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Abstract

Results from plasma wave experiments in spacecraft give support to nonlinear interactions involving

Langmuir, electromagnetic, and ion-acoustic waves in association with type III solar radio bursts.

Starting from a general form of Zakharov equation (Zakharov, 1984), the equations for electric fields

and density variations (density gratings) induced by a pair of counterpropagating Langmuir waves

are obtained. We consider the coupling of four triplets. Each two triplets have in common the

Langmuir pump wave (forward or backward wave) and a pair of independent density gratings. We

solve numerically the dispersion relation for the system, extending the work of Alves et al.,(2002).

The ratio of anti-Stokes (AS) (ω0 + ω) to Stokes (S) (ω0 − ω∗) electromagnetic mode amplitudes is

obtained as a function of the pump wave frequency, wave number, and energy. We notice that the

simultaneous excitation of AS and S distinguishable modes, i.e., with Re{ω} = ωr 6= 0, only occurs

for r 6= 1 and when k0 < (1/3)W 1/2
0 . We also observe that the S mode always receives more energy.

Keywords: Plasma; Waves; Solar wind; Instabilities; Radio bursts.

1 Introduction

In the last two decades, several models and theories related to type III solar radio bursts have been presented.

The interplanetary type III radio bursts are a type of solar radio emission associated with energetic electron

streams, accelerated either in solar flares or in active storm regions, that penetrate the solar corona and in-
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terplanetary medium, up to distances of 1 AU (Goldman, 1984; Lin et al., 1986). The electrons move away

from the Sun and Langmuir waves are excited due to a beam-plasma instability. These Langmuir waves then

interact with low-frequency fluctuation to generate fundamental radiation with frequencies near the local elec-

tron frequency due to a decay process which can be represented by L → L
′
+ s where L is the Langmuir pump

wave, L
′

is the Langmuir daughter wave and s is the ion-acoustic daughter wave. Analysis of threshold and

maximum growth rate of this instability shows that the growth rate peaks when L
′
is backscattered relative to

L (Robinson, 1997). In a forward step, the first wave can interact with the daughter waves to emit fundamental

and harmonic radiation with frequencies near twice the local electron plasma frequency (Chian & Alves, 1988,

Alves et al., 2002).

Lashmore-Davies (1974) was the first to show that the fundamental plasma emission (ω = ωpe) could be the

result of a nonlinear coupling of two wave triplets due counterpropagating Langmuir waves. Chian & Alves

(1988), based on the idea of Lashmore-Davies (1974), formulate the theory for the case of two Langmuir pump

waves and one mode of low frequency (grating - ion acoustic wave). Rizzato & Chian (1992) improved this

model of two pump waves including a second grating (ion-acoustic wave) that assures the symmetry of the wave

kinematics. Moreover, these authors investigated the simultaneous generation of electromagnetic and Langmuir

daughter waves. Glanz et al. (1993) modified the model of Chian & Alves (1988) to allow for different amplitudes

for the two Langmuir pump waves and included a second grating.

More recently, Alves et al. (2002) considered the emission of electromagnetic radiation generated by two coun-

terpropagating pump waves with different amplitudes. These authors considered the presence of two gratings

(ion-acoustic waves) and the generation of anti-Stokes (ω +ω0) and Stokes (ω∗−ω0) electromagnetic and Lang-

muir daughter waves. They obtained the general dispersion relation and solved it for two different values of

k0, within the ranges: k0 > (2/3)(µτ)1/2, where τ = (γeTe + γiTi)/Te), and µ = me/mi, and k0 < (1/3)W 1/2
0 ,

where W0 is the pump wave energy. Those ranges were obtained considering the model of one pump wave; the

resonant decay instability (three waves, Re{ω} = ωr = ωs ) occurs when k0 > (2/3)(µτ)1/2; the purely growing

instability (ωr = 0) occurs when k0 < (1/3)W 1/2
0 (Akimoto 1988; Abalde et al. 1998). The general disper-

sion relation has been numerically solved using parameters relevant to type III solar radio bursts (Thejappa &

MacDowall 1998).

Since electromagnetic waves can propagate only if they have frequencies larger then the plasma frequency, the

observable excited mode would be the anti-Stokes mode (ω + ω0, ωr > 0). Although our approach is valid
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only for the onset of the instability, it is the aim of this paper to understand how the pump wave energy is

distributed through the excited modes. We obtain the ratio of anti-Stokes (AS) to Stokes (S) electromagnetic

mode amplitudes, RAS , considering the model previously used by Alves et al., (2002). We solve the general

dispersion relation obtained for Alves et al., (2002) for different cases; within the ranges where convective

(ωr 6= 0) instability occurs, we obtain RAS ; when the instability is purely growing, (ωr = 0), the AS and S

modes are not distinguishable.

