Treatment of Polymers by Plasma Immersion Ion Implantation for Space Applications

I. H. Tan¹, M. Ueda¹, R. S. Dallaqua¹, J. O. Rossi¹, A. F. Beloto²

Instituto Nacional de Pesquisas Espaciais – ¹Laboratório Associado de Plasma ²Laboratório Associado de Materiais e Sensores, São José dos Campos, SP, Brazil

M. H. Tabacknics,

Instituto de Física da USP, São Paulo, SP, Brazil

N. R. Demarquette

Escola Politécnica da USP – Depto. Eng. Metalúrgica e de Materiais, São Paulo, SP, Brazil

Y. Inoue

Department of Materials Processing Engineering, Nagoya University, Chikusa, Nagoya, Japan

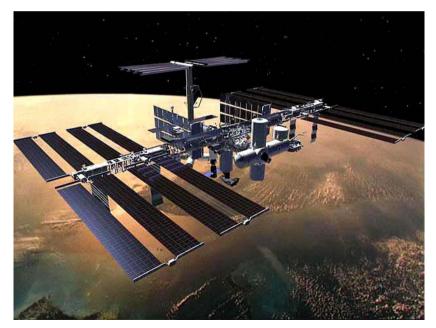
VIIth International Conference on Plasma-Based Ion Implantation (PBII) San Antonio, TX, USA

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Outline

- Motivation
- Objectives
- Direct Al implantation
- Recoil Al implantation
- Analysis
- Results
- Conclusions and Future Work

Motivation


Protection of Components for Spacecrafts Orbiting LEO

Low Earth Orbit (LEO) environment (180-650 km): rich in atomic oxygen, which degrades polymeric materials (such as Kapton, Mylar or Teflon) used in satellites.

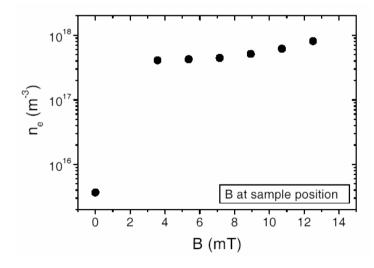

May erode certain polymers by over 2 µm in 90 days

Oxygen resistant polymers could improve the lifetime of satellites and space stations and could find many applications in space, including huge fold-up antennas,

inflatable mirrors & lenses, solar sails...

International Space Station orbiting LEO region (450 km)

Materials International Space Station Experiment – MISSE project


Trays of materials samples will expose 750 materials to LEO environment, for 18 months.

Oxidation protection: Thin layers of several metal oxides such as Al_2O_3 , MgO, or SiO₂ are being studied as protective coatings for polymers in LEO

Thermal transients (-100° C to +100 ° C) : Superior adhesion of the thin film is required \rightarrow Metal Plasma Immersion **Ion Implantation and Deposition**

PIII in polymers: charging of the dielectric is proportional to plasma density Typically for ~ 20 µm thick polymers: $n \sim 10^{17} \text{ m}^{-3} \rightarrow \Delta V \sim 7 \text{kV}$ in 2µs $n \sim 10^{15} \text{ m}^{-3} \rightarrow \Delta V \sim 700 \text{V}$ in 60µs

In metal plasmas generated by vacuum arcs:

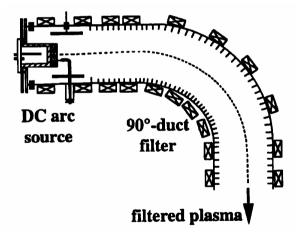
Magnetic field increases plasma density by two orders of magnitude

Objectives

Aluminum implantation in Kapton® by three different methods

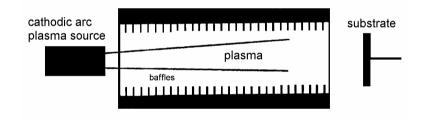
- Direct implantation in a magnetized Al plasma
- Direct implantation in an unmagnetized Al plasma
- Al deposition + implantation in nitrogen plasma (recoil implantation)

