
IDENTIFYING INITIAL CONDITION IN HEAT CONDUCTION TRANSFER BY A
GENETIC ALGORITHM: A PARALLEL APPROACH

Leonardo D. Chiwiacowsky
Haroldo F. de Campos Velho
Airam J. Preto
Stephan Stephany
Laborat́orio Associado de Computação e Mateḿatica Aplicada
Instituto Nacional de Pesquisas Espaciais
Caixa Postal 515, CEP 12245-970 São Jośe dos Campos, SP - Brasil
12201-970, S̃ao Jośe dos Campos - SP - Brazil
[leodc, haroldo, airam, stephan]@lac.inpe.br

Abstract. A parallel implementation of a genetic algorithm is proposed to solve the one-
dimensional inverse heat conduction problem of estimating the initial temperature distribution
from the transient temperature noisy profile at a given time, considering insulated boundary
conditions. This inverse problem is formulated as an optimization problem and the objective
function is given by the square difference between experimental and simulated temperatures
added to a regularization term. Genetic algorithms are efficient search methods based on nat-
ural and genetic selection of population being inherently parallel. In the proposed genetic
algorithm, the genotype of each individual is composed by a set of real numbers and the code
was parallelized by means of calls to the MPI library. A sub-population (demes) is assigned
to each processor and individuals are free to migrate to any other processor, according to the
island model migration policy. The inversions were accomplished for two population sizes (336
and 1008), being the individuals equally distributed among the processors. A distributed mem-
ory parallel machine was used and tests were performed with the number of processors ranging
from 2 to 16. Processing times show efficiencies between 0.9 and 1.14 for the 1008-individual
population and between 0.83 and 0.89 for the 336-individual population.

Keywords:Parallel Genetic Algorithms, Inverse Problems, Heat Conduction.



1. INTRODUCTION

Genetic Algorithms (GA) are efficient search methods based on principles of natural se-
lection and population genetics. They are being successfully applied to problems in business,
engineering and science (Cantú-Paz, 1995). However there exist some problems in their utiliza-
tion which can all be addressed with some form of Parallel GA (PGA):

• For some kind of problems, the population needs to be very large and the memory re-
quired to store each individual may be considerable. In some cases this makes it impossi-
ble to run an application efficiently using a single machine, so some parallel form of GA
is necessary.

• Fitness evaluation is usually very time-consuming. Thus, a practical way to optimize this
operation is to the use of parallel processing.

• Sequential GAs may get trapped in a sub-optimal region of the search space thus becom-
ing unable to find better quality solutions. PGAs can search in parallel different subspaces
of the search space, thus making it less likely to become trapped by low-quality subspaces.

However, the most important advantage of PGAs is that in many cases they provide better
performance than single population-based algorithms, even when the parallelism is simulated
on conventional machines. The reason is that multiple populations evolve in different directions,
i.e. toward different optimal (Nowostawski, 1999a, Nowostawski, 1999b).

2. GENETIC ALGORITHMS

Simple GAs operate on a fixed-sized population of fixed-length individuals. In general, the
individuals are a binary string that encodes the variables of the problem that the algorithm is
trying to optimize. However, in this work, the individuals are encoded by a real-valued string.
Simple GAs use basically three operators: selection, crossover and mutation.

Theselectionoperator identifies the fittest individuals of the current population to serve as
parents of the next generation. The fitness value of each individual is given by a problemde-
pendent function. The selection mechanism can take many forms, but it always ensures that the
best individuals have a higher probability to be selected to reproduce to form a new generation.

The primary exploration mechanism for GAs iscrossover. This operator randomly chooses
a pair of individuals among those previously selected to breed and exchanges substrings be-
tween them. The exchange occurs around randomly selected crossing points.

Themutation operator is usually considered a secondary operator. Its main function is to
restore diversity that may be lost from the repeated application of selection and crossover. This
operator simply takes one string from the population and randomly alters some value within
it. Following nature’s example, the probability of applying the mutation operator is very low
compared to the probability of applying the crossover operator.