This paper is organized as follows: in Section 2 we present the fundamental equations used, derive the ratio

of anti-Stokes to Stokes electromagnetic mode amplitudes, and present the dispersion relation. In Section 3

we discuss the numerical results obtained from solving the dispersion relation and use them to obtain RAS .

Conclusions are presented in Section 4.

2 Fundamental equations and energy mode distribution

The nonlinear coupling of Langmuir (L), electromagnetic (T ) and ion-acoustic (s) waves is governed by the

generalized Zakharov equations ( Zakharov 1984; Akimoto 1988; Chian & Alves 1988; Rizzato & Chian 1992;

Robinson 1997; Abalde et al. 1998; Bárta & Karlichy 2000)

(∂2
t + νe∂t + c2∇× (∇×)− γev

2
th∇(∇·) + ω2

pe)E = −
ω2

pe

n0
nE, (1)

(∂2
t + νi∂t − v2

s∇2)n =
ε0

2mi
∇2〈E2〉, (2)

where E is the high-frequency electric field, n is the ion density fluctuation, ω2
pe = n0e

2/(meε0) is the electron

plasma frequency, c is the velocity of light, vth = (kBTe/me)1/2 is the electron thermal velocity, vs = (kB(γeTe +

γiTi)/mi)1/2 is the ion-acoustic velocity, νe(i) is the damping frequency for electrons (ions), γe(i) is the ratio of

the specifics heats for electrons (ions), and the angle brackets denote the fast time average.

We assume that the electric field of the Langmuir pump waves is given by

E0 =
1
2

(
E+

0 exp[i(k0 · r− ω0t)] + E−
0 exp[i(−k0 · r− ω0t)]

)
+ c.c., (3)

which represents two pump waves counterpropagating of equal frequencies and opposite wave vectors. The

amplitude of the pump waves can be different, |E−
0 |2 = r|E+

0 |2 , with 0 ≤ r ≤ 1. We consider that each pump

wave can generate the anti-Stokes and Stokes electromagnetic and electrostatic waves, due a three wave process.

We consider the coupling of four triplets, assuming that each pair of triplets has in common the Langmuir pump
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wave (forward or backward) and two independent density gratings, n1(2), given by

n =
1
2
n1(2)exp[i(k1(2) · r− ωt)] + c.c.,

with |k1| = |k2|. The electromagnetic field for each one of the daughter waves is given by

E =
1
2
E+(−)

w exp[i(k+(−)
w · r− ω+(−)

w t)] + c.c., (4)

where the subscript w represents either electromagnetic (T ) or electrostatic (L) daughter wave; the superscript

+(−) represents the anti-Stokes (Stokes) mode. Fig. 1 illustrates the matching conditions for wave-vectors. The

kinematic model implies that the two Langmuir pump waves propagate oppositely along the longitudinal x-axis,

generating two opposite induced electromagnetic modes that primarily propagate along transverse y-axis, plus

induced Langmuir modes that mainly propagate along the x-axis. This chosen kinematic is based on the fact

that the coupling between pump and electromagnetic waves is more efficient when the electric fields have the

same directions (Glanz et al., 1993).

The linear dispersion relations for the waves considered in the our model are given by

DS1(2) = ω2 + iνsω − v2
sk2

1(2),

D±
T = [(ω0 ± ω)2 + iνT (ω0 ± ω)− c2k±2

T − ω2
p], (5)

D±
L1(2) = [(ω0 ± ω)2 + iνL(ω0 ± ω)− v2

thk±2
L1(2) − ω2

p],

where DS1(2) stands for the ion-acoustic wave, D±
T for the electromagnetic daughter wave, D±

L1(2) for the Lang-

muir daughter wave, and νw, w = s, T , and L represents the damping wave frequencies. Observe that we assume

|k±L1| ' |k±L2|, and |k+
T | ' |k−T |, as shown in Fig. 1. Also, the adopted geometry implies in |k±T | << |k0|, |k±L1(2)|,

|k1(2)|.

