

INPE-10105-MAN/34

ANÁLISE DA PUREZA E TEOR DE ÁGUA EM DIMETILHIDRAZINA ASSIMÉTRICA SEGUNDO A NORMA MIL – P – 25604E

Turíbio Gomes Soares Neto Jorge Benedito Freire Jofre

Publicação Interna – sua reprodução ao público externo está sujeita à autorização da chefia.

INPE São José dos Campos 2003

RESUMO

Este documento tem como principal objetivo estabelecer um procedimento padrão para análise de pureza e teor de água no propelente 1,1dimetilhidrazina (UDMH) utilizado nos propulsores bipropelentes desenvolvidos e/ou testados no Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE), a fim de se verificar sua conformidade com as especificações expressas na Norma MIL - P - 25604E editada em 01/10/1997.

PURITY AND PERCENTAGE OF WATER ANALYSIS IN 1,1 - DIMETHYLHYDRAZINE (UDMH) IN AGREEMENT WITH THE MIL - P - 25604E NORM

ABSTRACT

The main objective of this document is to establish a standard procedure for purity and percentage of water analysis in 1,1 - dimethylhydrazine propellant used in the bipropellant thrusters developed and/or tested in the Combustion and Propulsion Associated Laboratory (LCP/CES/INPE), in order to verify its accordance with the specifications of the MIL-P-25604E norm that was published in October 1997.

SUMÁRIO

LISTA DE FIGURAS LISTA DE TABELAS

LISTA DE SÍGLAS E/OU ABREVIATURAS

1 OBJETIVO E CAMPO DE APLICAÇÃO	7
2 GRAU DE PUREZA DA DIMETILHIDRAZINA ASSIMÉTRICA	7
3 CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA	8
4 PUREZA E TEOR DE ÁGUA	9
4.1 Introdução	9
4.2 Características do Equipamento	9
4.3 Características da Coluna	9
4.4 Condições de Operação	9
4.5 Condições de Aquisição de Dados	10
4.6 Cálculos	11
4.7 Análise em Passos	11
4.8 Criando um Método de Análise em Passos	15
4.9 Criando uma Seqüência em Passos	22
5 MODELO DE RELATÓRIO DE ANÁLISE	25
6 LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE	28
REFERÊNCIAS BIBLIOGRÁFICAS	31

Pág.

LISTA DE FIGURAS

	Pág.
1 - Opções do software Turbochrom	12
2 - Escolha do método para análise de Dimetilhidrazina	13
3 - Escolha da seqüência para análise de Dimetilhidrazina	14
4 - Exemplo de identificação das amostras	14
5 - "Data Channels"	16
6 - Configuração do amostrador automático	17
7 - Configuração de acionamento de válvulas.	17
8 - Configuração do fluxo de gás de arraste para coluna capilar	18
9 - Configuração do fluxo de gás de arraste para coluna empacotada	18
10 - Configuração das zonas de aquecimento	19
11 - Configuração dos detectores.	19
12 - Configurações dos eventos durante a corrida	20
13 - Configurações das escalas dos gráficos.	21
14 - "Quick Method Editor".	21
15 - Tempo de retenção das substâncias identificadas pelo software	22
16 - "Global Parameters"	23
17 - "Sequence Template"	23
18 - "Sequence Information"	24
19 - "Description"	24
20 - "File name"	24
21 - Modelo de formulário padrão	26
22 - Resultados emitidos pelo software Turbochrom	27

LISTA DE TABELAS

	Pág.
1 - Propriedades físicas e químicas da dimetilhidrazina.	7

LISTA DE SIGLAS E/OU ABREVIATURAS

EPI - Equipamento de proteção individual

MMH - Monometilhidrazina

UDMH - Dimetilhidrazina assimétrica

TCD - Detector de condutividade térmica

FID - Detector de ionização de chama

SNECMA – SNECMA MOTEURS

MMA - Monometilamina

SDMH – Dimetilhidrazina simétrica

1. OBJETIVO E CAMPO DE APLICAÇÃO

Este documento tem como principal objetivo estabelecer um procedimento padrão para análise de pureza e teor de água no propelente dimetilhidrazina assimétrica (UDMH) utilizado nos propulsores a bipropelentes desenvolvidos e/ou testados no Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE), a fim de se verificar sua conformidade com as especificações expressas na Norma MIL - P - 25604E editada em 01/10/1997.

2. GRAU DE PUREZA DA DIMETILHIDRAZINA ASSIMÉTRICA

As principais propriedades físicas e químicas da dimetilhidrazina assimétrica são apresentadas na tabela 1.