Genetic algorithms are not guaranteed to find an optimal solution and their effectiviness is
determined largely by the population size (Goldberg, 1991, Cantú-Paz, 1995). As the population
size increases, the GA has a better chance of finding the global solution, but the computation
cost also increases as a function of the population size (Goldberg, 1991).

With serial GAs, we have to choose between getting a good result with a high confidence
and pay a high computational cost or loosen the confidence requirement and get (possibly poor)
results fast. In contrast, parallel GAs can keep the quality of the results high and find them
fast because, using parallel machines, larger populations can be processed in less time. This



keeps the confidence factor high and the response time low, opening opportunities to apply ge-
netic algorithms in timeconstrained applications. Additionally, parallel GAs may evolve several
different independent solutions that may be recombined at later stages to form better solutions.

3. THE INVERSE HEAT CONDUCTION PROBLEM

Forward heat conduction problems are focused on determination of the temperature field of
the medium, when the boundary and initial conditions, heat source/sink terms (if any), and the
physical properties of the material are known. On the other hand, an inverse heat conduction
problem is concerned with the estimation of such quantities (boundary or initial conditions,
source/sink terms, physical properties) from the temperature and/or heat flux measurements.

Mathematically, the inverse problems are classified as ill-posed problems. A problem is
considered well-posed if the following requirements are satisfied: the solution of the problem
exists, it is unique and stable with respect to the input data (Hadamard, 1923). The existence
of a solution for an inverse heat transfer problem can be assured based on physical reasoning,
but the requirement of uniqueness can only be formally proved for some special cases. Also,
the inverse problem solution is generally unstable. Therefore, small perturbations in the input
data, like random errors inherent to the measurements used in the analysis, can cause large
oscillations on the solution.

3.1 The direct problem

The direct (forward) problem consists of a transient heat conduction problem in a slab with
adiabatic boundary condition and initially at a temperature denoted byf(x). The mathematical
formulation of this problem is given by the following heat equation:

∂2T (x, t)

∂x2
=

∂T (x, t)

∂t
, x ∈ (0, 1), t > 0, (1)

∂T (x, t)

∂x
= 0, x = 0; x = 1, t > 0, (2)

T (x, t) = f(x), x ∈ [0, 1], t = 0, (3)

whereT (x, t) (temperature),f(x) (initial condition),x (spatial variable), andt (time variable),
are nondimensional quantities. The solution of the direct problem forx ∈ (0, 1) andt > 0 for
a given initial conditionf(x) is given by

T (x, t) =
∞∑
m=0

e−β
2
mt

1

N(βm)
X(βm, x)

∫ 1

0

X(βm, x
′)f(x′) dx′ , (4)

whereX(βm, x) are the eigenfunctions associated to the problem, andβm andN(βm) are,
respectively, the corresponding eigenvalues andnorms(Özisik, 1980). The functionf is as-
sumed to be bounded satisfying Dirichlet’s conditions in the interval[0, 1] (Carslaw 1959). The
eigenfunctions, eigenvalues, and the norm for the problem defined by equations (1)-(3) can be
precisely expressed as

X(βm, x) = cos(βmx), βm = mπ, (m = 0, 1, 2, ...); and

N(βm) =

{
1, at m = 0;

1/2, at m = 1, 2, ...



Assumeτ is the final time, this solution could be expressed in a discrete form

T (xj, τ) =
Mmax∑
m=0

e−m
2π2τ cos(mπxj)

Nm

I∑
i=1

1

2
4x [cos(mπxi) fi + cos(mπxi+1) fi+1] ,

(5)

whereI is the total subdivision number of the interval of interest (integration domain), and the
series (4) was truncated consideringMmax terms. This solution could be expressed also in a
compact form

Tj =
I∑
i=1

[fiCij + fi+1 Ci+1j] , (6)

where

Cij =
Mmax∑
m=0

e−m
2π2τ cos(mπxj)

Nm

1

2
4x cos(mπxi) . (7)

Hence, the temperature profileT (x, τ) can be determined by solving the matrix system

TMod = Tτ = Cτ f , (8)

whereτ is the final time.

