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Abstract. We investigate the onset of intermittent chaos in the phase dynamics of nonlinear Alfvén
waves in the solar wind by using the Kuramoto-Sivashinsky (KS) equation as a model for phase
dynamics. We focus on the role of nonattracting chaotic solutions of the KS equation, known as
chaotic saddles, in the transition from weak chaos to strong chaos and show how two of these
unstable chaotic saddles can interact to produce the plasma intermittency observed in the strongly
chaotic regimes. The dynamical systems approach discussed in this work can lead to a better
understanding of the mechanisms responsible for intermittency in solar wind plasmas.
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INTRODUCTION

Intermittent fluctuations are constantly encountered in space plasmas, as reported in
several works based on the analysis of solar wind data both at the ecliptic [1, 2, 3] and
high heliographic latitude [4, 5]. Intermittent events are characterized by time series
that display time intervals with low variabilities interrupted by bursts of very high
variabilities. As a consequence, the associated probability density functions (PDF’s)
are non-Gaussian. It has been shown by Vörös et al. [6] and Dorotovic and Vörös
[7] that intermittent fluctuations in the solar wind affect the geomagnetic response. By
comparing solar wind data obtained from the ACE spacecraft with plasma sheet data
from the Geotail mission, Dorotovic and Vörös [7] suggested that the non-Gaussian
characteristics of the PDF’s of solar wind data can be interconnected to the occurrence
of intermittency in the magnetic fluctuations in the plasma sheet. Thus, the study of
intermittent phenomena in solar wind plasmas is essential for a better understanding of
the solar wind-magnetosphere coupling processes.

The fluctuations of the plasma velocity and magnetic field as revealed by interplan-
etary data records are frequently well correlated, which is a signature of the presence
of Alfvén waves in the solar wind [8, 9]. Alfvén waves are low-frequency electromag-
netic waves in a plasma with a background magnetic field. From a linear analysis of
MHD equations, the dispersion relation of the Alfvén wave is found asω � k��vA, where

k�� is the component of the wave vectork parallel toB0, and vA � B0��µ0ρ0�
1�2 is

the Alfvén velocity, whereB0 is the strength of the ambient magnetic field,µ0 is the
permeability of vacuum andρ0 is the average mass density of the plasma. The perturba-
tion of the fluid velocityu relates to the magnetic field’s perturbation vectorb=δB0 by
u��b��µ0ρ0�

1�2, where the upper (lower) sign refers to the casek �B0� 0 �k �B0� 0�.
Thus,u andb are parallel/antiparallel and proportional to each other, and the plasma os-
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cillates with the magnetic field lines.
As shown by Lefebvre and Hada [10], by assuming weak instability the dynamics

of quasiparallel Alfvén waves can be studied by a complex Ginzburg-Landau (CGL)
equation. The complex Ginzburg-Landau equation has been one of the most widely
studied nonlinear equations in the last decades (see Cross and Hohenberg [11], Bohr
et al. [12], Aranson and Kramer [13], and references therein). It describes the slow
modulation of a periodic pattern in space and time near the threshold of an instability,
where a band of modes become unstable.

In this work we study the phase dynamics of nonlinear Alfvén waves modeled by
the CGL equation. Phase dynamics is of particular interest in systems modeled by the
CGL equation, since for a range of values of the control parameters the dynamics of
perturbations of traveling wave solutions is essentially determined by variations of the
phase alone, and can exhibit ‘phase turbulence’. In such regimes the amplitudes are
essentially constant and the phase dynamics satisfies the Kuramoto-Sivashinsky (KS)
equation [14, 11, 12, 13, 15]. The study of phase dynamics can elucidate important
nonlinear phenomena observed in space plasmas. Finite correlation of phases in MHD
waves upstream of Earth’s bow shock was found in Geotail magnetic field data, indi-
cating that nonlinear interactions between the waves are in progress [16]. This bears
important implications in discussions of various transport processes of charged particles
in space. In He and Chian [17] imperfect phase synchronization in a nonlinear drift wave
system was shown to be responsible for the origin of bursts in wave energy in a turbulent
state. Here we focus on the characterization of phase intermittency in the KS equation.
We first describe how the fluctuations of the phase can evolve from periodic to chaotic
behavior through a sequence of bifurcations as the viscosity is varied. We show that in
the KS equation, chaotic attractors coexist with nonattracting chaotic sets responsible
for transient chaotic behavior. The collision of a weak chaotic attractor with an unstable
periodic orbit leads to the generation of a strong chaotic attractor, in an event known
as interior crisis. The post-crisis strong chaotic attractor can be decomposed into two
nonattracting chaotic sets, responsible for the generation of intermittent time series.

