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Abstract. The resonance properties of reentrant cavities with 
circularly cylindrical and conical inserts are examined to 
quantify the resonant frequency dependence on the gap spacing 
between the end of the insert and the cavity's top plate. An 
experiment performed on a 1.0 GHz cavity fabricated from 
aluminum shows that the resonant frequency downshifts when 
the top plate made 1.0 mm thick is loaded at the center with 
weights as light as 10 g. This translates into a tuning coefficient 
of 3.0 MHz/µm, which can achieve a three fold increase through 
optimization of the cavity dimensions looking at application of 
the transducer in gravitational wave antennas. 
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I. INTRODUCTION 
 

Strong electric fields for accelerating or modulating an 
electron beam find important microwave applications in 
linear accelerators and RF power sources, where for a given 
cavity stored energy the strongest field is desired [1]. Also 
relying on intense fields to increase the energy sensitivity, 
electromagnetic cavity-based transducers [2] must be 
operated at high fields to maximize the electrical coupling to 
an external mechanical transformer. A cavity of this sort is 
usually accomplished by a reentrant klystron cavity (Fig. 1) 
where intense electric fields develop across a short gap. 

In this paper we examine both theoretically and 
experimentally the resonance properties of azimuthally 
symmetric reentrant cavities, namely the relationship between 
the resonant frequency and the cavity dimensions with 
emphasis on how the frequency varies when the top plate is 
subjected to mechanical deformation due to an externally 
applied force. 
 
 

II. CAVITY ANALYSIS 
 

As pictured in Fig. 1, for a small gap spacing the electric 
field lines of the corresponding operation mode run in the gap 
region as from one plate to the other of a parallel plate 
capacitor, whereas in the rest of the cavity the field is 
substantially as in a terminated coaxial line. 
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Fig.1.  Reentrant cavity schematic showing electric field lines 

 

On condition that the gap spacing d is much shorter than 
the resonant wavelength the concept of lumped circuit 
elements becomes meaningful, whereby we treat the reentrant 
cavity as a shorted coaxial line terminated by a capacitor 
(Fig. 2).  

Fig. 2.  Approximate equivalent circuit of the cavity in Fig. 1 

 

Thus for a line of length l, outer diameter 2r2, inner 
diameter 2r1, and terminal capacitance C the resonance 
condition requires that the loop impedance be zero, so that  
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We note that if d is small compared to l, as we are 
assuming, then 0λ  is large compared to r1. If, as is usually 
the case r1 is of the same order of magnitude as r2  and l , 
then this means that 0λ  is large compared to all the 
dimensions of the cavity, justifying our assumption that the 
cavity can be treated as a lumped constant problem. Then if 
we wish to design a cavity for a given 0λ , we see that the 
smaller d is, the smaller the cavity dimensions become, so 
that we can make in this way a conveniently small cavity 
resonant at a long wavelength. Although enlightening, the 
simple formula (2) does not provide an accurate estimate of 
the resonant frequency (in some cases the error may be larger 
than 40%) as its derivation lacks the cavity capacitance that 
accounts for the fringing fields in the transition region 
intermediate the coaxial and gap spaces. Calculated as [3],     
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the cavity capacitance C1 when added to C0  much improves 
the accuracy of the equivalent circuit. Generalizing the 
configuration shown in Fig. 1, a reentrant cavity with a 
coaxial conical  insert (Fig. 3) has been modeled by Fujisawa 
[3] as a lumped LC circuit leading to the following 
parameters: 
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Fig.3.  Definition of geometrical parameters for the reentrant cavity with 
coaxial conical insert 
 
 
for which the error incurred in estimating the resonant 

frequency )(2/1 100 CCLf += π  lies within a few percent 
as has been verified by Fujisawa [3] upon comparison with 
experiments. Accordingly, the accuracy of the formulas 
becomes better for larger r0/lM and smaller lM/80, indicating 
the post radius and the resonant wavelength compared with 
the relative size of the cavity. 

To foresee the predictions of (4-8) we examine below how 
the electrodynamical properties of the reentrant cavity relate 
to the shape of the coaxial insert by considering two types of 
posts: a truncated cone and a circular cylinder, the latter of 
which the general expressions (6-8) apply when α=π/2 (r1=r0, 
Fig. 3). Markedly different for each coaxial insert, the plots in 
Fig. 4 show the dependence of resonant frequency f0 on 
radius r1 for fixed major radius r2 (=3.5 cm) and cavity length  
l (=1.4 cm)  with gap spacing d varying from 0.2 mm to 1.0 
mm in steps of 0.2 mm. For the circularly cylindrical insert 
(Fig. 4(a)), f0 starts decreasing for increasing r1 and after 
reaching a flat region all the curves come nearer to the each 
other at large values of r1, eventually merging to a single 
curve in which the  particular behavior entailed separately by 
the gap d on each curve is lost. With most the 
electromagnetic energy stored in the gap region and with the 
electric-field lines running axially, this regime (r1 → r2) 
closely resembles the TM010-mode operation in a circular 
cavity. In fact we note that the frequency curves going 
upward tend to an asymptotic value that is consistent with the 
resonant frequency of a TM010-mode cavity with radius 
r2=3.5 cm, i.e.  fTM010=(15/π)(χ01/r2) =3.28 GHz, (where 
χ01=2.4048 is the first zero of the Bessel function J0(χ)). By 
contrast, for the cavity with the conical insert (Fig. 4(b)) all 
the frequency curves slope upward and keep from 
approaching to the each other as r1 increases. Moreover, we 
remark that the frequency separation given by the upper and 
innermost curves, for instance, at r1=2.0 cm, for the uniform 
cavity (0.57GHz) is nearly half that for the cavity with 
tapered insert (0.97 GHz), which thus exhibits higher 
sensitivity to variations in d. To verify the resonance 
properties of the reentrant cavity with tapered insert an 
experiment is carried out in the next section. 
 



