
A COMBINATION OF ARTIFICIAL NEURAL NETWORKS AND THE
LEVENBERG-MARQUARDT METHOD FOR THE SOLUTION OF INVERSE
HEAT CONDUCTION PROBLEMS

Francisco J. C. P. Soeiro - soeiro@uerj.br
Department of Mechanical Engineering, College of Engineering,
Universidade do Estado do Rio de Janeiro, UERJ, CEP 20550-013, Rio de Janeiro, RJ, Brazil

Haroldo F. Campos Velho - haroldo@lac.inpe.br
Laboratório Associado de Matemática Aplicada e Computacional, LAC,
Instituto Nacional de Pesquisas Espaciais, INPE, CEP 12201-270, S. José dos Campos, SP, Brazil

Antônio J. Silva Neto - ajsneto@iprj.uerj.br
Department of Mechanical Engineering and Energy, Instituto Politécnico, IPRJ,
Universidade do Estado do Rio de Janeiro, UERJ, C.P.  97282, 28601-970, Nova Friburgo, RJ, Brazil

Abstract. In the present work a multi-layer perceptron neural network is used to obtain initial
estimates to solve a heat conduction inverse problem using a gradient based method
(Levenberg-Marquardt).
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1. INTRODUCTION

In recent years it has been observed an increasing interest in the analysis and solution of
inverse heat transfer problems. Implicit formulations of inverse problems of parameter
estimation, in which a cost function is minimized, have largely been employed for the
solution of such problems (Alifanov, 1974, Beck et al., 1985, Vogel et al., 1993 and Frankel
& Keyhani, 1997). In most cases gradient based methods have been used for the minimization
of the cost function, but when convergence occurs it may in fact lead to a local minimum. On
the other hand, the main advantage of such methods is a good rate of convergence.

Another approach for the minimization of the cost function involves global optimization
methods, with an increasing interest towards stochastic methods. With the proper
implementation of these methods one gets very close to the global minimum, but the
computational cost is usually very high.

In previous works (Silva Neto & Soeiro, 2002, 2003; Chiwiacowsky et al., 2003) a
combination of gradient based methods and stochastic optimization methods were used. In
that approach, stochastic methods were employed to obtain good estimates to gradient
methods, trying to get the best of each approach, i.e., the computational efficiency of gradient
methods and the assurance of getting a good approximation to the global minimum by the
careful implementation of the stochastic optimization methods.



In the present work a faster alternative was tried to obtain a better first guess to the
Levenberg-Marquardt (LM) method. A simple multi-layer perceptron (MLP) artificial neural
network (ANN) with back-propagation algorithm was used for this purpose. A reduced
number of neurons in the network and a reduced number of patterns for training were used to
get with low computational cost the initial estimates for the LM method. Differently from
previous works dealing with ANNs for the inverse solution in heat conduction problems
(Krejsa et al., 1999; Shiguemori et al., 2002, 2002a) for function estimation, the goal here is
to focus on the parameter estimation problem.

2.   HEAT CONDUCTION PROBLEM

Consider a cylindrical sample of radius R, with a line source at r = 0, and long enough
such that heat conduction can be considered only in the radial direction. The sample is
initially at the same temperature of the ambient, T = Tamb, and the heat source, whose intensity
may vary with time, g (t), starts to release its energy at t = 0.
      The mathematical formulation of the physical situation described is given by
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where h is the heat transfer coefficient, ρ  the density, k  the thermal conductivity, and pc  the
heat capacity.

3.   SOLUTION OF THE INVERSE PROBLEM. THE LEVENBERG-MARQUARDT
         METHOD

In the present work we are interested in the estimation of k  and pc ,
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using experimental data on the temperature acquired inside the medium, ,N,,iW i K2 1 , = .
As the number of measured data, N , is usually much larger than the number of parameters to
be estimated, M = 2, the problem is solved as a finite dimensional optimization problem in
which we want to minimize
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with the elements of vector F
r

 given by
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where Ti are the calculated temperatures. The index i represents the discretization of the time
interval in which the temperature measurements are taken.

The minimization of the cost function Q with the Levenberg-Marquardt method consists
on constructing an iterative procedure that starts with an initial guess 0Z

r
, and new estimates

are obtained with
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where λ  is the damping parameter, Γ  the identity matrix, and the elements of the Jacobian
matrix J for the heat conduction problem are
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       The iterative procedure of sequentially calculating nZ
r

∆ and 1+nZ
r

 from Eqs. (5) and (6), is
continued until the convergence criterion
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is satisfied, where ε is a small number, say 10-5.
       The damping factor λn is varied during the iterative procedure, such that when
convergence is achieved its value is close to zero.

4.   THE MULTI-LAYER PERCEPTRON NEURAL NETWORK

The multi-layer perceptron (MLP) (Haykin, 2001) is a collection of connected processing
elements called nodes or neurons, arranged in layers (Fig. 1). Signals pass into the input layer
nodes, progress forward through the network hidden layers and finally emerge from the
output layer. Each node i is connected to each node j in its preceding layer through a
connection of weight wij, and similarly to nodes in the following layer. A weighted sum is
performed at i of all the signals xj from the preceding layer, yielding the excitation of the
node; this is then passed through a nonlinear activation function, f , to emerge as the output of
the node xi to the next layer, as shown in the equation
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Various choices for the function f are possible. In this work the hyperbolic tangent function
f(x) = tanh (x) is used.