BASIC CONCEPTS OF NONLINEAR DYNAMICS

In this section we review some basic concepts of nonlinear dynamical systems that are
essential for understanding the remaining of this paper.

We consider dissipative dynamical systems described by autonomous systems of
ODE’s,

ẋ � f�x�� (1)

wherex is ann-dimensional vector,f is a vector function and the dot denotes derivative
with respect to time. Aflow ft�x0� is the solution of Eq. (1) for an initial conditionx0
after certain timet. The components of the vectorstate variablex define aphase space,
where the flow ofx0 is plotted for increasing values oft, generating theorbit of x0.

A fixed pointof Eq. (1) is a constant solution, i.e., a pointx̄ for which ẋ � 0, or
equivalently, ft�x̄� � x̄ for all t. A periodic orbit is a solution of Eq. (1) that always
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repeats its behavior after a fixed time interval, i.e.,ft�x� � ft�T�x� for all t and some
minimum periodT � 0.

Dissipative systems are characterized by the presence ofattractors. An attractor is
a subset of the phase space that attracts almost all the initial conditions in a certain
neighborhood, that is, the limit set of the orbits of initial conditions in the neighborhood
as time tends to�∞ is the attractor [18]. Attractors may be simple sets like a fixed
point or periodic orbit, but can also have nonelementary geometrical properties such
as noninteger fractal dimension, in which case the attractor is calledstrange[18, 19].
Fractal sets display scale invariance, which implies that continuous blow-up of a tiny
portion of the set reveal self-similar structures on arbitrarily small scales [20].

Strange attractors are typically (but not always)chaotic [19]. The orbits of random
initial conditions on a chaotic attractor will display aperiodic behavior andsensitive
dependence on initial conditions, which means that nearby orbits will diverge expo-
nentially with time. The average rate of divergence can be measured by theLyapunov
exponent. Let ∆0 be a small distance separating two initial conditions on the chaotic
attractor att � 0. Then for increasingt the orbits of the two points will diverge on av-
erage as∆t � ∆0exp�λ t�, whereλ is the Lyapunov exponent [19]. For systems with
n-dimensional phase space there aren Lyapunov exponents which measure the rate of
divergence/convergence onn orthogonal directions.

Chaotic sets are not necessarily attracting sets. A strange setΛ might be chaotic and
nonattracting. That means that the orbits of typical initial conditions in the vicinity of
Λ are eventually repelled from it. Nevertheless,Λ contains a chaotic orbit (an aperiodic
orbit with at least one positive Lyapunov exponent) [21]. If the chaotic orbit has also one
negative Lyapunov exponent the nonattracting chaotic set is known aschaotic saddle.
Chaotic saddles, as well as chaotic attractors, contain an infinite number of unstable
periodic orbits (UPO’s).

In nonlinear dynamical systems, as one varies some control parameter present in the
model equations some dynamical changes can occur, such as creation/destruction of
fixed points and periodic orbits or loss of stability of attracting sets. Thus, periodic at-
tractors can lose their asymptotic stability and become unstable periodic orbits. Simi-
larly, chaotic attractors can lose their attracting nature and become nonattracting chaotic
sets, or chaotic saddles. The qualitative changes in the behavior of solutions of dynami-
cal systems as a control parameter is varied are calledbifurcations. When the changes in
the phase portrait involve merely the local vicinity of fixed points or periodic orbits, one
has alocal bifurcation. Large changes in the topology of the system are calledglobal
bifurcations. An example is theinterior crisisdiscussed in this paper, whereby a chaotic
attractor is suddenly enlarged. The bifurcations of a dynamical system can be repre-
sented in abifurcation diagram, in which the values of one of the state variables are
plotted as a function of one control parameter.

A classical technique to analyze nonlinear dynamical systems is thePoincaré map. It
replaces the flow of annth-order continuous-time system with an�n�1�th-order discrete-
time system, simplifying the analysis and visualization of the dynamics. There are
different forms of defining a Poincaré map. At the end of the next section we exemplify
one of them.
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THE KURAMOTO-SIVASHINSKY EQUATION

The derivative nonlinear Schrödinger equation (DNLS) [22, 23] describes the dynamics
of quasiparallel Alfvén waves of moderate amplitudes in a finite-β plasma, taking into
account weak linear dispersion. To describe patterns formed by Alfvén waves subject to
damping and growth rate, Lefebvre and Hada [10] used a model based on a modified ver-
sion of the DNLS equation, including linear growth rate, linear dissipation and nonlinear
Landau damping. Assuming weak instability, Lefebvre and Hada [10] proposed a further
simplification to an envelope equation by writing the complex transverse magnetic field
B � By� iBz asB�x� t� � ψ�ξ � t�exp�i�kcx�ωct��, whereωc � ω�kc�, ξ � x� v�kc�t
andkc is the most unstable mode. Assumingkc � 0 (left-hand polarization) the resulting
equation forψ is given by