3.2 The inverse problem

As mentioned before, a transient heat conduction problem in a slab is considered, with both
boundaries kept insulated. The goal is to estimate the unknown initial temperature distribution
f , from the knowledge of the measured temperaturesT at the timet = τ > 0, for a finite
number of different locations in the domain.

In order to solve this ill-posed problem the use of a regularization technique was required,
and the 0th-order Tikhonov regularization was chosen (Tikhonov, 1977). The regularized solu-
tion is obtained by choosing the functionfξ(x) that minimizes the following functional form:

J(fξ) =

∥∥∥∥TMod − TExp

∥∥∥∥2

2

+ ξ

∥∥∥∥f (k)

∥∥∥∥2

2

, (9)

whereTExp = TExp(x, τ) is the experimental data (t = τ > 0), TMod is the temperature
obtained using the initial condition recovered (fξ), ξ is the regularization parameter, and‖ · ‖2

is the norm 2.
The inverse problem is formulated as an optimization problem, which was solved by the

parallel implementation of a specifically developed genetic algorithm method, which fitness
function is represented by the functional form, Eq. (9).

4. THE PARALLEL GENETIC ALGORITHM - PGA

An important feature of GA’s is their suitability for parallelization. Nowadays GA’s have
been widely employed , but parallel implementations are recent. The most common GA paral-
lelization techniques (Cantú-Paz, 1995) are:



• Global Parallelization: in this approach all genetic operators and the evaluation of all
individuals are explicitly parallelised.

• Coarse Grained: such approach requires a division of population into some number of
demes (subpopulations) that are separated one from another (‘geographic isolation’). The
individuals compete only within a deme. This approach introduces an additional operator
calledmigrationthat is used to send some individuals from one subpopulation to another.

• Fine Grained: such approach requires a large number of processors because the popula-
tion is divided into a large number of small demes, and each one evolves separately, but
subject to migration.

Many GA researchers believe that a PGA, with its multiple distributed subpopulations and
local rules and interactions, is a more realistic model for the evolution of species in nature than
a single large population. Indeed, by analogy with natural selection, a population is typically
composed by many independent subpopulations that occasionally interact. Parallel genetic al-
gorithms also naturally fit the model of how evolution is viewed: a large degree of independence
exists in the “global” population (Levine, 1994).

Two migration models are used in coarse grained GA implementations: island Model and
the Stepping Stone Model. In the first model, the population is partitioned into small subpopu-
lations that are geographically isolated and individuals can migrate to any other subpopulation.
In the last model, the population is partitioned in the same way, but migration is restricted to
neighboring subpopulations (Fig.1). In this work, the island Model was adopted.

Figure 1: population structures used in the coarse grained approach

4.1 The island model genetic algorithm

The island model genetic algorithm (IMGA) is analogous to the island model of population
genetics. In this model, a GA population is divided into several subpopulations, each of which
being randomly initialized, and being evolved by an independent sequential GA. Occasionally,
fit strings migrate between subpopulations.

The migration of strings between subpopulations is a key feature of the IMGA. This serves
to increase the overall selective pressure since additional reproductive trials are allocated to



those strings that are fit enough to migrate (Levine, 1994). At the same time, the introduction of
migrant strings into the local population helps to maintain genetic diversity, since the migrant
string arrives from a different subpopulation which has evolved independently.

The IMGA is itself a logical model that is very suitable for parallel architectures. In this
case each island is mapped to a processor that runs the sequential GA on its own subpopula-
tion. This allows to perform more reproductive trials in a fixed time period, provided that the
parallelization overhead due to interprocessor communication (migration of strings) does not
impose a significant penalty on processing time. Synchronization between processors is loose
as selection and other GA operators are applied locally in each subpopulation.

The proposed IMGA follows a single-program multipledata (SPMD) model: each proces-
sor executes the same program on different data (their respective subpopulations) according
to its rank. The communication and synchronization between processors occurs when there is
migration of strings.

4.2 Parameters of the island model genetic algorithm

An IMGA requires the definition of some parameters:

• the type of sequential GA to be executed in the nodes

• the number of strings that will migrate

• how often the migration will take place

• which strings will migrate

• which strings will be replaced due to the migration

Although the definition of the migration parameters has been intensively studied, intuition
is still more used than analysis, with quite good results (Hüe, 1997).