Resistance tests for space environment


- Oxygen degradation (oxygen plasmas)
- Thermal cycling
- Adhesion test

Direct Aluminum implantation

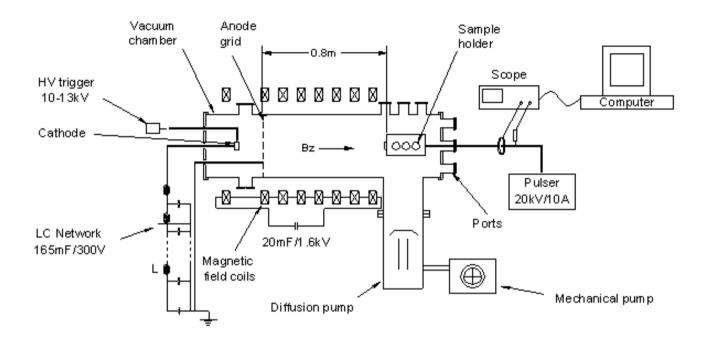
Vacuum Arc Plasmas: HV trigger: arc initiation Plasma **drift velocity** ~ 10⁴m/s


I_{arc} ∼ (100-1k)A/50V I_{ion} ∼ up to (5 - 10)% I_{arc}

Macroparticle Filtering systems:

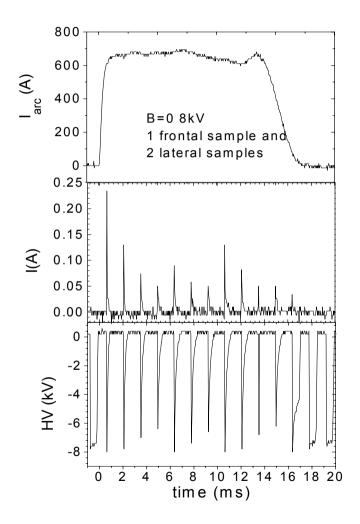
Curved magnetic filter

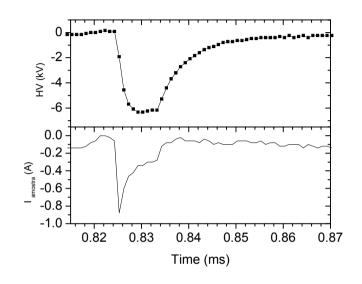
good filtering not so good plasma transport



Straight magnetic filter

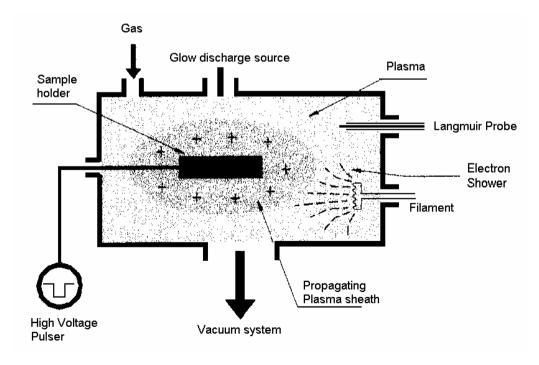
not so good filtering good plasma transport


Macroparticles avoided and deposition minimized by orienting samples **parallel to plasma stream**


Experimental Set-up

Vacuum arc:Al cathodeTungsten grid anodeHV trigger: 10-13 kVVacuum chamber ϕ =0.22m, L=1.05mBase pressure ~ 1x10⁻⁴ Pa B field: 150G-7kGSample holder:85cm from cathode

Implantation Conditions


With B = 125 G larc = 1kA 7 μ s pulses, 2.5 kV, 900 Hz (13-14 pulses / discharge) 100 discharges

With B = 0larc = 1 kA 7μ s pulses, 6 kV, 900 Hz800 discharges

Recoil Aluminum implantation

200 Å aluminum film deposited by electron beam on a Kapton sample (8.5cm×12cm) wound around sample holder. HV in contact with deposited film.

