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Abstract. We present a method to learn terins in a fuzzy mie based systetn by 
means of similarity relations. The method applies to conjunctive systems, such 
as Mamdani fuzzy controllers, as well as to implicatiw systems. The approach is 
implemented in such a way to guarantee both rule base consistency and covering. 

1 Introduction 

In [6] we defined a fuzzy rule-based system as being complete when it is both consis-
tent and covers ali the input domain. Using our terminology, a system covers the input 
domain when ai least one mie addresses each possible input, i.e., when ali the values in 
the input domain are considered to be valid. On the other hand, a system is consistent 
(at least to some degree) when each valid input generates a meaningful output fuzzy set. 

Lack of covering can appear in both conjunctive systems, in which a conjunctive 
operator (i.e. a t-norm) is used to model the if-then relation [4], as well as in implicative 
systems, which employ truly implicative operators to model the if-then relation in the 
mies. Inconsistency, as we consider it, never occurs in conjunctive systems. Indeed, in 
these systems, the mie base is seen as a disjunction of multi-dimensional pieces of data 
[5], and thus the fuzzy sets obtained as result of the firing of the mies are agregated using 
a disjunctive operator, such as max, which never leads to inconsistency. In implicative 
systems, however, inconsistency can easily occur because in these systems the mie base 
is seen as a conjunction of implications [5], and thus the fuzzy sets obtained as result 
of the firing of the mies should be agregated using a conjunctive operator, such as min, 
which can easily lead to an empty fuzzy set, even with only two mies fired. 

In [6] we have proposed the use of similarity relations to solve inconsistency prob-
lems in fuzzy systems of gradual mies, a particular kind of implicative systems, in 
which the mies employ residuated operators as implication function and that are se-
mantically equivalent to statements of the form "The more x is A, the more y is B" 
[5]. The idea is to transform mies "If x is A then y is B", where A and B are fuzzy 
sets, into mies `If x is il_then y is approxim.ately_B", where "approximately_B" 
is the result of the application of a similarity relation to fuzzy set B, and hence wider 
than B. When suitable similarity relations are used, we can thus eliminate lhe incon-
sistencies generated by a sei of mies. We also proposed to solve the lack of coverage 
problem using similarity relations [7]. In this case, we proposed to transform mies "If 



is A then y is B", into rules `If x is approximately then y is B", thus enlarging 
lhe term in lhe rule premise, in order to increase covering. In the case that a rule-base 
is both inconsistent and uncovered we propose to first apply a similarity relation to the 
terms in the premise to overcome the lack of covering and then apply another (possibly 
different) relation to lhe terms in the rule consequents to deal with lhe inconsistencies. 

However, in our previous works we have not addressed the problem of determining 
which are lhe set of parameters (determining e.g. a parametric similarity relation) that 
are best suited for a given application, which depends largely on the application itself. 
A natural procedure along this une of work is thus to consider some kind of learning 
procedure to determine parameters leading to complete rule bases that yield reasonable, 
if not optimal, results. Contrary to the previous works in which full consistency was 
required, here we only require lhe base not to be inconsistent. 

In this work we investigate the use of similarity relations in the process of tuning 
lhe terms in a fuzzy system application, in the sense of solving posible covering and/or 
consistency problems, but possibly also for fitting some data. We first of ali present 
some basic concepts in Section 2. In Section 3 we present some ideas on similarity 
relations and then in Section 4 we discuss some aspects of leaming such relations. We 
have tested our approach on a simple fuzzy control system using genetic algorithms, but 
we tried to orient this discussion in such a way to be as much independent as possible 
of the leaming framework chosen to find the parameters needed in a given application. 

2 Basic definitions and notations 

In this section we recall some basic definitions that are used in the rest of the paper 
and provide some notation. Most of lhe definitions and remarks are well-known in the 
literature. 