Choosing the right time for migration and which individuals should migrate appears to
be more difficult. Species may evolve quickly in small isolated populations. Nevertheless,
migrations should occur after a time long enough for allowing the development of goods char-
acteristics in each subpopulation. It also appears that migration is a trigger for evolutionary
changes. If migration occurs after each new generation, the algorithm is more or less equiv-
alent to a sequential GA with a larger population. In practice, migration occurs either after a
fixed number of iterations in each deme or at uniform periods of time. Migrants are usually
selected randomly from the best individuals in the population and they replace the worst ones
in the receiving deme. In fact, intuition is still strongly recommended to fix migration rate and
migration interval: there are no fixed rules and a personal “cooking recipe” may give good
results (Ḧue, 1997).

There are two reasons to send a string to another subpopulation. One is to increase the
fitness of the other subpopulation. The other is to help the other subpopulation to maintain
diversity. As in the sequential GA, the competing themes of selective pressure and diversity
arise. If a subpopulation consistently and frequently receives similar, highly fit strings, these
strings become predominant in the population, and the GA will focus its search on them at the
expense of a lose of diversity. On the other hand, if random strings are received, diversity may
be maintained, but the subpopulation’s fitness will likely not improve.

Concerning the migration policy, the best individual was chosen as the migrant and it re-
places the worst individual in the receiving subpopulations, while for the migration frequency,
it was adopted an empirical value which is determined as function of the maximum number of
generations.



4.3 The parallel genetic algorithm - island model

This Parallel Genetic Algorithm was written in Fortran90 and the parallelization was im-
plemented using calls to the Message Passing Interface (MPI) communication library (Pacheco,
1995). Each processor corresponds to an island of the Island Model, and its initial subpopula-
tion is randomly generated and evolve independently from the others subpopulations until the
migration operators are activated.

In the current Island Model implementation, each processor evolves a population com-
posed by fixed-length and real-valued strings individuals (Michalewicz, 1996) that encode the
variable to be optimized (fξ). Besides the standard evolutionary operators (selection, crossover,
mutation,...), it was introduced a new operator calledepidemical (Medeiros, 2002) (see also
(Chiwiacowsky, 2003)). The pseudocode of the proposed parallel genetic algorithm follows,
with the new evolutionary operator:

Parallel Genetic Algorithm
Define and initialize the evolutionary parameters;
t← 0;
Generate a random population Pop(t);
Calculate the fitness J(fξ) of each individual in Pop(t);
While (condition)

t← t+ 1;
Select a pair of parents (X1, X2) from Pop(t− 1);
Cross over the pair (X1, X2);
Mutate the new string X generated;
Insert the individual X in the worst location of Pop(t− 1);
Calculate the fitness of the individual X;
X∗(t)← Best[Pop(t)];
If (migration) then

Xmigrante ← X∗(t)
Send individual Xmigrante to the other processors;
Xrecv ← recv idivduo(Xmigrante);
Xdelete ← Worst[Pop(t)];
Replace Xdelete by Xrecv;

End If
If (X∗(t) = X∗(t− 1)) then

cont epidemic← cont epidemic+ 1;
If (cont epidemic > limit) then

Apply Epidemical on Pop(t);
End If

End If
End While
End

Following, the evolutionary operators employed in this work are presented:

• Tournament Selection (Mitchell, 1996). This operator uses a random numberrand from
the interval [0,1) with uniform distribution.bigger is the best fitness individual and
smaller is the worst fitness individual:



bigger:=rand; smaller:=rand; val:=0.75;
if (rand < val) then

position:=bigger;
else

position:=smaller;
endif

• Geometrical Crossover (Michalewicz, 1996). This crossover operator breeds only one
offspring from two parents. From the parentsxi andyi the offspring is represented by:

zi = xµi y
1−µ
i , (10)

whereµ is a number between [0, 1]. A typical value isµ = 1/2, where the same weight
is given to both parents.