PROPRIEDADES	GRAUS DE PUREZA - LIMITES
UDMH (% em peso)	≥98,0
H ₂ O (% em peso)	≤0,3
Aminas (% em peso)	≤1,5
N-Nitrosodimetilamina (% em peso)	≤0.01
Cloretos (% em peso)	≤0,003
Densidade (g/ml) @ 60ºF	0,795 a 0,797
@ 20ºC	0,784
Carga de particulados (mg/l)	≤10

TABELA 1 - PROPRIEDADES FÍSICAS E QUÍMICAS DA DIMETILHIDRAZINA ASSIMÉTRICA

3. CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA

É extremamente importante lembrar dos riscos que são inerentes a manipulação de produtos químicos muito tóxicos e instáveis, os quais formam pares hipergólicos, como é o caso da dimetilhidrazina assimétrica.

A adoção das seguintes precauções é indispensável para que a análise seja efetuada com a melhor segurança possível:

- As amostras de propelentes devem ser armazenadas e/ou transportadas sob baixa temperatura, preferencialmente armazenadas em freezer e transportadas em banho de gelo;
- Colocar cartaz na entrada do laboratório indicando que está sendo manipulado produto tóxico;
- 3) Manipulação dos produtos químicos em capela;
- 4) Usar EPI como avental, óculos de proteção, luvas e máscara facial;
- Os equipamentos de segurança do Laboratório Químico devem estar em bom estado: chuveiro, lava olhos, extintores de água;
- Não colocar ou manipular substâncias oxidantes nas proximidades;
- Colocar sistema de exaustão na saída do cromatógrafo e em outros equipamentos;
- 8) Utilização obrigatória do detector de hidrazina;
- 9) Munir-se da Lista de Checagem descrita no item: 6. Lista de Checagem dos Procedimentos de Análise.

Gostaríamos de salientar que existem algumas publicações internas do INPE, relativo à segurança, manuseio e análise de hidrazina (Calegão et al. (1995); Bressan et al. (1996)).

4. PUREZA E TEOR DE ÁGUA

4.1. Introdução

A determinação da pureza de UDMH e teor de H₂O é efetuada utilizando-se a técnica de Cromatografia em fase gasosa, sendo a metodologia idêntica à aplicada para análise de MMH. Segundo estudos de análise quantitativa de MMH realizadas na SNECMA (Vernon), a coluna PEG 400/Fluoropak 80 (recomendada pela norma MIL) foi substituída pela coluna Quadrol com fase estacionária de N-N-N'-N'- Tétrakis (2 hidroxipropil) Etileno Diamina. Por esse motivo utilizou-se a coluna quadrol ao invés da PEG 400/Fluoropak.

4.2. Características do Equipamento

- Cromatógrafo em fase gasosa, modelo Autosystem XL da Perkin Elmer com:
 - Amostrador automático
 - Detectores de TCD e FID
 - Sistema de Controle e aquisição de dados

4.3. Características da Coluna

- Fase estacionária N-N-N'-N'- Tétrakis(2 hidroxipropil)Etileno Diamina
- Suporte Cromosorb WAW 45/60 mesh
- Concentração de impregnação ~40%
- Comprimento 2 m
- Diâmetro 1/8 "

4.4. Condições de Operação

- Volume injetado de amostra - 1 μl

- Temperatura do injetor 120 °C
- Temperatura do forno 70 ºC em isoterma
- Gás de arraste He (pureza em He \geq 99,995 %)
- Vazão do gás de arraste 30 ml/min.
- Temperatura do detector 120 °C

4.5. Condições de Aquisição de Dados

Os parâmetros de atenuação, integração, área de descarte, tempos de retenção, etc são definidos no software turbochrom, de acordo com o arquivo denominado de UDMH.mth. A seqüência de amostragem é definida no arquivo UDMH.seq e o resultado da análise é gravado no arquivo UDMH.rpt. Estes arquivos foram criados através da analogia entre a análise de UDMH e MMH, sendo que a análise de MMH foi desenvolvida pelo Me Ch. Blondeau (Blondeau, 1999), quando de sua estadia no Brasil, no período de 11/10 a 30/10/99. Esses arquivos serão detalhados posteriormente.

A seqüência de eluição dos produtos de análise é: ar, Azometano, Amônia + impurezas (M=44), Monometilamina (MMA), Metanol, Dimetilhidrazina assimétrica (UDMH), Formaldeído Monometilhidrazina, H₂O, Dimetilhidrazina simétrica (SDMH), Monometilhidrazina (MMH) e Etilhidrazina.