In lhe rest of the paper, unless stated otherwise, we shall work with fuzzy subsets of 
the real une, so the domainU bei" is assumed to be R. The core (respec. support) of a 
fuzzy set A : U [O, 1] is defined as core(A) = I A(x) -= 1) (respec. supp(A) = 
{x I A(x) > 0}). For any a E [O, 1], lhe a-cut of A is defined as [A], = {x E U 
A(x) > a}. A is said to be normalized when there exists a such that A(x) = 1, and 
convex when for ali x, y, z, if x < y < z, there exists a E [O, 1] such that A(y) = 
a • A(x) + (1 — a) A(z). A convex fuzzy set A will be denoted as < a1, 02, as, > 
when supp(A) = (a i , 04) and core (A) = [a 2 , 03] and when its shape is not relevant l . 
In such a case, the opposed fuzzy set of A is given by A =< —a4, —as, —02, — 01 >- 
We shall say that fuzzy set A =< ai az, as, a4 > comes before fuzzy set B =< 
61,62, 63 , 64  >, denoted by A << B, if ai < bi, i = 1, 4. It can be noticed that if 
A << B << C, with A, B, C non empty, then supp(A) fl supp(C) C supp(B). 
Finally, A =< a1 , a2, a3, a4 > is said to be a fuz2y interval when the membership 
function of A in the intervals [a 1 , a2] and [03, a4] are strictly monotonic, if lhe intervals 
are not points. 

	

An operator 	: [O, 1] 2 	[O, 1] is called a t-norm if it is commutative, associative, 
monotonic and has 1 as neutral element. A residuated implication opera tor 0  is de- 

I  Actually, if A denotes a crisp interval [a, b] (ar a point in particular) we cais use still the sante 
notation < a, a, b, 6 > although it is in fact somehow inconsistent. 



fined as a —> 0  b = sup {c E [O, 1] I a 0 c < b}, where 0 is a left-continuous t-norm 
(—re  is said to be the residuum of 0). One well-known residuated operator is Gbdel 
implication (residuum of = min) defined as a—>eG b = 1 if a < b and a—o G b = b 
otherwise. Another one is Goguen implicatiOn, defined as a- 0/7 b = 1 if a < b and 

= b I a otherwise. The so-called Rescher-Gaines implication function, defined 
as a—>oRG b .= 1 if a < b and a—. 0RG b = O otherwise, is not a residuated operator but 
it is in fact the point-wise infimum of ali residuated implications. 

Once fixed a (continuous) t-norm 0, a gradual fuzzy rule "If x is Ai then y is Bi" 
induces a fuzzy relation between input and output values which is defined as R i (x, = 
(Ai —÷0 y) = Ai (x) Bi(y). Then, given a gradual rule set K = {"If x 
is Ai  then y is Bi"}i E r, the induced global fuzzy relation RK is the intersection of 
the individual ones, i.e. RK  (x, y) = mini Er Ri (x, y). Finally, given an (imprecise) 
input "x is A o ", the output "y is B o " produced by K is usually computed as sup-0 
composition of Ao with RK, that is, Bo(y) = output(K , Ao)(y) = suP s  Ao(x) 
RK (J , y). In particular, if the input is a precise value, c = x0 , then one gets as output 
output (K , {x0}) = RK (r o , y). The degree of consistency of a rule set K is given by 

C on(K) -= inf sup output(K, {x})(y), 
y  

i.e. the infimum of the ali possible output heights, considering all valid input values. If 
Con(K) = a then the rule base K is said to be a-consistent. K is considered fully 
consistent if Con(K) = 1, that is, if we always get a normalized output for any precise 
input. Full consistency corresponds to the notion of coherence in [5] and 1-consistency 
in the context of 7r-reasoning in [9]. Conditions characterizing full consistency in sys-
tems of fuzzy gradual mies have been basically addressed by Dubois, Prade and Ughetto 
in [5]. In particular, two gradual fuzzy mies R i(x,y) -= Ai (x) Bi(y), i = 1, 2, 
are fully consistent iff, for any precise input X --- x o , the intersection of the cores of 
the outputs is non-empty, i.e. if [B1]di,(x 0 ) n R [— 2]4. 2 (x o) 	for any xo [5]. As it can 
be seen, the full consistency condition for pairs of gradual mies is actually independent 
from the particular residuated implication used to define the fuzzy relations in- 
duced by the mies, since a = 1 iff a < b for any residuated operator Due to 
this fact, to guarantee that a set of implicative rules is consistent one can simply verify 
the consistency using Rescher-Gaines implication function (see [3] for more details). 

A rule base K is said to be uncovered if for a given input there exists no nile in 
K whose antecedent (partially) matches the input [7]. The lack of covering in a mle 
base can be either local or global. The local case occurs when there exists "holes" in 
the domain partition of an input variable, i.e., when for a given input there exists no 
term of the variable that covers it. To solve this problem only the variable itself has to 
be considered. The global case occurs when for a given input, there exist at least one 
set of terms that cover it, but there does not exist any mie in K that addresses the set of 
terms at the same time (see [3] for a discussion on this matter). 