∂tψ � ψ ��1� ib1�∂ξξ ψ� iψ�b2�H��ψ�2� (2)

whereb1 measures the strength of the dispersion andb2 the effects of nonlinearity.
The termH denotes a function that accounts for the nonlinear Landau damping [23].
Equation (2) falls into the general class of the complex Ginzburg-Landau equation.
The envelopeψ is a complex variable. By writingψ � Rexp�iΦ� and assuming small
perturbationsR� R0� r, Φ� Φ0�φ, it is possible to derive an equation for the phaseφ
of the CGL equation. As shown by Kuramoto and Tsuzuki [14] and Aranson and Kramer
[13], the phase equation is given by the Kuramoto-Sivashinsky equation. Here we study
the following form of the KS equation [24, 25, 26, 27]

∂tφ ��∂2
x φ�ν∂ 4

x φ�∂xφ2� (3)

whereν is a damping parameter representing viscosity and we assume thatφ�x� t� is
subject to periodic boundary conditionsφ�x� t� � φ�x�2π� t�.

To obtain the numerical solution of Eq. (3) we use the spectral Galerkin method,
by applying a Fourier decomposition for the functionu�x� t�, u�x� t� � ∑∞

k��∞ bk�t�e
ikx,

which yields an infinite set of ordinary differential equations for the complex Fourier
coefficientsbk�t�. To simplify the analysis we restrict our attention to the subspace
of odd functionsu�x� t� � �u��x� t� and assumebk�t� purely imaginary by setting
bk�t���iak�t��2, whereak�t� are real. The final set of equations is given by [25, 26, 27]

ȧk�t� � �k2�νk4�ak�t��
k
2

N

∑
m��N

am�t�ak�m�t�� (4)

where the dot denotes derivative with respect tot, and 1� k� N, N is the truncation
order.

The choice of the truncationN for the number of modes has obvious implications in
the numerical solutions of Eq. (3). For this work we choose a set of control parameter
values in which the energy is concentrated in the low-k long wavelength modes. A
spatiotemporal patternφ�x� t�, obtained usingN� 16 modes andν � 0�029919, is shown
in Fig. 1. The system dynamics is chaotic in time but coherent in space.

The dynamics of the system described by Eq. (4) can be analyzed on a Poincaré
section defined bya1 � 0. We adopt a Poincaré mapPdefined as the�N�1� dimensional
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FIGURE 1. Spatiotemporal pattern ofφ�x� t� for ν � 0�029919. The system dynamics is chaotic in time
but coherent in space.

hyperplane given bya1 � 0, with ȧ1 � 0, so that a Poincaré point is plotted every time
the flow of Eq. (4) crosses the Hyperplanea1 � 0 from “left” to “right”.

NONLINEAR DYNAMICS ANALYSIS

The bifurcation diagram

Figure 2(a) depicts the bifurcation diagrama6�ν� for Eq. (4) with N � 16. The
diagram is similar for any choice ofak. For this range ofν , the attracting set can be
either chaotic or periodic. The gray area in Fig. 2(a) depicts another important subset
of the phase space representing a chaotic saddle. The trajectories of random initial
conditions are first attracted to the vicinity of the chaotic saddle, where they display
chaotic behavior for a finite time (chaotic transient), before they converge to the attractor
(periodic or chaotic). The chaotic saddles are obtained by the PIM triple algorithm [21].
In Fig. 3 an example of transient chaos is shown for a time series of Poincaré points at
ν � 0�0299248, where the phase dynamics converges to a p-3 attractor.

A saddle-node bifurcation atν � νSNB� 0�02992498, indicated as SNB in Fig. 2,
marks the beginning of aperiodic windowin the bifurcation diagram. Forν � νSNB,
random initial conditions converge to a chaotic attractor, and forν � νSNB the chaotic
attractor no longer exists. At the saddle-node bifurcation the simultaneous creation of
a p-3 attractor and a p-3 unstable periodic orbit occurs. The p-3 UPO, found with
the Newton method, is represented in Fig. 2(a) by dashed lines. As the value ofν
is decreased, the p-3 attractor undergoes a cascade of period-doubling bifurcations,
whereby the period of the attractor is successively doubled. As the period tends towards
infinity, a chaotic attractor is formed, localized in three separate bands in the bifurcation
diagram. We call the region occupied by this “banded" attractor theband region(B), and
the region occupied by the surrounding chaotic saddle (SCS) thesurrounding region(S),
following reference [28]. Atν � νIC � 0�02992021 the chaotic attractor collides with
the p-3 UPO created at SNB, called themediating unstable periodic orbit(MPO). This
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FIGURE 2. (a) Variation ofa6 for the chaotic saddle (gray) as a function ofν , superimposed by the
bifurcation diagram of the attractor (black) in a p-3 periodic window. IC denotes interior crisis and SNB
denotes saddle-node bifurcation. The dashed lines denote the p-3 mediating unstable periodic orbit. (b)
Same as (a), but depicting the conversion of the three-band weak chaotic attractor into a band chaotic
saddle after (to the left of) IC.