In order to obtain the equation that relates the anti-Stokes to the Stokes mode, we write the total high frequency

fluctuating fields in terms of its transverse and longitudinal component, E = El + Et, imposing perfect k-

matching but allowing for frequency mismatches between the interacting waves. Using the kinematic conditions
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presented in Fig. 1 in Eq. (1), we can describe the induced wave variations as follows

D−
L1E

−
L1 =

ω2
p

n0
n∗1E

−
0 , (6)

D+
L1E

+
L1 =

ω2
p

n0
n1E

+
0 , (7)

D−
L2E

−
L2 =

ω2
p

n0
n∗2E

+
0 , (8)

D+
L2E

+
L2 =

ω2
p

n0
n2E

−
0 , (9)

D+
T E+

T =
ω2

p

n0
(n1E

−
0 + n2E

+
0 ), (10)

D−
T E−

T =
ω2

p

n0
(n∗1E

+
0 + n∗2E

−
0 ). (11)

In Eqs. (6-11) the sub-index L1(2) refers to Langmuir wave daughter due to first (second) grating.

Introducing Eqs. (6-11) in Eq. (2), we obtain the following equations for the density fluctuations

DS1n1 =
ε0k

2
1

2mi
[E+

0 E−∗
T + E−

0 E−∗
L1 + E+

L1E
+∗
0 + E+

T E−∗
0 ], and (12)

DS2n2 =
ε0k

2
2

2mi
[E+

0 E−∗
L2 + E−

0 E−∗
T + E+

L2E
−∗
0 + E+

T E+∗
0 ]. (13)

Introducing Eqs. (6-9) into Eqs. (12-13), we obtain for n1 and n2

n1 =
ε0k2

1
2mi

DS1 − ε0k2
1

2n0mi
ω2

pe

(
E−

0 E−∗
0

D−∗
L1

+ E+
0 E+∗

0

D+
L1

) [E+
0 E−∗

T + E+
T E−∗

0 ], (14)

n2 =
ε0k2

2
2mi

DS2 − ε0k2
2

2n0mi
ω2

pe

(
E+

0 E+∗
0

D−∗
L2

+ E−
0 E−∗

0

D+
L2

) [E−
0 E−∗

T + E+
T E+∗

0 ]. (15)

Introducing the equations for n1, n2, n∗1 and n∗2 into Eqs. (10) and (11), we obtain

D+
T E+

T =
ω2

p

n0

(
ε0k2

1
2mi

DS1 − ε0k2
1

2n0mi
ω2

pe

(
E−

0 E−∗
0

D−∗
L1

+ E+
0 E+∗

0

D+
L1

) [E+
0 E−∗

T + E+
T E−∗

0 ]E−
0

+
ε0k2

2
2mi

DS2 − ε0k2
2

2n0mi
ω2

pe

(
E+

0 E+∗
0

D−∗
L2

+ E−
0 E−∗

0

D+
L2

) [E−
0 E−∗

T + E+
T E+∗

0 ]E+
0

)
. (16)

In our approach we do not include the wave damping, i.e., we consider νw = 0, (w = s, L, T ). As a consequence,

we can assume that D+
T = D+∗

T , D−
T = D−∗

T , D+
L = D+∗

L , D−
L = D−∗

L e DS = D∗
S . Due to the kinematic
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model adopted (Fig. 1) |k1| ' |k2| = k, and we can write Eq. (16) as(
D+

T −
D−

LD
+
L k2|E+

0 |
2ω2

peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

−
rD−

LD
+
L k2|E+

0 |
2ω2

peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

)
E+

T

=

( D−
LD

+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

+
D−

LD
+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

)
E−∗

T . (17)

Defining G(ω, kT ) and F(ω, kT ) as

G(ω, kT ) =D+
T −

D−
LD

+
L k2|E+

0 |
2ω2

peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

−
rD−

LD
+
L k2|E+

0 |
2ω2

peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

, (18)

F(ω, kT ) =
D−

LD
+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D+
L k2|E+

0 |2ω2
peε0

2mi
− rD−

L k2|E+
0 |2ω2

peε0

2mi

+
D−

LD
+
L k2E+

0 E−
0 ω2

peε0

2mi

D−
LD

+
LDSn0 −

D−
L k2|E+

0 |2ω2
peε0

2mi
− rD+

L k2|E+
0 |2ω2

peε0

2mi

, (19)

we can write Eq. (17) in a shorter form

G(ω, kT )E+
T = F(ω, kT )E−∗

T . (20)

Using the high-frequency approximation we can write that D±
T
∼= ±2ωp(ω ± (ω0 − ωT )), D±

L1(2)
∼= ±2ωp(ω ±

(ω0 − ωL)), where ωL(T ) represents the linear dispersion relation of the Langmuir (electromagnetic) wave. In

order to have a better numerical treatment, we normalize all variables as follows: ω by ωs and k, k0, and kT by

1/λD where λD is the electron Debye length. As a result, Eqs. (5) normalized are,

DS = ω2 − 1

D±
T = ω ± 3

2
k0

(µτ)1/2
∓ 1

2
c2

v2
th

k2
T

(µτ)1/2k0
(21)

D±
L = ω ∓ 9

2
k0

(µτ)1/2
.

