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The present work quantifies the dependence of the tunable frequency range on the gap spacing
between the end of the conical post and the cavity top plate in reentrant 1.0 GHz klystron cavities.
Fabricated from aluminum, the cavities tested are 80 mm in diameter with a top plate 1 mm thick.
Experiments performed on such cavities have shown tuning coefficients~change in resonant
frequency due to variation of the capacitive gap! as high as 40.0 MHz/mm, thereby demonstrating
the capability of reentrant cavities as electromechanical transducers in resonant mass gravitational
wave antennas. For cavity-based transducers ten times as small as the cavities tested here, this result
translates into a tuning coefficient 100 times higher. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1688438#

I. INTRODUCTION

Strong electric fields for accelerating or modulating an
electron beam find important microwave applications in lin-
ear accelerators and rf power sources, where for a cavity
with a given stored energy the strongest field is desired.1,2 Rf
cavity technology has developed significantly in the last de-
cade with the introduction of improved surface treatment and
assembly procedures, advanced materials, and by a better
understanding of the phenomena which have in the past lim-
ited the performance of superconducting cavities, such as,
e.g., multipacting, field emission, and quenches.3 Accelerat-
ing gradients in excess of 50 MV/m and electricalQ factors
of about 1010 are no longer out of reach.4 Several simulation
computer codes—for example,SUPERFISH,2 HFSS,5 MAFIA ,5

or CST6—are available to solve the electromagnetic field
equations for typical cavity geometries. Of particular interest
in those solutions are the peak surface electric and magnetic
fields, the shunt impedance~which determines the cavity
losses at a given surface resistance and gradient!, and the
stored energy. Concerning mechanical stability, an opera-
tional parameter especially important in pulsed operation is
the Lorentz force detuning coefficient, which influences the
choice of the material thickness and has to be taken into
account in the mechanical design of the cavity.3 In the design
stage, the criterion is to maximize the shunt impedance while
obtaining intense electric fields uniformly distributed on the
cavity irises. Also relying on intense fields to increase the
energy sensitivity, electromagnetic cavity-based transducers7

operate at high fields to maximize the electrical coupling to
an external mechanical transformer. A cavity of this sort is
usually accomplished by a reentrant klystron cavity~Fig. 1!
where intense electric fields develop across a short gap.

In this article, we examine both theoretically and experi-
mentally the resonance properties of azimuthally symmetric
reentrant cavities. Such components are used as parametric
transducers to continually monitor the vibrational state of

mass gravitational wave antennas through modulation of the
capacitive gap.7–9 Here we investigate the relationship be-
tween the resonant frequency and the cavity dimensions with
emphasis on how the frequency varies when flexing the top
plate by means of a directed force.

II. CAVITY ANALYSIS

As pictured in Fig. 1, for a small gap spacing the electric
field lines of the corresponding operation mode run in the
gap region as from one plate to the other of a parallel plate
capacitor, whereas in the rest of the cavity the field is sub-
stantially as in a coaxial line. On condition that the gap spac-
ing d is much shorter than the resonant wavelength the con-
cept of lumped circuit elements becomes meaningful,
whereby we treat the reentrant cavity as a shorted coaxial
line terminated by a capacitor~Fig. 2!. Thus for a line of
length l, outer diameter 2r 2 , inner diameter 2r 1 , and termi-
nal capacitanceC the resonance condition requires that the
loop impedance be zero, so that

jZ0 tanb0l 1
1

j v0C
50, ~1!

where b052p/l05v0Am0«0, Z05(1/2)Am0«0 ln(r2r1),
and in a first approximation the gap capacitance is expressed
as C5«0(pr 1

2/d). Assumingb0l !1, Eq. ~1! simplifies to
v0CZ0b0l 51 giving the resonant wavelength

a!Author to whom all correspondence should be sent; electronic mail:
barroso@plasma.inpe.br FIG. 1. Reentrant cavity schematic showing electric field lines.
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We note that ifd is small compared tol, as we are
assuming, thenl0 is large compared tor 1 . If, as is usually
the caser 1 is of the same order of magnitude asr 2 and l,
then this means thatl0 is large compared to all the dimen-
sions of the cavity, justifying our assumption that the cavity
can be treated as a lumped constant problem. Then if we
wish to design a cavity for a givenl0 , we see that the
smaller isd, the smaller the cavity dimensions become, so
that we can make in this way a conveniently small cavity
resonant at a long wavelength. Although enlightening, the
simple formula~2! does not provide an accurate estimate of
the resonant frequency~in some cases the error may be larger
than 40%! as its derivation lacks the cavity capacitance that
accounts for the fringing fields in the transition region inter-
mediate the coaxial and gap spaces. Calculated as10

C154«0r 1 ln
eA~r 2

22r 1
2!1 l 2

2d
, ~3!