collision is responsible for aninterior crisis, which is a sudden enlargement in the size
of a chaotic attractor [29]. The value of the maximum Lyapunov exponent�λmax� jumps
abruptly fromλmax� 0�3 just before crisis toλmax� 0�6 right after crisis, indicating a
sudden increase in the attractor’s chaoticity. For that reason, the pre-IC chaotic attractor
is calledweak chaotic attractorand the post-IC attractor, thestrong chaotic attractor.
Figure 4 shows a three-dimensional projection�a1, a10, a16� of the Poincaré points of the
strong chaotic attractor (SCA, light line) after crisis�ν � 0�02992006�, superimposed
by the 3-band weak chaotic attractor (WCA, dark lines) at crisis�ν � 0�02992021�.

After crisis�ν � νIC�, we find a new chaotic saddle embedded in the enlarged chaotic
attractor, in the region previously occupied by the “pre-IC" banded chaotic attractor. In
contrast with the surrounding chaotic saddle, we call this new chaotic saddle theband
chaotic saddle(BCS). Figure 2(b) illustrates the structure of BCS after IC, where the
bifurcation diagram for the attractor (black) of Fig. 2(a) is plotted to the right of the IC
point and the band chaotic saddle (gray) is plotted to the left of IC. It is important to
stress that although in Fig. 2(a) the surrounding chaotic saddle is plotted only between
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FIGURE 3. Transient chaos atν � 0�0299248.
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FIGURE 4. Three-dimensional projection�a1, a10, a16� of the strong chaotic attractor (SCA, light line)
defined in the 15-dimensional Poincaré hyperplane after crisis atν � 0�02992006, superimposed by the
three-band weak chaotic attractor (WCA, dark lines) at crisis�ν � 0�02992021�.

points SNB and IC, it is actually present in the entire bifurcation diagram. Forν � ν IC
andν � νSNBSCS is a subset of the chaotic attractor.

Crisis-induced intermittency

After the crisis, it is still possible to determine the B and S regions, which are
separated by the stable manifold of MPO. Since MPO is a saddle point of the Poincaré
map it has associated stable and unstable manifolds. The stable manifold is the set of
points that converge to MPO in forward time dynamics; the unstable manifold is the set
of points that converge to MPO in the time reversed dynamics. Figure 5 shows a 2-D
�a5 vs. a6� projection of the chaotic sets forν � 0�02992006, after the crisis, around
the upper branch of the strong chaotic attractor shown in Fig. 4. Figure 5(a) shows
the chaotic attractor (CA) and Fig. 5(b) shows the corresponding B (light lines) and
S (dark lines) chaotic saddles. BCS is localized in a region of the phase space previously
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FIGURE 5. (a) Upper branch of the chaotic attractor (CA) after the interior crisis, atν � 0�02992006.
The dashed lines indicate segments of the stable manifolds (SM) of the mediating unstable periodic orbit
(cross); (b) the band chaotic saddle (BCS, light lines) and the surrounding chaotic saddle (SCS, dark lines)
that compose the chaotic attractor shown in (a).

occupied by the pre-crisis weak chaotic attractor. SCS is the continuation of the pre-
crisis surrounding chaotic saddle. It can be seen from Fig. 5 that the post-crisis B and S
chaotic saddles are subsets of the strong chaotic attractor. Unlike the chaotic attractor,
the chaotic saddles appear as discontinuous lines in the Poincaré map. They have many
gaps, most of which are not visible in Fig. 5 due to their small size. The gaps in SCS and
BCS are filled by a set of coupling UPO’s created at the crisis [30].