• Non-uniform Mutation (Michalewicz, 1996). This mutation operator is defined as:

x′i =

{
xi +4(t, lsup − xi) if a random binary digit is 0,
xi −4(t, xi − linf ) if a random binary digit is 1,

(11)

and
4(t, y) = y

[
1− rand(1− t

T )
b]
,

whererand is a random number from the interval [0,1) with uniform distribution,T is
the maximal generation number,t is the generation number, andb is a system parameter
determining the degree of non-uniformity.

• Epidemical Strategy (Medeiros, 2002) (see also (Chiwiacowsky, 2003)). This innovative
operator is activated when a specific number of generations is reached without improve-
ment of the best individual. Then, all the individuals areaffected by a plague, and only
those that have the best fit (e.g., first 2% with the best fit in the population)survive. The
remaining individualsdie and are substituted by new individuals with new genetic vari-
ability, such as immigrants arriving, in order to evolve the population. Two parameters
need to be chosen: one determines when the strategy will be activated, i.e. the number
of generations without improvement of the best individual fit, while the other parameter
determines the amount of individuals that will survive theplague.

5. NUMERICAL RESULTS

In this article we have described a parallel genetic algorithm to solve the backward heat con-
duction problem involving the estimation of the unknown initial condition for a one-dimensional
slab. The chosen test case assumed the following initial temperature profile, given by the trian-
gular test function

f(x) =

{
2x, 0 ≤ x < 0.5,

2(1− x), 0.5 ≤ x ≤ 1;
(12)

The experimental data (measured temperatures at a timeτ > 0) are obtained from the exact
solution of the direct problem by adding a random perturbation error to the exact solution of the
direct problem in order to generate noisy data

T exp(t) = T (t) + σR, (13)



whereσ is the standard deviation of the errors andR is a random variable taken from a nor-
mal distribution such thatR ∼ Normal(0;1). For numerical purposes, it has been adopted
τ = 0.01 s andσ = 0.05 and a spatial grid consisting of 101 points (Mmax = 101). In order to
accomplish the inversions, some parameter of the parallel genetic algorithm are required

• Fixed population size of: 1008 or 336 individuals;

• Geometrical crossover operator :µ = 1/2;

• Non-uniform mutation operator:b = 5;

• Mutation probability: 5%;

• Epidemical Operator: the best 5 individuals have been kept;

• Fixed maximal generation number: 50000.

5.1 Parallel performance

Usually, the performance of a parallel implementation can be roughly evaluated by the
speedupandefficiencyvalues. LetT1 be the processing time using the sequential code andTp,
the time spend using the parallel code executed byp processors. The speedupSp is defined by

Sp =
T1

Tp
(14)

while the efficiencyEp, by

Ep =
Sp
p
≤ 1 . (15)

A speed-up equal top is called linear and yieldsEp = 1. A possible side effect in parallelization
is cache memory access optimization due to the partitioning of the domain. This may cause
speed-ups greater thanp when usingp processors and it is called super-linear speed-up (Pit,
1995). However, the overhead due to interprocessor communication and synchronization may
cause poor speed-ups.

5.2 Performance analysis

The performance values in this work were computed for the optimization routine (the AGP).
Timing information was provided by successive calls to the MPI function “MPIWTIME” that
reads the system wall time. Numerical tests were performed in a 17-node distributed memory
parallel machine with IA32 architecture. Two different population sizes, both multiple of the
used number of processorsp, were selected: 1008 and 336 individuals. Elapsed times, speed-
ups and efficiencies are given in Tables 1 and 2.

The execution times for different number of processors considering the two population sizes
are presented in Fig. 2 and Table 3. As expected, the times obtained for the 1008-population are
higher than those for the 336-population. It can be noted that the ratio of the execution times
for these two populations decreases as the number of processors is increased.

Figure 3 shows the speed-up values for the two population sizes in function of the number
of processors. A superlinear speed-up can be observed for the 1008-population, while the 336-
population presents a speed-up close to linear. This can also be observed in the efficiency values,
presented in Fig. 4. The efficiency is greater than 1 for the 1008-population when more than 4
processors are used.