Antecedendo as análises, realiza-se a passivação da coluna através de 3 injeções sucessivas de 1 µl de UDMH. Para cada amostra, prepara-se 2 frascos para o carrossel do amostrador automático, onde são efetuadas três análises por frasco. Esta seqüência de operação é especificada no arquivo UDMH.seq. Os coeficientes de resposta adotados para o TCD (relativos a UDMH) são todos iguais a 1 (um).

10

4.6. Cálculos

Para qualquer grau de pureza:

% UDMH =
$$\frac{A_{UDMH} \times F_{UDMH} \times 100}{\sum_{i=1}^{n} Ai}$$
 (1)

$$\% H_2 O = \frac{A_{H_2 O} \ x \ F_{H_2 O} \ x \ 100}{\sum_{i=1}^{n} Ai}$$
(2)

onde :

....

A = área do pico;

F= fator de atenuação;

$$\sum_{1}^{n} Ai = A_{UDMH} \ x \ F_{UDMH} \ x \ 100 \ + \ A_{H_{2}O} \ x \ F_{H_{2}O} \ x \ 100$$
(3)

4.7. Análise em Passos

- Preparar solução de Ca(ClO)₂ a 3% p/p (Ex.: 120 g para 4 L de solução);
- Abrir a válvula do cilindro de gás He e ajustar a pressão de saída para 7 Kgf/cm²;
- 3) Abrir a válvula de posto de He e ajustar pressão para 90 PSI;
- 4) Ligar o disjuntor de segurança;
- 5) Ligar o micro e a impressora;
- 6) Ligar o cromatógrafo Autosystem XL no interruptor frontal do equipamento. O equipamento, automaticamente, executará o método 5 por "default". Este método já está ajustado para também trabalhar com FID sem passagem de gás pelo detetor TCD, assim sendo, a corrente no TCD deverá ser igual a zero ("Range" = 0);

- No microcomputador, carregar o programa Turbochrom clicando com o "mouse" na barra de atalho. Aparecerão na tela as opções do software, como mostra a figura 1;
- 8) Executar os comandos "run" e a seguir opção 'take control";
- Executar os comandos "Setup", escolha o método: method -UDMH.mth (C:\TC4\UDMH\UDMH.mth) e determine Data path -C:\TC4\UDMH, como mostra a figura 2;
- Na tela do "setup" escolher a opção "sequence". Escolha a seqüência UDMH.seq (C:\tc4\UDMH\UDMH.seq) e determine o data path -C:\TC4\UDMH, conforme mostra a figura 3;

Fig. 1 - Opções do software Turbochrom.

C QuickS	tart © <u>M</u> ethod	C <u>S</u> e	quence	OK
Instrument	AUTOSYS0:A		T	Cancel
M <u>e</u> thod	C:\TC4\UDMH\UD	MH.MTH		
<u>D</u> ata Path <u>B</u> ase File I Operator Init	Name UDMH s	Starting File N	Lumber 1	
Quick	Method ist	Start W	hen Ready	
- Interface D © M <u>u</u> ltipl	ata Buffering e Runs 🔿 Single R	iun F	Suppress <u>P</u> r Suppress Re	ocessing ports/Plots

Fig. 2 - Escolha do método para a análise de dimetilhidrazina.

- Habilitar novamente a opção "method" e escolher "Vial List". Completar os campos para identificação das amostras, conforme o exemplo da figura 4. Salvar este novo "Vial List" e fechar este aplicativo;
- Após definirmos método, seqüência e "Vial List", na tela setup clicar OK. Neste momento, o equipamento assumirá as condições de análise;
- Ligar o detector de hidrazina e verificar validade da fita e a carga da bateria;
- Pegar 3 frascos novos de amostras (Part number AV-1242) e colocar no suporte na capela;
- Colocar cartaz na entrada do laboratório indicando que estão sendo manipulados produtos tóxicos;

C Quicks	e itart C <u>M</u> ethod	© Sequence
Instrument	AUTOSYS0:A	
S <u>e</u> quence	C:\TC4\UDMH\UDM	MH.SEQ 🕞
<u>D</u> ata Path S <u>t</u> arting R	C:\TC4\UDMH	nding <u>R</u> ow 9
Operator Ini - Build	tials Jofre	Begin Bun
	<u>k</u> Method	Start When Ready
Quic <u>i</u> Quic <u>i</u> Quic <u>i</u>	.ist	5 88C 35.65 74 Nice 2 13

Fig. 3 - Escolha da seqüência para a análise de dimetilhidrazina.