Implantation in **Nitrogen plasmas**: n ~ 10^{10} cm⁻³, T_e < 10 eV HV pulses: 5 µs, 100Hz, 5 kV treatment time of 30 minutes

Analysis

Elemental composition and morphology

- RBS
- XPS
- SEM , EDS

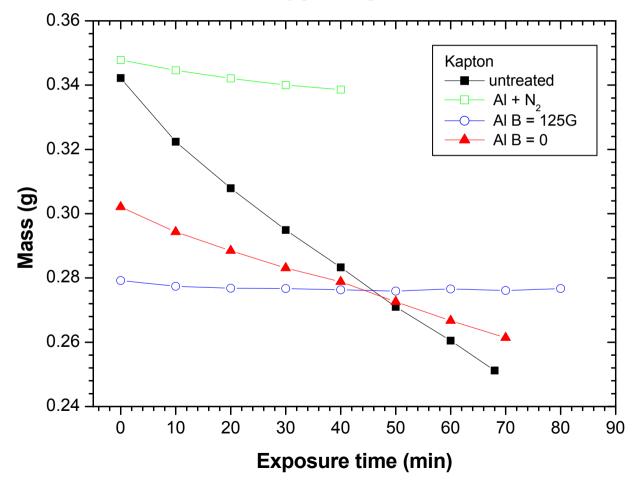
Oxygen degradation

Oxygen plasma: 40kHz parallel plate capacitive reactor

200 mTorr, 200W \rightarrow n ~ 10^{10} cm^{-3} , $~T_{\rm e}$ ~ (1-2) eV

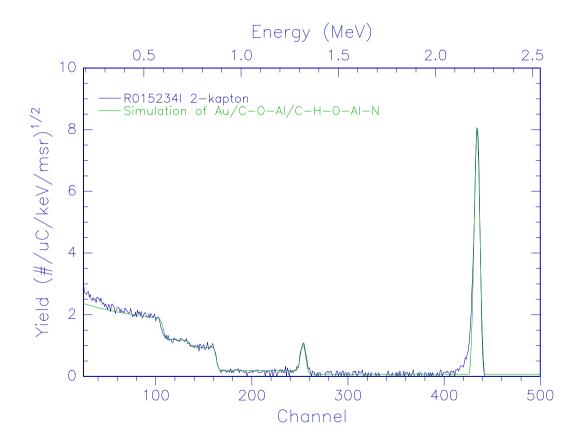
~ one hour exposure

Thermal cycling

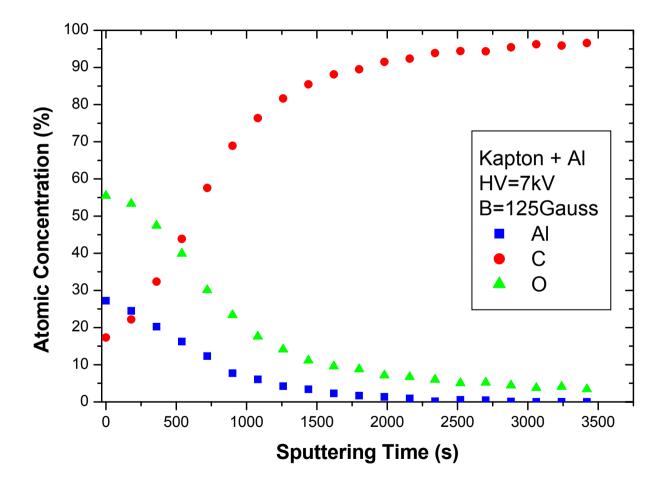

- 1 minute liquid nitrogen immersion (-196 °C)
- 1 minute pre-heated oven (100 °C)
- 15 cycles

Adhesion Test

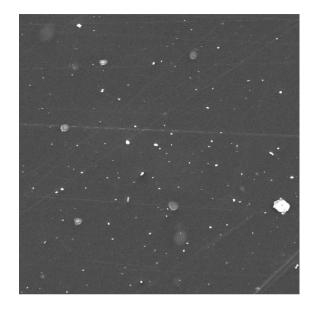
• applying and removing a pressure sensitive tape + SEM


Results

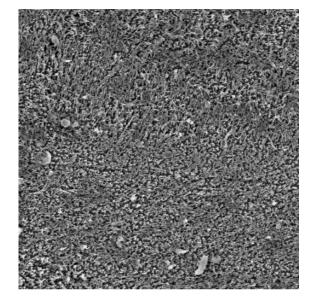
Oxygen Degradation

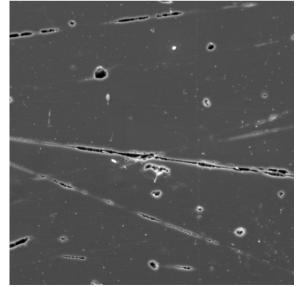


Kapton sample implanted with AI in a magnetized plasma


• **RBS** \rightarrow retained doses of 10¹⁶ atoms/cm², but mostly at the surface