Finally, recalling that |E−
0 |2 = r|E+

0 |2, and defining W0 = ε0|E+
0 |2/(2n0kBTe), and WT0 = (1+r)W0, we obtain
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the following normalized equation for G(ω, kT ) and F(ω, kT )

|G(ω, kT )|=

D+
T − WT0

τ2µk2
0(1 + r)

(
D−

L D+
L

D+
L D−

L DS −
D+

L WT0

τ2µk2
0(1+r)

− rD−
L WT0

τ2µk2
0(1+r)

−
rD−

L D+
L

D+
L D−

L DS −
D−

L WT0

τ2µk2
0(1+r)

− rD+
L WT0

τ2µk2
0(1+r)

), (22)

|F (ω, kT )|= r1/2WT0

τ2µk2
0(1 + r)


(

D−
L D+

L

D+
L D−

L DS −
D+

L WT0

τ2µk2
0(1+r)

− rD−
L WT0

τ2µk2
0(1+r)

+
D−

L D+
L

D+
L D−

L DS −
D−

L WT0

τ2µk2
0(1+r)

− rD+
L WT0

τ2µk2
0(1+r)

). (23)

For the sake of simplicity we use the same symbols for wave number and frequency as we were using before

normalization was done. The ratio of anti-Stokes to Stokes modes is then obtained introducing Eqs. (22) and

(23) into Eq. (20) as

 E+
T

E−∗
T

 =

r1/2WT0
τ2µk2

0(1+r)


(

D−
L D+

L

D+
L D−

L DS−
D

+
L

WT0
τ2µk2

0(1+r)
−

rD
−
L

WT0
τ2µk2

0(1+r)

+ D−
L D+

L

D+
L D−

L DS−
D
−
L

WT0
τ2µk2

0(1+r)
−

rD
+
L

WT0
τ2µk2

0(1+r)

)D+
T − WT0

τ2µk2
0(1+r)

(
D−

L D+
L

D+
L D−

L DS−
D

+
L

WT0
τ2µk2

0(1+r)
−

rD
−
L

WT0
τ2µk2

0(1+r)

− rD−
L D+

L

D+
L D−

L DS−
D
−
L

WT0
τ2µk2

0(1+r)
−

rD
+
L

WT0
τ2µk2

0(1+r)

)
. (24)

The dispersion relation that decribes the wave coupling represented in Fig. 1, as presented by Alves et al.,

(2002), can be obtained using Eqs. (12-13), with all definitions and approximations introduced in this paper.

The general dispersion relation is given by

D2
S −

WT0

4τ(µτ)1/2k0
DS

(
1

D+
L

− 1
D−

L

+
1

D+
T

− 1
D−

T

)
+

W 2
T0

16µτ3k2
0(1 + r)2

[
−(1− r)2

D+
T D−

T

+ (1 + r2)
(

1
D+

T D+
L

− 1
D+

L D−
L

+
1

D−
T D−

L

)
− 2r

(
1

D+
L D−

T

+
1

D+
T D−

L

)
+ r

(
1

D+2
L

+
1

D−2
L

)]
= 0, (25)

where, DS , DL and DT are the same of Eq. (21).

Alves at al. (2002) have shown that the dispersion relation, with the suitable approximation, includes several

models found in the literature (Akimoto, 1988; Abalde et al., 1998; Rizzato & Chian, 1992; Chian & Alves, 1988;

Glanz et al., 1993). They have also shown that when k0 < (1/3)W 1/2
0 , the presence of a second pump wave,

with different amplitude from the first one (r 6= 1), introduces a region of convective, nonresonant instability

(ωr 6= 0, ωr 6= ωS), not present when r = 1.

In this paper we numerically solve the general dispersion relation (Eq. (25)) to stablish the range were instability

occurs and when the anti-Stokes and Stokes distinguishable modes, i.e., with Re{ω} = ωr 6= 0 (convective
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instability), are simultaneously excited. The ratio of anti-Stokes to Stokes electromagnetic mode amplitudes,

RAS , is then calculated only when the instability is convective. For purely growing instability (ωr = 0) the

anti-Stokes and Stokes modes are indistinguishable.

3 Numerical solution

A one pump wave model predicts the instability to behave differently within the two following ranges: for

k0 > (2/3)(µτ)1/2, where τ = (γeTe + γiTi)/Te), and µ = me/mi, a resonant decay instability (three waves,

ωr = ωs) occurs. When k0 < (1/3)W 1/2
0 , where W0 is the energy of the pump wave, a purely growing instability

(ωr = 0) occurs. Although the AS and S modes are simultaneouly excited in the last case, they are not

distinguishable. For our model, considering two pump waves with different amplitudes, a similar limit exists.

