

INPE-13074-PUD/174

BIFURCAÇÕES ELEMENTARES

Marcelo Ricardo Alves da Costa Tredinnick

Exame de Qualificação de Doutorado (primeiro tema) do Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais, orientado pelo Dr. Marcelo Lopes de Oliveira e Souza, aprovado em 24 de maio de 2005.

> INPE São José dos Campos 2005

AGRADECIMENTOS

Agradeço aos Professores Marcelo Lopes de Oliveira e Souza, Mário Cezar Ricci e Leonardo De-Olivé Ferreira pelos ensinamentos a respeito de Teoria das Bifurcações e aos demais membros da banca desse Exame de Qualificação de Doutorado pelas valiosas observações e comentários feitos: Dr. Luiz Carlos Gadelha de Souza e Dr. Gilberto da Cunha Trivelato.

RESUMO

Este trabalho tem por objetivo dar exemplos gráficos das mais conhecidas bifurcações, fazendo uso de campos vetoriais, tais como a sela-nó, transcrítica, histerese, *pitchfork* (tridente), e fornecendo informações sobre a superfície conhecida como dobra. Busca-se com o presente trabalho fornecer uma compreensão geométrica das bifurcações de forma objetiva e complementadora ao estudo da teoria das bifurcações.

ELEMENTARY BIFURCATIONS

ABSTRACT

This work aims to give graphical examples of the most familiar bifurcations, making use of vectorial fields, as saddle-node, transcritical, hysteresis, pitchfork, and given some information about a surface known as fold. This work aims to give a geometrical comprehension of the bifurcations inn a form objective and complementary to the study of theory of bifurcations.

•

SUMÁRIO

LISTA DE FIGU	JRAS	
CAPÍTULO 1	INTRODUÇÃO	18
CAPÍTULO 2	CASO SEM BIFURCAÇÃO	21
CAPÍTULO 3	BIFURCAÇÃO SELA-NÓ	24
CAPÍTULO 4	BIFURCAÇÃO TRANSCRÍTICA	27
CAPÍTULO 5	BIFURCAÇÃO HISTERESE	30
CAPÍTULO 6	BIFURCAÇÃO TRIDENTE (PITCHFORK)	
	6.1.BIFURCAÇÃO TRIDENTE (PITCHFORK) SUPERCRÍTICA	32
	6.2.BIFURCAÇÃO TRIDENTE (PITCHFORK) SUBCRÍTICA	33
CAPÍTULO 7	DOBRA (FOLD)	36
EFERÊNCIAS BIBLIOGRÁFICAS		42

<u>Pág.</u>

LISTA DE FIGURAS

FIGURA 2.1- Superfície $\dot{x} = c - x$. 21
FIGURA 2.2 - Diagrama de bifurcação para $\dot{x} = c - x$.	. 22
FIGURA 3.1 – SUPERFÍCIE $\dot{x} = c + x^2$. 24
FIGURA 3.2 - DIAGRAMA DE BIFURCAÇÃO PARA $\dot{x} = c + x^2$. 25
FIGURA 4.1 - SUPERFÍCIE $\dot{x} = cx + x^2$.	. 27
FIGURA 4.2 - Diagrama de Bifurcação para $\dot{x} = cx + x^2$	28
FIGURA 4.3 - DIAGRAMA DE BIFURCAÇÃO PARA O LASER.	. 28
FIGURA 5.1 - SUPERFÍCIE $\dot{x} = c + x - x^3$. 30
FIGURA 5.2 – DIAGRAMA DE BIFURCAÇÃO PARA $\dot{x} = c + x - x^3$. 30
FIGURA 6.1 - SUPERFÍCIE TRIDENTE SUPERCRÍTICA $\dot{x} = dx - x^3$. 32
FIGURA 6.2 - DIAGRAMA DE BIFURCAÇÃO PARA $\dot{x} = dx - x^3$. 33
FIGURA 6.3 - SUPERFÍCIE TRIDENTE SUBCRÍTICA $\dot{x} = dx + x^3$. 33
FIGURA 6.4 - DIAGRAMA DE BIFURCAÇÃO PARA $\dot{x} = dx + x^3$. 34
FIGURA 6.5 - SCRIPT MATLAB	. 34
FIGURA 7.1 - REPRESENTAÇÃO TRIDIMENSIONAL DA DOBRA ("FOLD"),
FUNÇÃO DE X, D E C, COM SUA PROJEÇÃO CÚSPIDE NO PLANO	С
C,D	. 36
FIGURA 7.2 - A BIFURCAÇÃO "PITCHFORK" SUPERCRÍTICA OBTIDA DA	A
DOBRA	. 37
FIGURA 7.3 - A BIFURCAÇÃO SELA-NÓ SUPERCRÍTICA OBTIDA DA DOBRA	. 37
FIGURA 7.4 - A BIFURCAÇÃO HISTERESE OBTIDA DA DOBRA	. 38
FIGURA 7.5 - SCRIPT MATLAB DA DOBRA	. 39
FIGURA 7.6 - CÚSPIDE $4d^3 = 27c^2$. 40