• **XPS** \rightarrow formation of an ion mixing layer

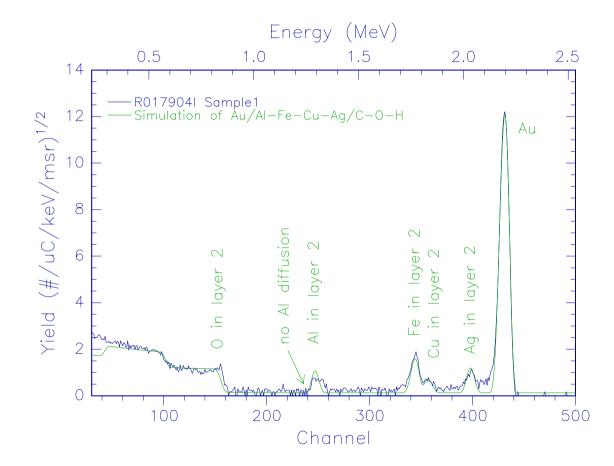

Kapton sample implanted with AI in a magnetized plasma



Without treatment

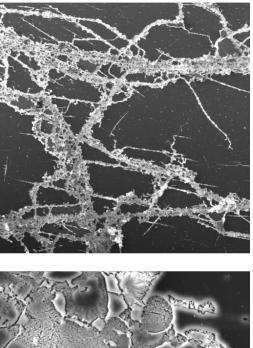
Without treatment after oxygen \rightarrow exposure \rightarrow

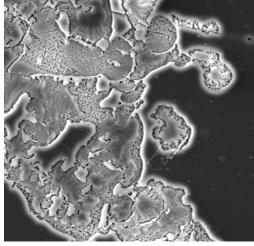
Treated sample after oxygen exposure + thermal cycling → + adhesion tests



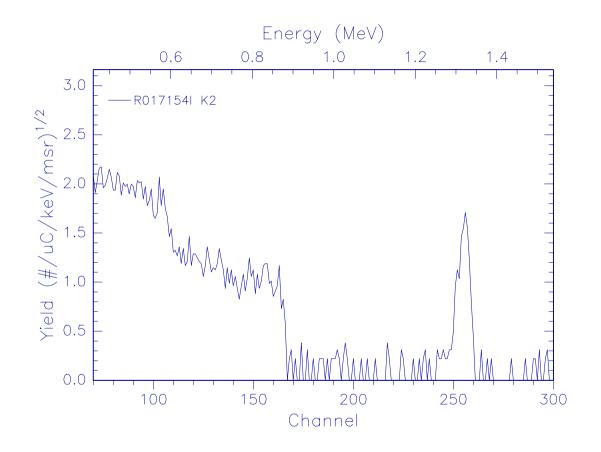
Kapton sample implanted with AI in an unmagnetized plasma

- Not uniform : good parts behave like magnetized case after exposure to O plasmas bad parts behave like untreated case after exposure to O plasmas
- Possible causes: Insufficient dose misalignment with plasma stream




• **RBS** – "good" parts – about 100Å Al deposition mostly at surface

Adhesion tests after thermal cycling showed no delamination


- Kapton sample with AI deposition (200Å) + nitrogen plasma implantation
- Formation of cracked film \rightarrow probably stressed aluminum nitride
- Loss of transparency

• **RBS** – Al deposited mostly at surface

Adhesion tests after thermal cycling showed no delamination

Conclusions

- Kapton samples implanted with AI in a magnetized vacuum arc discharge resulted in excellent protection of the polymer against oxygen degradation.
- Retained doses of 10¹⁶ atoms/cm² were obtained, and although most of the atoms are concentrated on the surface, an intermediate ion mixing layer was formed.
- Adhesion test after thermal cycling shows good adhesion to the substrate.
- Implantation with AI in non-magnetized plasmas needs much longer treatment times, incompatible with present machine configuration.
- Al deposition by e-beam, followed by recoil implantation in a nitrogen plasma resulted in a cracked film, probably due to the formation of a stressed aluminum nitride film. Recoil implantation in an argon plasma is underway.

Acknowledgements:

This work was supported by FAPESP (State of S.Paulo Research Funding Agency)