Moreover, when k0 < (1/3)W 1/2
0 , r 6= 1, r 6= 0, a convective (ωr 6= 0) instability occurs for some ranges of kT

(Alves et al., 2002), and anti-Stokes and Stokes distinguishable modes are simultaneously excited. In that sense,

all results presented in this section will be within the range k0 < (1/3)W 1/2
0 .

In order to obtain the numerical solution of the general dispersion relation, we consider parameters relevant

to type III solar radio bursts (Thejappa & MacDowall 1998). We use a fixed value of µ = 1/1836, vth =

2.2× 106m/s, Te = 1.6× 105K, Ti = 5× 104K, τ = 1.520, and k0 = 10−4.

Fig. 2 shows the numerical results of the general dispersion relation as a function of r and kT . Fig.2-(a)

represents the real part of the frequency (ωr) and Fig. 2-(b) represents the growth rate (Γ). We notice three

different regions of instability: for kT less than 10−5, instability is purely growing (ωr = 0), independent of the

value of r; for kT larger than 10−5 the instability is non-resonant and convective (ωr 6= ωS , ωr 6= 0) except for

a small region, found approximately at kT > 3× 10−5 and r between 0.4 and 0.7, when Γ = 0. As r increases,

the range of kT where non-resonant and convective instability occurs decreases. For r = 1, only purely growing

instability occurs, independent of the values of kT .

In order to obtain RAS , first we solve the dispersion relation as a function of the total energy of the system

WT0 and the wave number of electromagnetic wave kT , for a fixed value of r = 0.5 and of k0 = 10−4. Fig.

3 shows the numerical solution for this case. Fig. 3-(a) represents the real part of the frequency ωr and Fig.

3-(b) represents the growth rate Γ. For a given WT0, we find the range of kT where the instability is convective

(ωr 6= 0) and find the corresponding kT which gives the maximum growth rate. Fig. 4 presents the results for

RAS as a function of WT0, calculated for the value kT which gives the maximum Γ and correponding frequency.

8



Although we do not show, the values of kT that give the maximum Γ are within the range 1.2 × 10−5 and

2.5 × 10−5, compatible with results presented in Fig. 2. Since RAS < 1, for this particular case, the Stokes

mode receives more energy. Similar results are obtained for different values of r 6= 1.

4 Conclusion

In this paper we have presented the formalism to obtain the ratio of the anti-Stokes to Stokes mode energy

amplitude, starting from the Zakharov equations with a model that considers two counterpropagating Langmuir

pump waves with different amplitudes.

¿From numerical analysis of the general dispersion relation we notice that depending on the ratio of the Langmuir

pump wave amplitudes, r, we have ranges of kT where convective or purely growing instability occurs and also

regions of no instability, as shown in Fig. 1.

Using a fixed value for r 6= 1 we observe the simultaneous excitation of anti-Stokes and Stokes distinguishable

modes (convective, no resonant instability (see Fig. 2)). Although we present results just for r = 0.5, similar

results have been obtained for different parameters. In general, the Stokes mode receives more energy.

In a future work, we should include the wave damping rates. By comparing the wave damping rates with the

instability growth rate we can verify the efficiency of the process for emission of electromagnetic waves.
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Figure 1: Wave-vector kinematics for our model: k
−(+)
0 are related to the pump Langmuir waves, k1(2) to ion

acoustic waves, (k+(−)
0 − k1(2)) are the electrostatic (oblique to k

+(−)
0 ) or electromagnetic (⊥ a k

+(−)
0 ) Stokes

modes and (k+(−)
0 + k1(2)) are the electrostatic (oblique to k

+(−)
0 ) or electromagnetic (⊥ a k

+(−)
0 ) anti-Stokes

modes.
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(a) Real frequency.

(b) Growth rate.

Figure 2: Numerical solution of the general dispersion relation as a function of r and kT , with k0 = 10−4, within

the limit k0 < (1/3)W 1/2
0 .
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(a) Real frequency.

(b) Growth rate.

Figure 3: Numerical solution of the general dispersion relation as a function of WT0 and kT , with r = 0.5,

k0 = 10−4, within the limit k0 < (1/3)W 1/2
0 .
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Figure 4: Ratio of anti-Stokes to Stokes mode amplitudes as a function of WT0, for the same parameters as in

Fig. 3, calculated for kT which gives the maximum value of Γ.
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