Dotio	ns Choices	ormation - Lr Heln	iannel B				A STREET		
Vam	e [40 char	acters]	1.2			15 1 2 1			1.1.1.1
sequ	iencia UDI	мн	6.5.3		1	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 CC 27		2 7 3
Row	Туре	Name	Samp #	Site	Vial	Samp Amt	ISTD Amt	Samp Vol	Dil
1	Sample	sequencia	1	В	1	1.000000	1.000000	1.000	1.00000
2	Sample	sequencia	2	В	1	1.000000	1.000000	1.000	1.00000
3	Sample	sequencia	3	В	1	1.000000	1.000000	1.000	1.00000
4	Sample	sequencia	4	В	2	1.000000	1.000000	1.000	1.00000
5	Sample	sequencia	5	В	2	1.000000	1.000000	1.000	1.00000
6	Sample	sequencia	6	В	2	1.000000	1.000000	1.000	1.00000
7	Sample	sequencia	7	В	3	1.000000	1.000000	1.000	1.00000
8	Sample	sequencia	8	В	3	1.000000	1.000000	1.000	1.00000
9	Sample	sequencia	9	В	3	1.000000	1.000000	1.000	1.00000

Fig. 4 - Exemplo de identificação das amostras.

- 16) Colocar máscara, óculos e luvas. Pegar amostra de UDMH no freezer;
- 17) Encher os frascos na capela utilizando micropipeta volumétrica com capacidade de 1000 μl com ponteira descartável. Transportar frascos de amostras para o carrossel automático do cromatógrafo. Colocar a

partir da posição 1 externa a amostra 1 ("vial" 1) e na seqüência a amostra 2 ("vial" 2) e amostra 3 ("vial"3);

- 18) Colocar os dois frascos maiores com água, para descarte, na posição
 1 e 2 do "Waste";
- Verificar com o detector se existe vazamento de propelente para o ambiente;
- 20) Guardar a amostra de UDMH no freezer;
- Verificar a estabilidade da linha de base. Normalmente em torno de 40 minutos o sistema está estável;
- 22) Executar o comando "real time";
- Iniciar análise através do comando "Start Run". Acompanhar gráfico do cromatograma através do comando "real time";
- Após o término da análise de cada injeção, o computador emite um relatório das concentrações e um gráfico do respectivo cromatograma;
- Desprezar os três primeiros resultados (passivação da coluna);
- 26) Após o término da análise da última amostra injetada, executar o programa PARK.MTH, criado pelo técnico da PERKIN ELMER e adaptado para estas condições de trabalho, para resfriamento da coluna (C:\TC4\DATA1|PARK.mth);
- Verificar condições do cromatógrafo após o resfriamento através do comando "details";
- 28) Fechar o programa turbochrom;
- 29) Desligar o equipamento;
- 30) Desligar o computador e a impressora;
- Fechar as válvulas de posto;
- 32) Fechar as válvulas dos cilindros de gás.

4.8. Criando um método de Análise em Passos

1) Em "Setup", escolher "method" (fig. 2) e clicar em: "Build-Quick Method".

- Siga as páginas de configuração para o método "UDMH.mth", modificando o conteúdo dos campos quando necessário e clicando "OK" para passar para as páginas seguintes.
- A primeira tela corresponde a "Data Channel" que deverá ter sua configuração conforme mostrado na figura 5.
- 4) A figura 6 corresponde à configuração do amostrador automático.
- 5) A figura 7 corresponde à configuração de acionamento de válvulas.
- A figura 8 corresponde à configuração do fluxo de gás de arraste para a coluna capilar.
- A figura 9 corresponde à configuração do fluxo de gás de arraste para a coluna empacotada.
- A figura 10 corresponde à configuração das zonas de aquecimento como o forno da coluna, injetores e detectores.

Data Channels			×
Data Channel	Source		
CA	Channel A	DetA	-
сB			
C <u>D</u> ual	Channel B	DetB	_
© By Sampling	<u>R</u> ate (pts/s)	1.5625	
☑ <u>S</u> tore All Data F	rom Run Dat	a Points: 2343	
De <u>l</u> ay Time (mi	n) 0.00		1.15
Run Time (min)	25.00	ОК С	ancel
Collect data from cha	annel B only		

Fig. 5 - "Data Channels".