The two post-IC chaotic saddles are not attracting, but they exert influence on the
dynamics of nearby orbits, since they are responsible for chaotic transients. Forν �
νIC, trajectories on the chaotic attractor never abandon the band region. Forν slightly
less thanνIC a trajectory started in the B region can stay in B for a long time, after
which it crosses SM and escapes to region S. Once it is in the surrounding region, the
trajectory is in the neighborhood of SCS. Since SCS is nonattracting, after some time the
trajectory is “re-injected” into region B. The “jumps" between regions B and S repeat
intermittently. This crisis-induced intermittency can be viewed as an alternation between
two transient behaviors, in which the trajectory spends a finite time in the vicinity of
either BCS or SCS. These transitions between regions B and S are due to the coupling
UPO’s that are located within the gaps of BCS and SCS, and establish the dynamical
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FIGURE 6. Crisis-induced intermittency atν � 0�02992.
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FIGURE 7. log10τ vs log10�νIC�ν�. The solid line with slopeγ��0�46 is a linear fit of the values of
the characteristic intermittency timeτ computed from time series (circles).

connection between the two chaotic saddles [28, 31]. The crisis-induced intermittency is
characterized by time series containing weakly chaotic laminar phases that are randomly
interrupted by strongly chaotic bursts, as shown in Fig. 6 forν � 0�02992. The weakly
chaotic laminar phases correspond to the time spent in region B, and the strongly chaotic
bursts correspond to the time spent in region S.

The average duration of the “laminar" phases in the intermittent time series (the
characteristic intermittency time) depends on the value ofν . Close toνIC the average
time spent in the vicinity of BCS is very long, and decreases asν is decreased away
from νIC. The characteristic intermittency time (denoted byτ ) can be obtained as the
average over a long time series of the time between switches among regions B and S.
Figure 7 is a plot of log10τ vs log10�νIC�ν�, where the solid line with slopeγ��0�46
is a linear fit of the values of the characteristic intermittency time computed from time
series (circles). Figure 7 reveals that the characteristic timeτ decreases with the distance
from the critical parameter valueνIC following a power-law decay,τ � �νIC � ν�γ, as
expected [32].
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CONCLUSIONS

We have investigated the relevance of chaotic saddles and unstable periodic orbits at
the onset of intermittent chaos in the phase dynamics of nonlinear Alfvén waves by
using the Kuramoto-Sivashinsky equation as a model equation. We described how a
strong chaotic attractor formed after an interior crisis can be naturally decomposed into
two nonattracting chaotic sets, known as chaotic saddles, dynamically linked by a set
of coupling unstable periodic orbits. The perturbed wave phase oscillates irregularly,
switching intermittently from the neighborhood of one nonattracting chaotic set to the
other.

The dynamical scenario described in this paper reflects a situation of intermittency
in chaotic spatiotemporal systems that is still distant from the well-developed turbulent
regimes found in space plasmas, where one expects a huge number of modes to become
actively involved in the dynamics. Nevertheless, we believe the dynamical systems
approach discussed in this work may be helpful to understand more complex cases.
Several authors have searched for evidence of deterministic chaos in space plasmas.
Pavlos et al. [33] found evidence of a low-dimensional chaotic attractor in the solar
wind through the determination of the correlation dimension from time series of the
magnetic field obtained by the IMP-8 spacecraft at 1 AU. A low value for the correlation
dimension obtained from solar wind data was also reported in other works [2, 34]. Macek
and Obojska [35], Macek and Redaelli [36] and Redaelli and Macek [37] estimated
the Lyapunov exponents, fractal dimension and the Kolmogorov entropy from solar
wind data obtained by the Helios 1 spacecraft in the inner heliosphere, concluding
that the solar wind is likely a deterministic chaotic system. Sorriso-Valvo et al. [38]
studied plasma intermittency by using a simplified shell model which mimics 3-D MHD
equations. They showed that, just like in solar wind data, the intermittency displayed
by the shell model is characterized by a strong departure from Gaussian behavior in
the probability density functions for the velocity and magnetic field fluctuations at small
scales. Although it is not possible to state that the erratic fluctuations observed in the real
world are simple manifestations of chaos, in the works mentioned above the behavior
observed in nature seems to have a strong deterministic component. Thus, the study of
dynamical systems can lead to a better understanding of the mechanisms responsible for
the onset of intermittent turbulence in space plasmas. In fact, space data are a mixture
of both stationary and nonstationary components. Therefore we can perform space data
analysis using either deterministic or statistical techniques. Most works on solar wind
intermittency are based on statistical analysis [1, 2, 6, 3, 7]. Our theoretical study of
solar wind intermittency based on chaos theory provides new insights to extend the
deterministic analysis of solar wind data [35, 36, 37] to deepen our understanding of
solar wind intermittency. In particular, our theoretical results can be used to reconstruct
chaotic transients in phase space from space data and to calculate the average duration
of laminar phases in solar wind intermittency.
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