The first stage of using an ANN to model an input-output system is to establish the
appropriate values for the connection weights wij. This is the “training” or learning phase.
Training is accomplished using a set of network inputs for which the desired outputs are
known. These are the so called patterns, which are used in the training stage of the ANN. At
each training step, a set of inputs are passed forward through the network yielding trial
outputs which are then compared to the desired outputs. If the comparison error is considered



small enough, the weights are not adjusted. Otherwise the error is passed backwards through
the net and a training algorithm uses the error to adjust the connection weights. This is the
back-propagation algorithm used in the present work.

Once the comparison error is reduced to an acceptable level over the whole training set,
the training phase ends and the network is established. The parameters of a model (output)
can be, then, determined using the real experimental data, which are inputs of the established
neural network.  This is the generalization stage in the use of the ANN.

Figure 1 – Multi-layer perceptron network.

5.  RESULTS AND DISCUSSION

For the thermal characterization of a new polymeric material with 25% in mass of
lignin, which is obtained from sugar cane bagasse, we have used real transient temperature
measured data acquired with a hot wire experimental apparatus (Carvalho & Silva Neto,
1999). Using the Levenberg-Marquardt (LM) method the following results were obtained:

KmW00006.007319.0 ±=k  and cp=1563 ± 3 KkgJ .
In Case (1) of Table 1 are presented the estimates obtained at each iteration of the LM

method starting with the initial guess ( ) ( )1000,05.0, 000 == pckZ
r

. The value of the cost
function, or objective function, Q, at each iteration is also presented. In Case (2), Table 2, LM
starts from a different initial guess ( ) ( )3500,05.0, 000 == pckZ

r
 and doesn't converge. The

solution is probably a local minimum.

Table 1. Case 1 - 0Z
r

= (0.05, 1000) – LM

Iteration k (W/m K) cp (J/kg K) Q (K2)

0            0.05 1000.0           4285.75

1 0.06584 1361.6 262.53

2 0.07245 1537.7 2.6314

3 0.07319 1563.0 0.1179

4 0.07319 1563.0 0.1179



Table 2. Case 2 - 0Z
r

= (0.005, 3500) – LM

Iteration k (W/m K) cp (J/kg K) Q (K2)
0 0.0050 3500.00 42124.58
1 0.0106 5602.83 5461.03
2 0.0224 6838.62 264.75
3 0.0418 4629.64 17.53
4 0.0418 4629.64 17.53

Table 3 shows the solution using a stochastic method alone (Simulated Annealing -
SA). It converged after 35 cycles, which means more than 7000 function evaluations. Table 4
represents a combination of LM with SA. After running SA for only five cycles we obtain the
initial guess for the LM method. The combination worked well, with less computational cost
than the one required to obtain the solution shown in Table 3.

Table 3. Case 2 - 0Z
r

= (0.005, 3500) – SA

Cycle k (W/m K) cp (J/kg K) Q (K2)
0 0.0050 3500.0      42124.58
1 0.0509 3492.1 6.415
2 0.0539 3160.3 4.441
3 0.0576 2752.3 2.625
5 0.0708 1705.6 0.164
35 0.0732 1563.3 0.118

Table 4. Case 2 - 0Z
r

= (0.005, 3500) – LM after five cycles of SA
(Combination SA-LM)

Iteration k (W/m K) cp (J/kg K) Q (K2)
0 0.0708 1705.6 0.164
1 0.0731 1561.7 0.132
2 0.0732 1563.0 0.118

In Table 5, the results using ANNs to obtain initial estimates for the LM method are
presented. A decreasing number of patterns was used to train the network. Even with a small
number of patterns the results obtained from the ANN are good enough to be used as as initial
estimates for the LM method. The patterns were generated using a finite difference
approximation for problem (1). The computational cost of the combination ANN-LM is lower
than the one for the combination SA-LM.



Table 5. Case 2 – Using Neural Networks to obtain initial estimates for LM
(Combination ANN-LM)

Number of patterns Nhidden k (W/m K) cp (J/kg K)
50 52 0.0703 1740.44
25 52 0.0715 1937.90
10 26 0.0690 2177.29
5 26 0.0698 2016.63

Remark: With the above initial estimates, LM converged to the expected values, 0732.0=k W/m K and

1563=pc  J/kg K with less than five iterations in all cases.

The experimental data used for the solution of the inverse problem consisted of a set of
26 real temperature measurements taken at different times. Therefore, the input layer of the
ANN consisted of 26=N  entries. Therefore, for the hidden layer of the ANN we started with

N2  neurons, i.e. 52, and after that we considered N  neurons, i.e. 26. In this work only one
hidden layer was used. As shown in Table 5, in all cases attempted the ANN generated, at a
low cost, good initial guesses to be used in the LM method. Therefore, the combination ANN-
LM is very promising.

6.   CONCLUSIONS

In the present work neural networks were used to obtain initial estimates for the LM
method. This approach worked well for the proposed problem, showing promising results
when the design space is complex with several local minima. The computational cost was also
decreased when compared with the combination of a stochastic global optimization method,
such as SA and a gradient based method, such as LM.
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