INTRODUÇÃO

Bifurcações elementares é o estudo do comportamento de um sistema mediante a variação de parâmetros. A Teoria da bifurcação é o estudo das possíveis alterações na estrutura das soluções de uma equação diferencial que depende de parâmetros reais. Fica simples de ver a orientação do campo vetorial X se analisarmos a derivada (taxa de variação temporal) \dot{X} como uma função de superfície. Aonde $\dot{X} < 0$ implica dizer que o campo vetorial X está no sentido do decrescimento de X. Aonde $\dot{X} > 0$ implica dizer que o campo vetorial X está no sentido do crescimento de X. Assim sendo analisaremos alguns casos.

CASO SEM BIFURCAÇÃO: $\dot{x} = c - x = F(c, x), c \in R$

Esta superficie está mostrada na figura 1. Daí fica fácil verificar que o lugar geométrico dos pontos de equilíbrio reúne apenas pontos de equilíbrio estáveis, dado que o campo vetorial x converge para tal lugar (reta c-x=0). Na figura 2.1 temos então o "Diagrama de Bifurcações" para $\dot{x} = c - x$. Para esse caso especial não há bifurcação alguma encontrada.

FIGURA 2.1 - Superfície $\dot{x} = c - x$.

BIFURCAÇÃO SELA-NÓ: $\dot{x} = c + x^2 = F(c, x)$

Neste caso c é um parâmetro e $c \in R$. Esta superfície está mostrada na figura 3. Esta superfície está mostrada na figura 2.3.

FIGURA 3.1 - Superfície $\dot{x} = c + x^2$.

FIGURA 3.2 – Diagrama de Bifurcação para $\dot{x} = c + x^2$.

Pontos de equilíbrio:

$$F(c, \bar{x}) = 0$$
$$c + \bar{x}^2 = 0$$
$$\bar{x} = \pm \sqrt{-c}$$

Para c>0 não temos pontos de equilíbrio e para c<0 temos dois pontos de equilíbrio. Há um ponto de bifurcação em c=0, onde ocorreu uma alteração qualitativa na dinâmica. Ponto de Bifurcação: "todo ponto no espaço (x,c) correspondendo a um campo vetorial estruturalmente instável" (Thompsom, 1986). São importantes algumas definições para compreendermos o alcance dessa afirmativa:

Definição 1: *Topologia*. Seja X um conjunto não-vazio. Uma classe ℵ de subconjuntos de X é dita ser uma topologia em X se e somente se,

- i) X e ϕ pertencem a \aleph ;
- *ii)* A união de qualquer número de membros de ℵ pertencem a ℵ;
- iii) A interseção de qualquer número de membros de pertence a 🕅 .

Definição 2: *Estabilidade Estrutural*. Um sistema é dito ser estruturalmente estável se a topologia do seu diagrama de fase não se altera mediante uma pequena perturbação no campo vetorial. A Estabilidade Estrutural estabelece a robustez de um único ponto no espaço do campo vetorial do diagrama de fase enquanto que a Estabilidade no Sentido de Liapunov

está relacionada com a robustez de uma órbita (trajetória) no diagrama de fase frente a perturbações nas condições iniciais do sistema.

Definição 3: Estabilidade no sentido de Liapunov. uma trajetória x(t) é dita ser assintoticamente estável se existe uma vizinhança V de x(t₀) tal que $x_{0p} \in V \Rightarrow d[x^*(t), x_p(t)] \rightarrow 0$, quando t $\rightarrow \infty$, sendo x_p a trajetória perturbada calculada a partir de x_{op}.

BIFURCAÇÃO TRANSCRÍTICA: $\dot{x} = cx + x^2 = F(c, x)$, $c \in R$

Esse tipo de bifurcação tem aplicação na física dos LASERs.

FIGURA 4.1 - Superfície $\dot{x} = cx + x^2$.

FIGURA 4.2 - Diagrama de Bifurcação para $\dot{x} = cx + x^2$.