Autosampler			X
Injection Source : O	<u>M</u> anual ©	Autosampler	
Syringe <u>C</u> apacity (µL)	5.0 💌	Sample <u>P</u> umps	3 🔹
Injection Volume (µL)	1.0 🔹	Viscosity <u>D</u> elay	0 -
Injection Speed	NORM	Wash/Waste Vial Set	1
Pre-Injection Solvent	Vashes	0 -	
Pre-Injection Sample \	<u>V</u> ashes	3 -	
Post-Injection Solvent	Washes (<u>A</u>)		Cancel
Post-Injection Solvent	Washes (<u>B</u>)		
The autosampler will be u	used		10 19 10 10

Fig. 6 - Configuração do amostrador automático.

Valves	
	Initial Setting
1 SPLIT	COn ⊙Off
2 NONE	On Off
<u>3</u> NONE	€On €Off
4 NONE	On Off
5 NONE	€On €Off
<u>6</u> NONE	On Off
Or	Cancel

Fig. 7 - Configuração de acionamento de válvulas.

Fig. 8 - Configuração do fluxo de gás de arraste para coluna capilar.

Fig. 9 - Configuração do fluxo de gás de arraste para coluna empacotada.

120.0 2 90.0 4 60.0 30.0 0.0 0.0 5.0	10.0 15.0	20.0 25.0	30.0	Temp. Program © Oven © Inj A: CAP © Inj B: PKD Oven Time 25.00 min
Oven Ramp	Rate	Temp	Hold	Coolant OFF
Initial	0.0	70	25.00	Cut-In
2	0.0	0	0.00	•C
3	0.0	0	0.00	999 min
Heated Zone Setpoin Inj <u>A</u> 100 °C <u>D</u> Inj <u>B</u> 100 °C D	ts et A 120 °C <u>e</u> t B 120 °C	Au <u>x</u> ()ven <u>l</u> ax Temp 100 quil Time 2.0	→C OK min Cancel

Fig. 10 - Configuração das zonas de aquecimento.

A - Detector FID			
Range 20 🔹 Time constant 200 🔹	Р <u>М</u> Т%	0]
Polarity: • [+] Positive • [-] Negative			
Autozero : CON ©OFF Value 0	-Gases-		
- INT	H2	0.0	mL/m
Attenuation 0 • Offset 5.0 mV	Air	0.0	m
Range 2 Time constant 200 Polarity : © (+) Positive C (-) Negative	P <u>M</u> T%	U	
Autozero: ©ON COFF Value 1	MU	0.0	mL/m
Attenuation -4 <u>O</u> ffset 5.0 mV	Ref (HE)	30.0	
OK Count	1		

Fig. 11 - Configuração dos detectores.

9) A figura 11 corresponde à configuração dos detectores (FID e DCT).

- 10) A figura 12 mostra as configurações dos eventos durante a corrida.
- 11) A figura 13 apresenta as configurações que as escalas do gráfico assumem no monitor, como "default", durante a corrida da análise.
- 12) A figura 14 apresenta o "Quick Method Editor", que é um resumo das configurações efetuadas no método. Caso seja efetuada alguma alteração no método, salvar ao fechar esse aplicativo.
- A figura 15 mostra configuração dos tempos de retenção das substâncias que devem ser identificadas pelo software.

nstrument Tim	ed Events				×
Available <u>E</u> v	rents				
ATT1			Time	0.00	min
ATT2			Tunc		
A/Z1			Value	0	
A/Z2			12.20	-	
HOLD			1. 1.	bbb	
OUT1			14 A.	Maa	
				ОК]
				Cancel	
Delete	Change (lear			
Select the real	quired event, and er	nter the time	at which	it is to occur	

Fig. 12 - Configurações dos eventos durante a corrida.

0.000	
1000.000	Οκ
1	
	Cancel
0.000	(学习: 1)
250.000	Reset
1	19 P. 1
	0.000 1000.000 1 0.000 250.000 1

Fig. 13 - Configurações das escalas dos gráficos.