 
Fig. 4.  Resonant frequencies as function of the inner radius r1 for reentrant 
cavities with (a)  circularly  cylindrical and (b) conical inserts. The curves are 
parameterized at increments of 0.2 mm in the gap d.  
 

 
 

III. EXPERIMENT 
 

The resonance properties of a reentrant cavity with conical 
insert is experimentally examined by looking at the effect on 
the resonant frequency of reducing the gap spacing through 
application of a bending force at the center of the circular top 
plate with clamped edges. Fabricated from aluminum, the 
cavity has dimensions to allow operation in the klystron 
mode (with radial and axial electric field lines) around 1.0 
GHz, a value well below the cutoff frequencies of potentially 
competing modes, since the major radius r2 (=3.2 cm) being 
constrained to r2<λ0χ11/(2π) where χ11=1.8411, the first root 
of J'1(χ)=0, bounds the lower frequencies for propagation of 
either TM or TE modes on  fc=(c/2π)(χ11/r2)=2.5 GHz. 

The coaxial insert is a truncated cone of radii 0r =0.5 cm, 
r1=1.00 cm and  height that provides a gap of 0.2 mm 
between the end of the post ad the upper plate made 1.0 mm 
thick. Resonant frequencies are measured by using the 
reflection-type circuit configuration in Fig. 5 where the cavity 
fields are both excited and detected by means of a single 
electric probe inserted through a 1.0-mm-diameter hole 
drilled halfway across the cylindrical wall, as illustrated in 
Fig. 6.  
 

 

Fig. 5.  Experimental setup to measure resonant frequencies 

 
 

 
Fig. 6.  Reentrant cavity under test 

 

On applying a deflection force (using a set of calibrated 
weights) we then measure the corresponding downshifted 
frequencies, which are compared in Fig. 7 with calculated 
values. In the calculation, the nominal gap spacing d (=0.2 
mm) in (3)-(7) is reduced by the maximum deflection δmax at 
the center (Fig. 8) determined from the following expression 
that gives the deflections due to pure bending of a clamped 
circular plate loaded at the center [4]:  
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where P is the load applied, )1(12/ 23 ν−= EhD denotes the 
flexural rigidity of the plate of thickness h=1.0 mm, modulus 
of elasticity E=69.0 GPa and Poisson's ratio ν=0.3. We see in 
Fig. 7 that a weight of mass as low as 10 g loaded on the 
plate is unambiguously ascertained, with the deflected plate 
downshifting the free-loading 1.2003 GHz resonant 
frequency to 1.1979 GHz, which lies within 5.6% above the 
calculated value of 1.1309 GHz. Accordingly, since the 
cavity parameters r0/lM=0.567 and lM/80=0.065 are within the 
applicability region (r0/lM>1/3)  of the formulas, the 
calculated values stay below those calculated within an error 
of about 5.0 % in the observed range of frequencies. We note 
in addition that the frequency calculation assumes a flat 
spaced d-δmax apart form the top of the conical post, while in 
the actual experiment the deflected plate takes on the shape 
of a concave surface as illustrated in Fig. 8. And of course, 
had we considered the gap d reduced by half the maximum 
displacement, d-δmax/2, the resulting calculated curve would 
have appeared closer to the experimental points, for the 
klystron-mode resonant frequency increases with the gap 
spacing. 
 
 

 
Fig. 7.  Measured and calculated resonant frequencies as function of the 
loading force. 
 
 

Fig. 8.  Deflection of a clamped plate loaded at the center 
 
 

 
 
 
 

IV. CONCLUSION 
 

We have discussed the feasibility of a 1.0 GHz reentrant 
cavity as a parametric transducer by demonstrating in an 
exploratory experiment the transducer sensitivity to 
deflections of the 7.0-cm-diameter, 1.0-mm thick aluminum 
plate when loaded with weights as light as 10g. While 
showing high energy sensitivity, the transducer tuning 
coefficient ∆f/∆d=3.0 MHz/µm, which converts displacement 
to electrical units. Through proper selection of the cavity 
geometry by increasing r1 (with r2 and l fixed) and reducing 
both 0r  and the gap d, the tuning coefficient can achieve a 
three fold increase aiming at the device application in a 
resonant mass gravitational wave antenna under development 
at INPE [5,6]. In this experiment the reentrant cavity actually 
operates at 10.0 GHz, with its dimensions (in comparison 
with the 1.0 GHz prototype described here) being scaled 
down by a factor of 10, thus rendering the antenna’s cavity 
100 times as sensitive. 
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