Polymers for Space Applications Processed by Plasma Immersion Ion Implantation

Ing Hwie Tan¹, Mario Ueda¹, Renato Dallaqua¹, José Osvaldo Rossi¹, Antonio Beloto¹, Manfredo Tabacknics², Nicole Demarquette³, Y. Inoue⁴

1 - Instituto Nacional de Pesquisas Espaciais

2 - Instituto de Física USP

3 - Escola Politécnica USP – Depto. De Eng. Metalúrgica e de Materiais
4 - Dept. of Materials Processing Engineering, Nagoya University

Protection of Components for Spacecrafts Orbiting LEO

Low Earth Orbit (LEO) environment (180-650 km) : rich in atomic oxygen, degrades polymeric materials (like Kapton, Mylar or Teflon) used in satellites.

May erode certain polymers by over 2 µm in 90 days

Oxygen resistant polymers could improve the lifetime of satellites and space stations and could find many applications in space, including huge fold-up antennas, inflatable mirrors & lenses, solar sails...

Kapton is extensively used in thermal blankets

International Space Station orbiting LEO region (~ 450 km)

Oxidation protection: Thin layers of several metal oxides such as Al_2O_3 , MgO, or SiO₂ are being studied as protective coatings for polymers in LEO

Thermal transients (-100° C to +100 ° C) : Superior adhesion of the thin film is required \emptyset **Plasma Immersion Ion Implantation and Deposition (PIII)** of metal ions is ideal.

PIII in polymers: charging of the dielectric is proportional to plasma density

Typically for ~ 20 μ m thick polymers: n ~ 10¹⁷ m⁻³ Ø Δ V ~ 7kV in 2 μ s n ~ 10¹⁵ m⁻³ Ø Δ V ~ 700V in 60 μ s

In metal plasmas generated by vacuum arcs: Magnetic field increases plasma density by two orders of magnitude

Objectives

Aluminum implantation in Kapton® by three different methods

- Direct implantation in a magnetized AI plasma
- Direct implantation in an unmagnetized AI plasma
- Al deposition + implantation in nitrogen plasma (recoil implantation)

Resistance tests for space environment

- Oxygen degradation (oxygen plasmas)
- Thermal cycling
- Adhesion test

Direct Aluminum implantation

Experimental Set-up

Vacuum Arc:Al cathodeTungsten grid anodeHV trigger : 10-13 kV

Vacuum chamber ϕ =0.22m, L=1.05mBase pressure \sim 1x10-4 PaB field : 150G-7kG

Sample holder: 85cm from cathode

Straight magnetic filter: not so good filtering but good plasma transport. Macroparticles avoided and deposition minimized by orienting samples parallel to plasma stream

Implantation Conditions

With B = 125 G larc = 1kA 7μs pulses, 2.5 kV, 900 Hz (13-14 pulses / discharge) 100 discharges

With B = 0 larc = 1 kA 7µs pulses, 6 kV, 900 Hz 800 discharges

Recoil Aluminum implantation

200 Å, 500 Å and 2000 Å aluminum films deposited by electron beam on Kapton samples followed by

Implantation in **Nitrogen** (n ~ 10^{10} cm⁻³, T_e < 10 eV) and argon plasmas.

HV pulses: 5 μs, 100Hz, 5 kV

Treatment time of 30 minutes

Analysis

Elemental composition and morphology

- ➢ RBS
- > XPS

 \triangleright

➢ SEM , EDS

Oxygen degradation

Oxygen plasma: 40kHz parallel plate capacitive reactor

200 mTorr, 200W (10^{10} cm⁻³, 1-2 eV), ~ one hour exposure

Transmittance and Reflectance (Hitachi U-3501 spectrophotometer)

Thermal cycling

- 1 minute liquid nitrogen immersion (-196 °C)
- > 1 minute pre-heated oven (100 °C)
- > 15 cycles

Adhesion Test

applying and removing a pressure sensitive tape + SEM

Results

Oxygen Degradation

Direct Implantation in Magnetized Plasmas

RBS Æ retained doses of 10¹⁶ atoms/cm², but mostly at the surface

SEM : morphology conserved after oxygen degradation, thermal cycling and adhesion tests

Pristine Kapton

After tests

Without treatment, after oxygen exposure

Total reflectance increases

Direct Implantation in Unmagnetized Plasmas

- Treatment time increased eightfold was not enough to compensate the plasma density decreased by two orders of magnitude without magnetic field. This resulted in lack of uniformity
- Treated samples had "good" and "bad" parts.
- "Good" parts behaved in the same way as samples treated in magnetized plasmas: no oxygen degradation revealed by conserved transparency, and conserved morphology after oxygen exposure, thermal cycling and adhesion tests.
- "Bad" parts behaved like untreated samples: "carpet" like morphology after oxygen exposure, loss of transparency.

Deposition and recoil implantation

For 200 Å and 500 Å depositions (but not for 2000 Å films), nitrogen and argon implantation results in a cracked film.

- Cracking of the deposited film is not caused by differences in thermal expansion since it does not occur after oven heating at 100 °C or even at 200 °C.
- Immersion of the deposited samples in nitrogen or argon plasmas does not result in cracking, which occurs as soon as the high voltage pulses are turned on.
- In direct implantation process, an aluminum film is also deposited without cracking, probably due to ion induced stress relief.
- Cracking in recoil implantation could be related to the formation of a stressed aluminum nitride (with nitrogen plasmas) and a stressed aluminum dioxide (which occurs in argon plasmas, even with very low oxygen contamination) films, although ion induced stress relief would be expected in this case as well.
- We have no conclusive explanation for the observed ion induced cracking.

Conclusions

- Kapton samples implanted with AI in a magnetized vacuum arc discharge resulted in excellent protection of the polymer against oxygen degradation.
- Retained doses of 10¹⁶ atoms/cm² was obtained, and although most of the atoms are concentrated on the surface, an intermediate ion mixing layer was formed.
- Adhesion test after thermal cycling shows good adhesion to the substrate.
- Implantation with AI in unmagnetized plasmas produces a protection layer as effective as in the magnetized case, but needs much longer treatment times, incompatible with present machine configuration.
- Al deposition by e-beam, followed by recoil implantation in nitrogen and argon plasmas resulted in a cracked film, induced by ion bombardment. No conclusive explanation has been found for this observation.