the cavity capacitanceC1 when added toC0 much improves

the accuracy of the equivalent circuit. Generalizing the con-
figuration shown in Fig. 1, a reentrant cavity with a coaxial
conical insert~Fig. 3! has been modeled by Fujisawa10 as a
lumpedLC circuit leading to the following parameters:
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wheree is the exponential constant (e52.71828,...,), and

l M5
A@2~r 12r 0!213~r 22r 1!~r 11r 222r 0!#21 l 2~3r 222r 12r 0!2

3~2r 22r 12r 0!
~7!

a5tan21
l 2d

r 12 r̄ 0
, ~8!

for which the error incurred in estimating the resonant fre-
quency f 051/2pAL(C01C1) lies within a few percent as
has been verified by Fujisawa10 upon comparison with ex-
periments. Accordingly, the accuracy of the formulas be-
comes better for largerr 0 / l M and smallerl M /l0 , respec-
tively, the post radius and the resonant wavelength compared
with the relative size of the cavity.

On the basis of relations~4!–~8!, we examine below how
the electrodynamical properties of the reentrant cavity relate
to the shape of the coaxial insert by considering two types of
posts: a truncated cone and a circular cylinder, the latter of
which the general expressions~6!–~8! apply whena5p/2
(r 15r 0 , Fig. 3!. Markedly different for each coaxial insert,
the plots in Fig. 4 show the dependence of resonant fre-
quency f 0 on radius r 1 for fixed major radius r 2

(540.0 mm) and cavity lengthl ~520.0 mm! with gap spac-
ing d varying from 0.1 to 0.5 mm in steps of 0.1 mm. For the
circularly cylindrical insert@Fig. 4~a!#, f 0 starts decreasing

for increasingr 1 and after reaching a flat region all the
curves come nearer to each other at large values ofr 1 , even-
tually merging into a single curve in which the particular
behavior entailed separately by the gapd on each curve is
lost. With most of the electromagnetic energy stored in the
gap region and with the electric-field lines running axially,
this regime (r 1→r 2) closely resembles the TM010-mode op-
eration in a circular cavity. In fact we note that the frequency
curves going upward tend to an asymptotic value that is con-
sistent with the resonant frequency of a TM010-mode cavity
with radius r 2540.0 mm, i.e., f TM0105(15/p)(x01/r 2)
52.87 GHz, @where x0152.4048 is the first zero of the
Bessel functionJ0(x)]. By contrast, for the cavity with the
conical insert@Fig. 4~b!# all the frequency curves slope up-
ward and run parallel to each other asr 1 increases. More-
over, we remark that the frequency separation given by the
upper and innermost curves, for instance, atr 152.0 cm, for
the cavity with uniform post~0.57 GHz! is nearly half that
for the cavity with tapered insert~0.97 GHz!, which thus
exhibits higher sensitivity to variations ind.

To see the effect of the top radius of the post on the

FIG. 2. Approximate equivalent circuit of the cavity in Fig. 1.

FIG. 3. Definition of geometrical parameters for the reentrant cavity with
coaxial conical insert.
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resonant frequency, in Fig. 5 we showf 0 as a function of the
gapd in cavities havingr̄ 053.0 mm, r̄ 0510.0 mm with the
inner radius ranging fromr 1510.0 mm~lower curve! to r 1

520.0 mm~upper curve!, at a 5.0 mm increment. The inner-
most curve withr̄ 05r 1510.0 mm, corresponding to a cyl-
inder, indicates that cylindrical posts impart lower frequency
sensitivity to variation in the gapd when compared at the
same top radiusr̄ 0 with conical posts. Besides increasing
with r 1 for fixed d, we see thatf 0 greatly increases asr̄ 0

decreases. Then we expect that smallerr̄ 0 and largerr 1 lead
to higher tuning coefficients.

III. EXPERIMENT

The resonance properties of a reentrant cavity with coni-
cal insert is experimentally examined by looking at the effect
on the resonant frequency of reducing the gap spacing
through the application of a bending force at the center of the

circular top plate with clamped edges. Fabricated from alu-
minum, the cavity has dimensions to allow operation in the
klystron mode~Fig. 1! around 1.0 GHz, a value well below
the cutoff frequencies of potentially competing modes, since
the major radiusr 2 ~540.0 mm! being constrained tor 2

,l0x11/(2p) where x1151.8411, the first root ofJ18(x)
50, sets a cutoff frequencyf c5(c/2p)(x11/r 2)52.5 GHz
for propagation of either TM or TE modes.

Resonant frequencies have been measured by using the
reflection-type circuit configuration in Fig. 6 where the cav-
ity fields are both excited and detected by means of a single
electric probe inserted through a 1.0-mm-diam hole drilled
halfway across the cylindrical wall, as pictured in Fig. 7.
Five coaxial inserts~with dimensions given in Table I! have
been tested on a circular cavity of radiusr 2540.00 mm and
height l 520.0 mm.