A set of terms {D 1 , 	, Dn } is said to be in consecutive order when for ali i, if 
supp(Di) n supp(Di_i) O and supp(Di) n supp(Di+i) Ø, then supp(Di) n 
supp(Di) = 0,V j {i —1,i + 1}. A set of terms associated with a variable in a given 
application are said to form a Ruspini fuzzy purtition of the domain of the vahable are 
such that: (i) all terms are fuzzy intervals, (ii) all terms can be put in consecutive order, 



and (iii) every two consecutive terms D and D are such that D(w) D' (u)) =- 1 for 
ali w E supp(D) n supp(D'), Ruspini partitions are very often found in fuzzy control 
applications, as the set of supports (of the fuzzy terms) are completely determined by 
the set of cores, and vice-versa. 

3 Similarity relations in view of applications 

A similarity relation S on a domam n tf is a binary fuzzy relation, i.e. a mapping S : 
U x U 	[O, I.] that satisfies the following properties: 

(i) Vv E Q, S (v , v) = 1 (reflexivity); 
(ii) V v , v' E , S(v ,v') = S (v' , v) (symmemy); 

Some authors require similarity relations to also satisfy the T-norm transitivityproperty 
(S(u, v) S(v, tv) < S(u,w) for ali u, v, w E U and some t-norm but we do not 
take it unto consideration here as it does not seem to play a role in our framework. 

The application of a similarity relation S on a fuzzy term A, denoted by 5 o A, 
creates a "larger" term approximately_A. Formally, we have 

(S o A) (v) = sup y , Eu  min(S(v, ), A(v')). 

The set of similarity relations on a given domain U forms a lattice (not linearly 
ordered) with respect to the point-wise ordering (or fuzzy-set inclusion) relationship. 
The top of the lattice is the similarity ST which makes ali the elements in the domain 
maximally similar: ST (V, 2/) = 1 for ali v, v' E U. The bottom of the lattice Si is 
the classical equality relation: S1 (v, v') = 1 if v = v', S1 (v, v') = O, otherwise. 
The higher a similarity is placed in the lattice (i.e. the bigger are their values), the less 
discriminating it is. 

In this paper, for the sake of easier tuning tasks, we are interested in parametric 
families S = {S0, 400 } Li {Sp}p Eic 	of similarity relations such that: 

(i) S0  = 
GO 400  = ST , and 

(iii) f3 < f3' then Sp  

Here S 	S' means S(x, y) < S'(x, y) for all x, y E U and S(xo, y0) < Si(xo, yo) 
for some xo, yo E U. 

Considering their use in applications, we shall also require some further interesting 
features to similarity functions in parametric families as described above. Namely we 
are interested in similarity functions which are: 

— compatible with the euclidean distance: we shall consider only similarity relations 
which are compatible with the usual distance on the reais, in the sense that if 
x < y < z, then S(x, z) < min(S(x, y), S(y, z)). This property is not found 
in the literature, but it seems interesting to have it since it grasps the meaning of 
something being similar to something else as opposed of being distant, in the usual 
(euclidean) sense. 



—convexity-preserving: since linguistic terms will are represented by corrvex fuzzy 
numbers, we want similarities such that if A is a convex fuzzy set, then S o A is 
also convex. 

—order-preserving: we want similarities that are order-preservine in the sense that if 
A << B, then So A << SoB. This is an essential characteristic for our purposes, 
as this will allow us to easily make consistency checks. 

—core-preserving: in this specific work we are interested in similarity functions that 
are core-preserving, i.e. core(S o A) = core (A). This is achieved by requiring the 
similarity relations to be separating, i.e. satisfying S(x,y) = 1 iff x = y. This also 
allows us to obtain efficiency, but it does not mean that non core-preserving sim-
ilarities cannot useful in many applications. Indeed, the use of similarity families 
that would also enlarge the core can be very interestine when the terms are learned 
from stored data, though that option would be harder to justify when the available 
data would have been furnished by experts. 