O estudo do LASER pode ser considerado um caso especial de aplicação da bifurcação transcrítica. Seja x o número de fótons coerentes no LASER e a sua taxa de variação dada por:

$$\frac{dx}{dt} = (\mu - a)x - bx^2 \tag{1.1}$$

Onde μ , a e b são parâmetros físicos. Não ocorre emissão estimulada enquanto: μ <a. O diagrama de bifurcação para o LASER é o mostrado na Figura 4.3.

FIGURA 4.3 - Diagrama de Bifurcação para o LASER.

BIFURCAÇÃO HISTERESE: : $\dot{x} = c + x - x^3 = F(c, x)$, $c \in R$

FIGURA 5.1 - Superfície $\dot{x} = c + x - x^3$.

FIGURA 5.2 - Diagrama de Bifurcação para $\dot{x} = c + x - x^3$.

6.1. BIFURCAÇÃO TRIDENTE (PITCHFORK) SUPERCRÍTICA

FIGURA 6.1 - Superfície tridente supercrítica $\dot{x} = dx - x^3$.

FIGURA 6.2 - Diagrama de Bifurcação para $\dot{x} = dx - x^3$.

6.2. BIFURCAÇÃO TRIDENTE (PITCHFORK) SUBCRÍTICA

 $\dot{x} = dx + x^3$

FIGURA 6.3 - Superfície tridente subcrítica $\dot{x} = dx + x^3$.

FIGURA 6.4 - Diagrama de Bifurcação para $\dot{x} = dx + x^3$.

O *script* em MatLab desenvolvido especialmente para gerar essas superfícies está apresentado na Figura 6.5.

clf; [C,X] = meshgrid(-3:.1:3, -3:.1:3); $Z = C + X - X \cdot 3;$ %Z=Xdot figure(1); surfl(C,X,Z); hold on; [e,f]=size(Z);Z1=zeros(e); mesh(C,X,Z1); xlabel('C'); ylabel('X'); zlabel('Xdot'); shading faceted; colormap(copper)

FIGURA 6.5 – *script* Matlab.

CAPÍTULO 7 DOBRA (FOLD)

 $\dot{x} = c + dx - x^3$

Aqui os parâmetros $c, d \in R$. Na Figura 7.1 está representada a dobra ou "fold".

FIGURA 7.1 – Representação tridimensional da dobra ("fold"), função de x, D e C, com sua projeção cúspide no plano c,d.

A interseção da Dobra com o plano C=0: dá a bifurcação "*pitchfork*" supercrítica como vemos na figura 7.2.

FIGURA 7.2 – a bifurcação "*pitchfork*" supercrítica obtida da dobra.

Para o caso em que C=1 temos uma bifurcação sela-nó supercrítica como apresentado na Figura 7.3.

FIGURA 7.3 – a bifurcação sela-nó supercrítica obtida da dobra.

Para o caso em que D=c^{te} temos uma bifurcação histerese como apresentado na Figura 7.4.

FIGURA 7.4 – a bifurcação histerese obtida da dobra.

Script MatLab desenvolvido especialmente para gerar a dobra e suas variantes:

FIGURA 7.5 – script Matlab da dobra.

Calculemos a equação da projeção cúspide. Sabe-se que as bifurcações ocorrem quando,

$$F(c,d,x) = 0 \tag{7.2}$$

е

$$\frac{\partial F(c,d,x)}{\partial x} = 0 \tag{7.3}$$

Daí, de (7.1) e (7.2) temos,

$$c + dx - x^3 = 0 (7.4)$$

$$d - 3x^2 = 0 \tag{7.5}$$

Juntando (7.3) com (7.4) no intuito de eliminar o x teremos a equação da cúspide,

$$4d^3 = 27c^2 \tag{7.6}$$

O respectivo gráfico de (7.5) está representado na Figura 7.6.

FIGURA 7.6 – cúspide $4d^3 = 27c^2$.

REFERÊNCIAS BIBLIOGRÁFICAS

Koçak, H.; Hale, J. Dynamics and Bifurcations. Springer-Verlag, 1991. 566p.

Thompson, J.M.T.; Stewart, H.B. **Nonlinear Dynamics and Chaos** – Geometrical Methods for Engineers and Scientists. John Wiley, 1991. 376p.

Kaplan, W. Ordinary Differential Equations. Addison-Wesley, 1967. 534p.

Notas de aula de **Teoria Geométrica das Equações Diferenciais Ordinárias**. INPE. Professores: Marcelo L. O. Souza, Mário C. Ricci, Leonardo O. Ferreira. São José dos Campos, 1999.

Software Matlab 6.5. The Mathworks.