File	Instrument E	Process Calib	pration <u>R</u> eview	Other Setup H	lelp	
ata	Acquisition and	Instrument Co	introl			
	Instrument Na	me : AUTOS'	YS0:A I	njection : A	UTO	Inlet A : CAP
	Experiment Tir	me : 25.00 mi	in I	njection Volume: 1	.0 μL	Inlet B : PKD
	Delay Time	: 0.00 min	n (ampling Rate : 1	.56250 pts/s	Detector A : FID
	Run Time	: 25.00 mi	in (Channel : E		Detector B : TCD+R
	Trada i	emperature .	70 deg 101 20.00	1100.1		
ata	Processing and	Reporting	70 deg 101 23.00	11111		
ata	Processing and Replot Pages	Reporting	BF	: 1	User Progra	ms : 0
ata	Processing and Replot Pages Scale Factor	Reporting : 1 : 1.000000	BF NT	: 1 : 1µV	User Progra Report Files	ms : 0 : 1
ata	Processing and Replot Pages Scale Factor Offset	Reporting 1 1.000000 0.000 mV	BF NT AT	: 1 : 1 μV : 200.00 μV	User Progra Report Files	ms : 0 : 1
ata	Processing and Replot Pages Scale Factor Offset Scale	Reporting 1 1.000000 0.000 mV 100.000 mV	BF NT AT / Timed Ev	: 1 : 1 μV : 200.00 μV ents : 1	User Progra Report Files	ms : 0 : 1
ata	Processing and Replot Pages Scale Factor Offset Scale	Reporting : 1 : 0.000000 : 0.000 mV : 100.000 mV Calibration	BF NT AT / Timed Ev	: 1 : 1 μV : 200.00 μV ents : 1	User Progra Report Files	ms : 0 : 1
ata	Processing and Replot Pages Scale Factor Offset Scale	Reporting : 1 : 0.00000 : 0.000 mV : 100.000 mV Calibration : 7	BF NT AT / Timed Ev	: 1 : 1 µV : 200.00 µV ents : 1	User Progra Report Files Unidentified Pe	ms : 0 : 1 aks : Use Calibration Facto
ata omp	Processing and Replot Pages Scale Factor Offset Scale onent List and Components Named Group	Reporting : 1 : 0.000 mV : 100.000 mV	BF NT AT / Timed Ev Volume Units Sample Volun	: 1 : 1 µV : 200.00 µV ents : 1 : ul ne : 1.000	User Progra Report Files Unidentified Pe Global Calibratic	ms : 0 : 1 aks : Use Calibration Factor on Factor : 1.000000e+06
ata omp	Processing and Replot Pages Scale Factor Offset Scale Components Named Groups Timed Groups	Reporting : 1 : 000000 : 0.000 mV : 100.000 mV Calibration : 7 :s 0 : 0 : 0	BF NT AT / Timed Ev Volume Units Sample Volun Quant Units	: 1 : 1 µV : 200.00 µV ents : 1 : ul ie : 1.000 : % by wt : % by wt	User Progra Report Files Unidentified Pe Global Calibratic Reject Outliers	ms: 0 : 1 aks : Use Calibration Fact on Factor : 1.000000e+06 : N0 : 000 %

Fig. 14 - "Quick Method Editor".

Ħ	Time	Component Name	Component : UDMH
1	0.270	Air	Type : Single Peak Component
2	0.570	NH3	Retention : 5.680min
3	1.280	MMA	Window : 0.30s 3.00%
4	5.680	UDMH	
5	7.700	FMMH	
5	15 500	H2U	
1	15.500	ммп	
			Reference :
			ISID Lomp:
			Besponse : Peak Area
			Curve : Calibration factor = 1.000000

Fig. 15 - Tempo de retenção das substâncias identificadas pelo software.

4.9. Criando uma Seqüência em Passos

- 1) Clicar na opção "Build-sequence" mostrada na figura 1.
- O software habilitará a opção "Sequence editor". Escolha "File-new". Aparecerá a opção correspondente a "Global Parameters" como mostra a figura 16.
- 3) Na opção "Build" escolha "From Template".
- Aparecerá na tela a opção "Sequence Template". Preencha os campos de configuração para essa opção conforme mostra a figura 17. Clique "OK".
- 5) Na opção "Sequence Editor" que está na tela, escolha "Edit-canal B".
- 6) Aparecerá a opção "Sequence Information-canal B". Preencha os campos de configuração para essa opção conforme mostra a figura 18.
- Salve as configurações usando "File-save as:", preenchendo a opção para descrição dessa nova seqüência como mostra a figura 19 e o nome desse novo arquivo como mostra a figura 20.

Global Parameters		×
<u>I</u> nstrument	AUTOSYS0:A	·
Tray		-
■ Injection Type ■ Single ■ Dual	Build © From <u>T</u> emplate © By <u>V</u> ial © From Worklist	OK Cancel
<u>Operator Initials</u>	Ball Institut]
Select the instrumer	nt to be used for this sequ	ence

Fig. 16 - "Global Parameters".

Study		UDMH				
Method	Ch A:	C:\TC4\UDMH\UDMH				
Base <u>F</u> ile Name	Ch A:	DATA	Ch B: datb			
Calibration		in the second				
Include <u>Calibrati</u>	on Stand	lards				
First Injection			Replicate Injections			
# Injections Per Ca	libration	1	# Samples Between Calibrations 10			
Samples	12					
Initial Sample <u>N</u> um	ber []		Number Calibrations Also			
Number of <u>Sample</u>	s [) ()	# Injections Per Sample 3			
Autosampler						
Initial Vial Number	3					
		Mad Car				

Fig. 17 - "Sequence Template".