Easy examples cf similarity functions satisfying the above requirements are the follow-
ing, for respectively = IR and fl = +: 

Sa(x,y) = max(0, 1— a -1  • Ia; — yi) 

{ 

	

1, 	 if = y = O 

	

SP (x y) = O, 	 if min(x, y)/ max(x , y) < 
min(x, y)/ max(x, y), otherwise 

where a > O and O < < 1. 
Let A =< a, c, d > be a fuzzy set on R+ (here we are only interested ia the 

effects of similarity relations over positive fuzzy sets). The above parametric similarity 
relations are such that: 

1. for a > O, supp(Sa  o A) = [a — a, d + a]; 
2. for )3 E (O, 1], supp(SP o A) = [a )3,41; 
3. for a > O and )3 E (0, 1], supp(Sa,p o A) = [a )3 — a , c/1,3+ a], where Sa,p = 

Sa  o SP . 
4. for a > O and )3 E (O, 1], supp(S' , P o A) = [(a — a) • j3,(d a)//3], where 

= SP o Sa. 

Families Sa  and 5,6  are particular cases of the 2-parameter family classes S a ,p and 
S" , P, as Sa ,1 = 5a'1  = Sa, and So,p = S(''P = SP. Figurei illustrates the application 
of So,p and See ,p, O < a, )3 < 1, to a set of symmetric precise terms 2 . 

Class Sc, is such that the support of A is augmented by 2a, no matter if the term is 
dose to O or not. Moreover, both sides of the fuzzy set are also enlareed with the same 
constant value (if A is symmetric, A' = S a  o A will also be symmetric). 

Class SP is such that the support of terms closer to O are enlarged less then those 
in the domain extreme; the sides of the fuzzy sets are enlarged with different constant 
values (if A is symmetric, A' = SP o A will not be symmetric, except when 13 = 

2  The similarity relations were applied to the positive terms and the negative terms are their 
negative counterparts. 



1). If ali we have from the terms are prototypical values, the leaming of this kind of 
similarity relation will allow the terms to be more precise and crumpled when dose to 
O, a characteristic that is usually very interesting in some applications, such in fuzzy 
control. However, if Ao ==< O, O, O, O > then it is not possible to enlarge A o  with any 
S. An example of a similarity relation related to this 'atter class is 

	

f S(x, 	, if (S(x, y))n >m 
SS m.,„„ (x, y) = 

O, 	otherwise 

	

with m E [O, 1], n > 1 and where S(x, 	min(x, y)/ max(x, y) or S(x, y) = 
I — — yi/(x y) = 2 • min(x , y) (x y). 

The general classes of similarity relations S a ,p,  and S'=i3 , with (O, 	(O, 1), 
combine the features of the two previous classes. In particular, the class S o,,p is specially 
well suited to deal with implicative systems since the multiplicative constant can be 
used to determine the support of the fuzzy terms and the additive one to eliminate 
inconsistencies. 

Fig. 1. Fuzzy terrns: (a) precise tenns A,, (b) tenns S5„3 o A, and (c) ternis 	p o A, a > O. 

4 Learning with similarity relations 

Here we consider learning fuzzy teims using similarity relations in the context of ap-
plications in which at least the mie base structure itself is known. The fuzzy terms are 
either given, in which case mie only need to learn the parameters of a similarity relation 
that will transform them, or they are created from scratch using a learning tecnique. Our 
framework is restricted to terms defined by linear by parts convex membership functions 
(points, crisp intervals or triangular/trapezoidal shaped functions). In this way, we only 
need to manipulate the core and support of the terms, as we can easily calculate the 
membership functions associated to them. 

Therefore, since we are only interested ia linearized terms, we will not bother with 
the form of the similarity relations used, as we would linearize the terms resulting from 
its application anyways. In this way, we only need to know the effect on the core and 
support of a given term A (eventually just a single point), as we apply a similarity re-
lation on it. Thus, in our case, we only need to know what is the core and support of 
So,,p o A, which have in fact been described by the restrictions in the previous section, 
and not the relation itself. In the following we list some of the possibilities for leaming 
parameters for systems of gradual mies. The rule base can be in one of the folowing 
situations: (1) the rule base is consistent and covers the input, (2) the mie base is incon-
sistent but covers the input, (3) the mie base is consistent but does not cover the input, 
(4) the mie base is inconsistent, does not cover the input and the terms are known, and 
(5) only the number of terms per variable are known. 