Table 1: Elapsed Time, Speed-up and Efficiency for the 1008-individual population

Nproc Time (s) Sp Ep
1 8341 1.0 1.0
2 4630 1.8015 0.9007
3 2794 2.9853 0.9951
4 2098 3.9757 0.9939
6 1287 6.4810 1.0802
7 1117 7.4673 1.0668
8 947 8.8078 1.1010
9 836 9.9773 1.1086
12 630 13.2396 1.1033
14 527 15.8273 1.1305
16 457 18.2516 1.1407

Table 2: Elapsed Time, Speed-up and Efficiency for the 336-individual population

Nproc Time (s) Sp Ep
1 2137 1.0 1.0
2 1283 1.6656 0.8328
3 834 2.5624 0.8541
4 629 3.3975 0.8494
6 428 4.9930 0.8322
7 344 6.2122 0.8875
8 300 7.1233 0.8904
12 201 10.6318 0.8860
14 174 12.2816 0.8773
16 161 13.2733 0.8296

0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Processors Number

E
la

ps
ed

 T
im

e 
(s

)

Elapsed Time x Processors Number

Elapsed Time when Totpop = 1008
Elapsed Time when Totpop = 336

Figure 2: Execution times versus the number of processors considering the two population sizes



Table 3: Execution times versus the number of processors considering the two population sizes

Nproc Totpop = 1008 Totpop = 336 Time Ratio
1 8341 2137 3.9031
2 4630 1283 3.6087
3 2794 834 3.3501
4 2098 629 3.3355
6 1287 428 3.0070
7 1117 344 3.2471
8 947 300 3.1567
12 630 201 3.1343
14 527 174 3.0287
16 457 161 2.8385

The total execution time is divided into processing and communication times. A bigger
population requires higher processing times, but the amount of data that need to be commu-
nicated during the migration is the same for both populations. This implies that the 1008-
population would have better speed-up and efficiency values as the number of processors in-
creases, as confirmed in the preceding figures and tables. However, the total execution times
are always greater for the bigger population and its corresponding speed-up and efficiencies
were calculated using only the sequential time of the same population as a reference.

Therefore, the superlinear speed-up for the bigger population is due to bad memory access
in the sequential version. The use of more processors in the parallel version improves cache
memory access, causing the superlinear effect for more than 4 processors.

On the other hand, the opposite behaviour can be observed for the 336-population. As
the size of data to be computed by each processor is smaller the performance of the sequential
version is better for the 336-population: the ration between the sequential times of the two
populations is 3.90, while their size ratio is 3, denoting that memory access is better for the
smaller population. Thus, the 1008-population can take better advantage of cache memory
access than the 336-population with the parallelization.

However, despite the smaller total execution time, the 336-population presents lower values
of speed-up and efficiency, since the amount of processing decreases as more processors are
used, while the amount of communication remains constant.

The good accuracy of the initial condition reconstruction is shown in Figs. 5 and 6, for
both the 336-population and the 1008-population. It should be noted that the quality of the
estimation depends on the specific experimental data, the fitness of the PGA-initial population,
the population size and also on the parameters of the PGA.

6. FINAL COMMENTS

The inverse problem of estimating the unknown initial condition of heat conduction transfer
in a one-dimensional slab was solved using a specific parallel genetic algorithm, that uses a
new evolutionary operator calledepidemical (Medeiros, 2002). The application of PGA’s to
optimization problems is an open problem, since there are several parameters to be adjusted
in order to achieve the best results. The parameter “tuning” of the PGA is an empirical task
requiring a great amount of interaction. The results obtained using the PGA method described
in this work presented good accuracy and show to be competitive with classical deterministic
optimization methods.