On applying a deflection force~using a set of calibrated
weights! we then measured the corresponding downshifted
frequencies, which are plotted in Fig. 8. Comparing inserts 3
and 4, we see that the corresponding tuning curves are some-
what similar, differing by a frequency shift controlled by the
gap spacingd. A comparison of insert 3 with insert 5 shows
that the largerr̄ 0 of insert 3 leaves its tuning curve broader.
Moreover, insert 1 having the largerr 1 and the smallerr̄ 0

FIG. 4. Resonant frequency as a function of inner radiusr 1 for reentrant
cavities with~a! circularly cylindrical and~b! conical inserts. The curves are
parametrized at increments of 0.1 mm in the gapd. In both figures,r 2

540.0 mm andl 520.0 mm.

FIG. 5. Gap spacing dependence of resonant frequency at fixed values of
base and top radiir 1 and r̄ 0 .

FIG. 6. Experimental setup to measure resonant frequencies.

FIG. 7. Reentrant cavity under test.
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produces the steepest curve. Insert 2, with a smallerr 1 , has
the effect of flattening the curve relative to curve 1. So the
greatest sensitivity of insert 1 is conferred by its larger 1 in
conjunction with a smallr̄ 0 . Of course the surface areap r̄ 0

2

should not be taken infinitely small otherwise the capaci-
tance effect would disappear; indeed, the optimum value of
r̄ 051.5 mm has been found for the range 5.0 mm<r 1

<30.0 mm.
To quantitatively assess the sensitivity rendered by insert

1, we plot in Fig. 9 the corresponding measured frequencies
and calculated derivatives against the variation of the capaci-
tive gap x5d02dmax, where d050.10 mm denotes the
nominal gap spacing anddmax is the maximal deflection pro-
duced by an external force acting on the top plate~Fig. 10!.
The deformation of the plate is determined from the follow-
ing expression that gives the deflection due to pure bending
of a clamped circular plate loaded at the center:11

d~r ,P!5
Pr2

8pD
ln

r

r 2
1

P

16pD
~r 2

22r 2!, ~9!

whereP is the load applied,D5Eh3/12(12n2) denotes the
flexural rigidity of the plate of thicknessh51.0 mm, modu-
lus of elasticityE569.0 GPa, and Poisson’s ration50.3.

In Fig. 9, the displacement sensitivityd f /dx rapidly in-
creases as the gap narrows, reaching the sensitivity of 40.0
MHz/mm at x.50.0mm which corresponds to a deflecting
mass of 2.3 kg loading the 1.0-mm-thick top plate. The
dashed line refers to calculated frequencies from expressions
~4!–~9!. Here we note that formulas~4!–~7! calculate reso-
nant frequencies to within a typical error of 5% in the range
of parameters10

r 0 / l M>1/3, ~10a!

~r 22r 0!/ l M>1/313l M /l0 , ~10b!

where the characteristic lengthl M is defined in Eq.~7!. For
the present case referring to insert 1, relations~10! are mar-
ginally satisfied since bothr 22r 0 / l M50.65 and r 0 / l M

50.06 are rather small. Nevertheless, the calculated curve in
Fig. 9 fits the measured frequencies within an error of 12%.

IV. DISCUSSION

We have discussed the feasibility of a 1.0 GHz reentrant
cavity as a parametric transducer by demonstrating experi-
mentally the transducer sensitivity to deflections of the 80.0-
mm-diam, 1.0-mm-thick aluminum plate when loaded with
weights as light as 10 g. Through proper selection of the
cavity geometry by increasingr 1 ~with r 2 and l fixed! and
reducing bothr̄ 0 and the gapd, typical tuning coefficients
D f 0 /Dd of a few tens of MHz/mm have been achieved at
gap spacings in the 50–100mm range. In addition to confer-
ring high tuning coefficient, a narrow gap maximizes the
electrical coupling to a mechanical transformer that matches
the impedance of the transducer to the antenna impedance.12

Scaled up by a factor of 10 for ease of machining and testing

FIG. 9. Resonant frequency and displacement sensitivityd f /dx for insert 1
expressed in terms of the decreasing dynamical gapx5d02dmax. The
dashed line refers to calculated frequencies.

FIG. 10. Deflection of a clamped plate loaded at the center.

TABLE I. Gap spacing~d!, bottom (r 1), and top (r̄ 0) radii of the inserts
tested.

