 or data = 3E or data = 3F or data =
40 or data = 45 or data = 46 or data = 47 or data
= 48)

y type = 01 or type = 02 or type = 03 or type = 04
or type = 05 or type 07 or type = 1A or type = 1B
or type = 1F

5. Results

According to step (a) of the methodology, the
software specification was translated to PcML. A
sample of the PcML specification follows: <State
Name="A" Type="OR" Default="Idle">. Then, PcML
was translated into a text file containing the C++ main
program, whose sample is: ExpSci.createSonState
("A",OR,"ReceivingCommand"); (step (b)). A different
FSM for each scenario (columns Sc) of Table 2 was
generated (step (c)). A scenario was created by
assigning values to the command message fields.

These scenarios shall be created in order to deal
with the software behavior that is in conformance with
the protocol specification as well as for situations
where errors are introduced. For example, scenario 8 in
Table 2 was created by assigning the following values:
SYNC = EB9, EID = 2, TYPE = 1F, SIZE = 01,
DATA = 32, CKS = 31 (correct value). This is a
normal scenario which deals with conformance aspect
of the software. Figure 4 shows the FSM generated for
scenario 8.

On the other hand, scenario 4 was created with
TYPE = 08. This is a non-specified value for the TYPE
field so this scenario is related to the introduction of
errors in the command fields. The idea of this paper
was not to generate different FSMs for each different
combination of the inputs but it was mainly to show
how the methodology works. Table 2 shows test cases
for all 9 scenarios resulting in 38 test cases.

Figure 3. Statecharts modeling of the command recognition part of the communication

protocol.

In Table 2, InSc means the amount of scenarios a TC
belongs to. However, it is important to notice that as
each scenario is a different FSM, some test cases are
repeated in more than one scenario. This repetition can
be explained by the fact some events occur according
to the software specification and also due to errors
regardless of a particular scenario. For example,
consider test case A, in which event EB9 (B state) and
event waiting timing expired[not in (Aborting)] (A
state) occur. This test case is generated in all 9
scenarios (Table 2). Event EB9 is the first one
expected by the software in a entire command message
and a timeout can occur in any transaction between the
computers. Test cases from A to J are those created by
assigning values, not defined in the protocol
specification, to the command message fields and also
by not transmitting the whole command message which
results in a timeout in the implementation under test.
Test cases K and L are those with input values as
defined in the specification.

A total number of 12 test cases generated were
unique which implies in 31.6% of the total initially
created. Although this number can indicate an
excessive repetition of test cases, it is important to
point out that there was not any excessive number of
test cases generated. One could have used just the
Condado tool by itself. In this case, the specification

must be provided as a FSM. This is not an issue as such
if the software is not too complex. Moreover, explosion
of test cases frequently takes place and many of the test
cases have a sequence of transitions that do not occur
in the real implemented software. For instance, when
the TYPE field is 1F, the protocol specifies that the
SIZE must be 01 and DATA must be one of the options
shown in event d (one of the component events of x) in
Table 1. Condado combines all the transitions to
generate test cases and a large number of test cases are
generated.

Table 2. Scenarios (Sc) X Test Cases (TC)

TC Sc
1

Sc
2

Sc
3

Sc
4

Sc
5

Sc
6

Sc
7

Sc
8

Sc
9

InSc

A x x x x x x x x x 9
B x x x x x x x x x 9
C x x x x x x x 7
D x x x 3
E x x 2
F x 1
G x 1
H x 1
I x 1
J x 1
K x x 2
L x 1
Total 6 5 4 3 4 4 2 6 4 38

A

B

Figure 4 . FSM Generated for Scenario 8.

Test case explosion can be avoided by a careful
selection of what arcs to be pruned which requires
some effort by the tester. PerformCharts, while
converting Statecharts specification into a FSM, does
not generate a blind “AND” product of the basic states
within each parallel component. The generated
machine is in fact the possible combination of
configurations based on the events that are stimulated.
Moreover, one or more arcs can be pruned to avoid
generating a larger machine. One has to note that
pruning of arcs has a serious drawback of not testing
the entire machine. On the other hand, applications of
test case generating methods are feasible on complex
systems.

In terms of execution, two errors were found in the
Java version of the real experiment software. The first
one occurred when test case A was executed. After
receiving an EB9, the software must start counting the
time. In test case A, no additional information is
transmitted from OBDH after EB9. So the software
implementation must indicate the occurrence of a
timeout (waiting timing expired[not in (Aborting)]
event triggered) but this did not happen. The second
one is that, on purpose, a mutant version of the
software was created so that it did not assume TYPE =
01 as a valid specified value. Only one mutant with a
single fault was created at this time. Test case K in
scenario 9 was executed and detected this error.

6. Conclusions

Complex reactive systems are one of a kind where
many intricacies have to be represented. Statecharts,
originally created for representing real-time systems,
have been adopted to represent and deal (analytically)
with performance models resulting into PerformCharts.

This paper presented an approach for automated test
case generation using Statecharts as a modeling
technique. Statecharts can provide hierarchy and
parallelism and enable to model a complex system
more realistically. The methodology described involve
the use of PerformCharts and Condado to generate test
sequences. The approach was applied on a simulated

version of a satellite experiment software. The results
were satisfactory. None of the test cases generated were
meaningless. Moreover, there was no test case
explosion. Although these conditions are not enough in
order to guarantee a test case generation approach is
successful they show a real improvement when
compared with just the use of the Condado as a
standalone tool with a FSM specification.

Implementation of a filter tool is required to identify
and eliminate the repeated test cases in more than one
scenario More scenarios will be derived and test cases
will be executed to the IUT. Also, this approach will be
applied in the entire software and not only in one of its
components. The entire software of the experiment
resulted in 13 pages of dynamic behavior modeling in
Statecharts.

7. References

[1] Sidhu, D.; Leung, T. Formal Methods for Protocol Testing: A

Detailed Study. IEEE Transactions on Software Engineering,
15(4), 413-426, 1989.

[2] Lee, D.; Yannakakis, M. Principles and methods of testing
finite state machines – A survey. Proceedings of the IEEE, vol.
84(8), 1996, pp. 1090-1123.

[3] Pimont, S.; Rault, J.C. An approach towards reliable software.
In Proceedings of the 4th International Conference on
Software Engineering, Munich, Germany, pp. 220-230, 1979.

[4] Silva, E. A. S.; Muntz, K. M. Computational Methods to solve
Markov Chains: Applications in Computing and
Communication Systems. Instituto de Informática da UFRGS,
Gramado, Brasil, p.195, 1992. (In Portuguese).

[5] Harel, D.; Statecharts: a visual formalism for complex
systems. Science of Computer Programming, v. 8, n. , p. 231-
274, 1987.

[6] Vijaykumar, N. L.; Carvalho, S. V.; Abdurahiman, V. On
proposing Statecharts to specify performance models.
International Transactions in Operational Research, 9, 321-
336, 2002.

[7] Amaral, A.S.M.S. Test case generation of systems specified in
Statecharts. M.S. thesis – Laboratory of Computing and
Applied Mathematics, INPE, Brazil, 2006. (In Portuguese).

[8] Harel, D.; Politi, M. Modeling reactive systems with
Statecharts: the statemate approach. USA: McGraw-Hill, 1998.

[9] National Institute for Space Research (INPE). EXP-OBDH
Communication Protocol Definition: a case study for PLAVIS.
São José dos Campos: INPE/QSEE Project, 1998, p. 9 (INPE
Internal Publication/QSEE Project)