0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Processors Number

S
p

e
e

d
−

U
p

Speed−Up x Processors Number

Speed−up when Totpop = 1008
Speed−up when Totpop = 336
Ideal Speed−up

Figure 3: Speed-up versus the number of processors considering the two population sizes

0 2 4 6 8 10 12 14 16

0.5

1

1.5

Processors Number

E
ff

ic
ie

n
cy

Efficiency x Processors Number

Efficiency when Totpop = 1008
Efficiency when Totpop = 336
Ideal Efficiency

Figure 4: Efficiency versus the number of processors considering the two population sizes



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

grid points

te
m

p
e

ra
tu

re

Temperature Distribution − 7 processors and 1008 individuals − error = 0.12141

IC
IC recovered

Figure 5: PGA solution for the 1008-population

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

grid points

te
m

p
e

ra
tu

re

Temperature Distribution − 3 processors and 336 individuals − error = 0.10441

IC
IC recovered

Figure 6: PGA solution for the 336-population



Acknowledgements

Authors L.D. Chiwiacowsky and H. F. de Campos Velho acknowledge the finantial support
by FAPESP, The State of São Paulo Research Foundation (process 00/09488-6), CAPES, the
Brazilian Post-graudation Support Agency, and CNPq, the Brazilian Council for Scientific and
Technological Development (process 300466/95-1). Authors S. Stephany and A.J. Preto thanks
FAPESP for the support given to this study through a Research Project grant (process 01/03100-
9).

REFERENCES

Cant́u-Paz, E., 1995, “A summary of research on parallel genetic algorithms”, IlliGAL Report
No 95007, University of Illinois.

Carslaw, H. S. & Jaeger, J. C., 1959,“Conduction of heat in solids”, Oxford University Press,
London.

Chiwiacowksy, L. D. & Campos Velho, H. F., 2003, “Different Approaches for the Solution of
a Backward Heat Conduction Problem”, Inverse Problems in Engineering.

Goldberg, D. E., 1991, “A comparative analysis of selection schemes used in genetic algorithms,
eds Gregor Rawlins, Foundations of Genetic Algorithm”, Morgan Kaufmann Publishers,
USA.

Hadamard, J., 1923, “Lectures on the Cauchy problem in linear partial differential equations”,
Yale Universtity Press, New Haven.

Hüe, X., 1997, “Genetic algorithms for optimisation - background and applications”, Edinburgh
Parallel Computer Centre Rept., The University of Edinburgh.

Levine, D., 1994, “A parallel genetic algorithm for the set partitioning problem”, Mathematics
and Computer Science Division, Argone National Laboratory Rept., University of Illinois.

Medeiros, F. L. L., 2002 Hybrid Genetic Algorithm as a Search Scheme of Steady State of
Dynamical Systems, M.Sc. Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São
Jośe dos Campos (SP), Brazil – in portuguese.

Michalewicz, Z., 1996, “Genetic algorithms + data structures = evolution programs”, Springer-
Verlag, USA.

Mitchell, M., 1996, “An introduction to genetic algorithms”, MIT Press, USA.

Nowostawski, M & Poli, R., 1999, “Dynamic demes parallel genetic algorithm”, Proceedings of
Third International Conference on Knowledge-based Intelligent Information Engineering
Systems KES’99, May 13, Adelaide, South Australia.

Nowostawski, M & Poli, R., 1999, “Parallel genetic algorithm taxonomy”, Proceedings of Third
International Conference on Knowledge-based Intelligent Information Engineering Sys-
tems KES’99, May 13, Adelaide, South Australia.

Özisik, M. N., 1980, “Heat conduction, Wiley Interscience”, USA, 1980.



Pacheco, P. & Ming, W. C., 1995, “Introduction to message passing programming - MPI user
guides in FORTRAN and C”, Department of Mathematics, University of San Francisco,
USA.

Pit, L.J., 1995, “Parallel genetic algorithms”, Department of Computer Science, Master Thesis,
Leiden University, Holanda.

Tikhonov, A. N.& Arsenin, V. Y., 1977,“Solutions of Ill-Posed Problems”, Winston & Sons,
Washington, D.C.


	INTRODUCTION
	GENETIC ALGORITHMS
	THE INVERSE HEAT CONDUCTION PROBLEM
	The direct problem
	The inverse problem

	THE PARALLEL GENETIC ALGORITHM - PGA
	The island model genetic algorithm
	Parameters of the island model genetic algorithm
	The parallel genetic algorithm - island model

	NUMERICAL RESULTS
	Parallel performance
	Performance analysis

	FINAL COMMENTS