Optio	equence Inf	ormation - C <u>H</u> elp	Channel B						
Vial I	Number			14			1.5		
3	To the second		- 1999						
Row	Iype	Name	Samp #	Site	Vial	Samp Amt	ISID Amt	Samp Vol	011
1	Sample	UDMH	1	В	1	1.000000	1.000000	1.000	1.000000
2	Sample	UDMH	1	В	1	1.000000	1.000000	1.000	1.000000
3	Sample	UDMH	1	В	1	1.000000	1.000000	1.000	1.000000
4	Sample	UDMH	2	В	2	1.000000	1.000000	1.000	1.000000
5	Sample	UDMH	2	В	2	1.000000	1.000000	1.000	1.000000
6	Sample	UDMH	2	В	2	1.000000	1.000000	1.000	1.000000
7	Sample	UDMH	3	В	3	1.000000	1.000000	1.000	1.000000
8	Sample	UDMH	3	В	3	1.000000	1.000000	1.000	1.000000
9	Sample	UDMH	3	В	3	1.000000	1.000000	1.000	1.000000

Fig. 18 - "Sequence Information".

	ОК	Cancel
escription	Start Aud	it Log
equência para análise de H2O em UDMH		
quenera para ananee de rice em epimir		
在上海市市场中 1999年1996日199		

Fig. 19 - "Description".

ave As		
File <u>N</u> ame:	Directories:	OK
udmh.seq		Cancel
	tc4	N <u>e</u> twork
	- Dim	-
List Files of Lype:	Drives:	Turbochrom Search Paths
Sequence Files(*.seq)	• 🖃 c:	-

Fig. 20 - "File Name".

5. MODELO DE RELATÓRIO DE ANÁLISE

O relatório de análise deverá constar de:

- a) Um formulário padrão que disponha de campos de identificação da amostra, dados da análise e resultados. O modelo deste formulário é apresentado na figura 21.
- b) Anexos correspondentes aos resultados emitidos pelo software Turbochrom, figura 22.
- c) Anexo correspondente ao cromatograma gerado pela análise.

Instituto Nacional de Pesquisas Espaciais - INPE Banco de Teste com Simulação de Altitude- BTSA

RELATÓRIO DE ANÁLISE Nº 003/01

	Dados da amostra					
Amostra	Lote:	Fabr.:				
UDMH Tambor	#8LC332FM4	OLIN				
QUANTIDADE AMOSTRADA	PONTO DE COLETA	DATA/HORA				
500 ml	Tambor A0108	23/03/01 09:30				
Responsável pela amostragem Álvaro e Domingos	Especificação do Fabr. 97.7%					

Dados da análise						
Norma:	Técnica:	Determinação				
MIL-P-25604E Responsével pela análise	Cromatografia Gasosa	%H ₂ O em UDMH				
Jofre / Turibio	03	23/03/01 14:00				

RESULTADOS						
DETERMINAÇÃO	ENCONTRADO	ACEITÁVEL AT				
%H ₂ O em UDMH		≤ 1.5%				
% UDMH		≥ 98.3%				

Fig. 21 - Modelo de formulário padrão.

Software Version: 4.1<2f12> Date: 26/03/01 09:13 Sample Name : UDMH Data File : C: \TC4\UDMH\UDMH 001F.RAW Date: 23/03/01 15:48 Sequence File : C: \TC4\UDMH\UDMH.SEQ Cycle: 1 Channel: B Instrument : AUTOSYS – O:A Rack/Vial: 0/1 Operator: JOFRE Dilution Factor: 1.00 Sample Amont : 1.0000

Uns-DIMETHYLHYDRAZINE ASSAY AND WATER

Peak	Component	Time	Area	Area
	Name	[min]	[µV∙s]	[%]
1		0.14	656	0.01
2	Air	0.29	1081	0.02
3	NH3	0.67	8685	0.12
4	MMA	1.43	38597	0.55
5	UDMH	5.38	6843678	97.45
6	H2O	8.67	112658	1.60
7	MMH	15.66	17582	0.25
			7022938	100.00
pproved	by:			

Fig. 22 - Resultados emitidos pelo software Turbochrom.

6. LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE.

Ao iniciar uma análise o operador deverá ter obrigatoriamente em mãos uma lista de checagem para conferir, de maneira simplificada, os passos da análise. Caso haja dúvida, consultar o item **4.7 Análise em Passos** do seguinte documento que normatiza o procedimento de análise: **ANÁLISE DE PUREZA E TEOR DE ÁGUA EM DIMETILHIDRAZINA ASSIMÉTRICA SEGUNDO A NORMA MIL – P – 25604E**.

- Atentar para as normas de segurança (item 3. do documento ANÁLISE DE PUREZA E TEOR DE ÁGUA EM DIMETILHIDRAZINA ASSIMÉTRICA SEGUNDO A NORMA MIL – P – 25604E:
- Preparar solução de Ca(ClO)₂ a 3% p/p (Ex.: 120 g para 4 L de solução);
- Abrir a válvula do cilindro de gás He e ajustar pressão de saída para 7 Kgf/cm²;
- 4) Abrir a válvula de posto e ajustar pressão para 90 PSI;
- 5) Ligar o disjuntor de segurança;
- 6) Ligar o micro e a impressora;
- Ligar o cromatógrafo Autosystem XI. O equipamento executa o método 5 por default;
- 8) Carregar o programa Turbochrom;
- 9) Executar os comandos "Setup", e após escolher o método: method -UDMH.mth (C:\TC4\UDMH\UDMH.mth) e determinar Data path -C:\TC4\UDMH;
- Na tela do "SETUP" escolher a "sequence". Escolher a sequência UDMH.SEQ (C:\TC4\UDMH\UDMH.SEQ) e determinar Data path -C:\TC4\UDMH;
- Habilitar novamente a opção "method" e escolher "Vial List". Completar os campos para identificação das amostras;

- 12) Salvar este novo "Vial List" e fechar este aplicativo;
- Após definirmos método, sequência e "Vial List", na nela "SETUP" clicar "OK". Neste momento, o equipamento assumirá as condições de análise;
- Ligar o detector de hidrazina e verificar a validade da fita e a carga da bateria;
- Pegar 3 frascos de amostras novos (Part number AV-1242) e colocar no suporte na capela;
- Colocar cartaz na entrada do laboratório indicando que estão sendo manipulados produtos tóxicos;
- 17) Colocar máscara, óculos e luvas. Pegar amostra de UDMH no freezer e encher os frascos na capela utilizando micropipeta automática com capacidade de 1000 μl com ponteira descartável. Transportar frascos de amostras para o carrocel automático do cromatógrafo. Colocar a partir da posição 1 externa.
- 18) Colocar os dois frascos maiores com água, para descarte, na posição
 1 e 2 do "Waste".
- 19) Verificar com o detector se existe vazamento;
- Guardar a amostra de UDMH no freezer;
- Verificar a estabilidade da linha de base. Normalmente após 40 minutos consegue-se esta estabilidade;
- 22) Executar o comando "real time";
- Iniciar a análise através do comando "Start Run". Acompanhar o gráfico do cromatograma através do comando "real time";
- Após o término da análise de cada injeção, o computador emite um relatório das concentrações e um gráfico do respectivo cromatograma;
- 25) Desprezar os três primeiros resultados (passivação da coluna);
- 26) Após o término da análise da última amostra injetada, executar o programa PARK.MTH, criado pelo técnico da PERKIN ELMER, para resfriamento da coluna (C:\TC4\DATA1|PARK.MTH);

- Verificar as condições do cromatógrafo após o resfriamento através do comando "details";
- 28) Fechar o programa Turbochrom;
- 29) Desligar o equipamento;
- 30) Desligar o computador e a impressora;
- 31) Fechar a válvula de posto;
- 32) Fechar a válvula do cilindro de gás;
- 33) Descontaminar com a solução de hipoclorito de cálcio todo material que esteve em contato com a dimetilhidrazina;
- 34) Emitir relatório de acordo com o item 5. Modelo de Relatório de Análise.

REFERÊNCIAS BIBLIOGRÁFICAS

Military International Standard (MIL). MIL-PFR-27404B - Military specification propellant uns-dimethylhydrazine. USA, 1997.

- Calegão, I.C.C; Ferreira, J.L.G.; Ferreira, M.A. Segurança e manuseio de hidrazina anidra. São José dos Campos: INPE,1995. 44p. (INPE 5644 MAN/04).
- Bressan, C.; Calegão, I.C.C; Ferreira, M.A; Vieira, R.L Procedimento de transferência de hidrazina anidra grau monopropelente. Cachoeira Paulista: INPE, 1996. 27p. (INPE - 5983 - MAN/09).
- Blondeau, Ch. **Rapport d'activites jounalier**. Cachoeira Paulista: INPE, 1999. Relatório de atividades.