In the first case, one may use similarity relations on the already existing set of 
terms only to try to improve the system performance. However, the cost of learning the 
parameters for the relations may not be worth the effort. In the second case we may 
learn parameters for either S1, So ,p ar 5,,p on the output variables. However, one 
should note that the support of the fuzzy set zero =< O, O, O, O > remains the same 
when 80 ,„ is used. Case (3) is similar to case (2) but the parameters are learned for 
the input variables, Case (4) is treated like both cases (2) and (3 ). In case (5) we can 
choose to learn precise or imprecise cores. For precise cores an extra parameter (the 
core itsell) has to be learned. For the imprecise core choice, instead of learning 2 extra 
parameters, a low cost solution consists to learn a precise core per term, plu3 a single 
extra parameter for each variable for a relation So J3 that would enlarge the precise 
cores. Then, no matter how the cores are to be determined, in order to determine the 
supports, we could use Ruspini partitions, with no extra cost, ar learn the supports 
directly using similarity relations, as discussed in the previous cases. In what regards 
conjunctive systems, the reasoning remains the same but the number of cases decreases, 
since conjunctive systems are never inconsistent. 

The approach proposed here has been applied to a fuzzy control aplication [1] using 
the shower system, available in Matlab version 4 Simulink toolbox. A genetic algorithm 
has been used to learn fuzzy terms membership functions (points and/or parameters 
for similarity relations) for ao already fixed set of rules, i.e. the rule base structure in 
itself was not learned (see [8] for an introduction on genetic algorithms for learning 
fuzzy systems). In ali the experiments, a candidate solution was disregarded if it led 
to inconsistency and/or lack of covering. The experiments considered lhe use of the 
Mamdani conjunctive implication (min), and Gódel and Goguen residuated operators 
to treat situation (5). The results obtained, not reported here due to lack of space, can 
be found in [2]. 

d) 

Fig. 2. Result of inference using: a) and b) Mamdani, c) and d) 

Ali experiments presented good results, with a slight superiority of those employing 
Mamdani operator. This superiority is probably partly due to lhe fact that in some situ-
ations lhe implicative systems may lose significative information, mainly related to the 
support of lhe original output sets. To illustrate this problem, let us consider a pair of 
rules R1 and R2, with output terms B 1  and B2, and for each i let (respec. BiR) be 
the result of the inference with each rule using Mamdani (respec. Gódel) operator for a 
given precise input. Finally let Bc (respec. BR) be the result of the disjunctive (respec, 
conjunctive) aggregation of .13 3  and B (respec. BiT.  and ). It is easy to check that 
supp(Br ) = supp(BN = supp(Bi) and hence supp(B c  ) = supp(Bi ) U supP(B2) 
and supp(B R ) = supp(Bi ) n supp(B2). Figures 2 (a) and (c) show an example of ali 
these fuzzy sets where, without lack of generality, the compatibility a of the input with 



both mies is assumed to be same. If we choose a final precise value taking the usual 
centroid defuzzification method [1], it is clear that the predominant dimension in B c 
is the length of its support, while in B R  that is not so clear. Namely, a change in the 
supports of B1 and B2 will likely affect the location of the defuzzied output from B 
much more than the ouput from BR, as can be seen in Figure 2. Moreover, for some 
kinds of modifications, it can even result in no change at ali in the outputs from B R . 
For instance, when a > height(BR), in which case the base is not 1-consistent, the 
problem is that the defuzzified output will always be the same, no matter what is the 
value of a itself. This lack of sensitivity of G(Sdel (and other residuated operators) fuzzy 
systems can play an important role in the performance of systems such as fuzzy con-
trollers, depending on the structure of the mie base. However, the experiments showed 
that this problem is partly compensated by the genetic algorithm with the creation of 
output partitions whose tuins have approximately the same support length. 

5 C onclusion 

We have presented an investigation about learning fuzzy terms using similarity rela-
tions. It can be employed in both conjunctive and implicative fuzzy rule-based systems. 
In what regards conjunctive systems, such as the so-called Mamdani controllers, this 
approach represents an altemative to the use of Ruspini partitions, usually employed in 
this kind of systems. In relation to implicative systems, the framework proposed here 
represents a means to obtain implicative systems that are not only consistent but that 
also present good performance. We are presently investigating the suitability of a set of 
defuzzification methods to try to further augment the performance of these systems. 
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