Insert number d/mm r 1 /mm r̄ 0 /mm

1 0.10 20.0 1.5
2 0.10 10.0 1.5
3 0.30 20.0 5.0
4 0.40 20.0 5.0
5 0.30 20.0 3.0

FIG. 8. For several inserts, the dependence of measured frequencies on the
loading weight.
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at early stages of the design, the cavities we have examined
are developmental replicas of electromechanical transducers
to be instrumented in a resonant mass gravitational wave
antenna, the Schenberg detector, under development at the
National Institute for Space Research.13 Specific require-
ments for the tuning coefficient in this kind of detector is
placed by the sources of noise, which may be divided in two
groups,14,15namely, narrow- and broad-band noises. Narrow-
band-noise is characterized by fluctuations due to the back
action effect from the pump oscillator and goes up with the
square of the sensitivityD f 0 /Dd. On the other hand, broad-
band noise has two components, the serial noise~arising
from noise temperature of the microwave amplifier in the
readout chain7! and the phase noise~due to phase fluctua-
tions of the incident pump oscillator!. Both of these compo-
nents fall as the square ofD f 0 /Dd, and so an optimum value
for D f 0 /Dd can be found that balances the narrow-band
noise with the broad-band noise. Therefore, the transducer
D f 0 /Dd ratio useful for gravitational wave detection appli-
cation is highly dependent on the electrical quality factor of
the microwave cavity and other transducer parameters, e.g.,
pump oscillator amplitude and phase noise, incident power,
and transducer temperature. For typical values of these pa-
rameters,D f 0 /Dd lies in the range of 10–1000 MHz/mm. As
a technical goal for the Schenberg detector,13 the strain noise
power spectral density is targeted at 2310223 Hz21/2 to
achieve the standard quantum limit, thereby requiring an op-
timum frequency tuning coefficient of 850 MHz/mm upon
including the amplitude and phase noises at the levels of
2165 and2145 dBc/Hz, respectively. In this experiment the
cavity-based transducer, which actually operates at 10.0
GHz, is expected to be a hundred times more sensitive~see
the Appendix! than the oversized cavities tested here.
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APPENDIX: SCALING RELATIONSHIPS AND
DERIVATION OF AN EXPRESSION FOR THE
TUNING COEFFICIENT Df 0 ÕDd

To examine scaling relationships, we consider two simi-
lar reentrant cavities~Fig. 3! with linear dimensions in the
ratio b, namely,

b5
r̄ 08

r̄ 0
5

r 08

r 0
5

r 18

r 1
5

r 28

r 2
5

l 8

l
5

d8

d
.

Since the anglea remains the same and the lumped elec-
trical parametersL andC are proportional to length, we have
from Eqs.~4!–~8!,

C08

C0
5

C18

C1
5

L8

L
5b,

and therefore the corresponding resonant frequencies are re-
lated by the inverse ratio

f 08

f 0
5

1

b
.

By differentiating f 0 with respect to the gap spacingd
we obtain the following expression for the tuning coefficient:

D f 0

Dd
5

1

2

f 0

d F 1

T3
H r 0

3

d
1

2r 0l cot2 a

r 12 r̄ 2
2~T11T2!

2d cos2 a

a2~r 12 r̄ 0!

2
2d

a F1

2 S cota1
d cot2 a

r 12 r̄ 0
D ln

AelM sina

d

2S 11
d cos2 a

r 12 r̄ 0
cota D cota

2
2

l cot2 a

r 12 r̄ 0
ln

elM sina

d

2
r 0

d S 11
d cos2 a cota

r 12 r̄ 0
D1T1X1T2XG J G , ~A1!

where

T15r 0 ln
elM sina

d
,

T25
d cota

2
ln

AelM sina

d
,

T35
r 0

2

d
1

2

a
~T11T2!,

T1X5
r 0

l M
]dl M@r 0~d!#,

T2X5
d cota
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BecauseT3 and each of the terms inside the brackets is
proportional to length, i.e., the overall braced term is dimen-
sionless, it follows that the tuning coefficient scales as the
square of the inverse ratio:

S D f 08

Dd8
D Y S D f 0

Dd D5
1

b2 .

Thus, if a low-frequency cavity is scaled down by a
factor of 10, i.e., all the dimensions are multiplied byb51/
10, the resulting tuning coefficient for the high-frequency
cavity becomes 100 times as high as in the larger, lower-
frequency cavity.

In addition, expression~A1! for D f 0 /Dd shows
that the sensitivity depends only on the internal dimensions
of the cavity, being independent of the thickness of the
top plate. While maintaining the internal dimensions con-
stant, reduction of the plate thickness, for example, from
1.0 to 0.464 mm does not imply a tenfold increase in the
sensitivity. By noting thatD f 0 /Dd5(DP/Dd)(D f 0 /DP),
in this case the sensitivityD f 0 /Dd is not improved, but
instead the ratio of change of applied force with displace-
ment,DP/Dd, is the quantity that becomes ten times larger.
In fact, sinceh5(0.464)3 mm>1.0 mm/10 and according to
Eq. ~9!, we readily arrive at (P/dmax)uh50.464 mm5(1/10)
3(P/dmax)uh51.0 mm.
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