%0 Journal Article %@holdercode {isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S} %@nexthigherunit 8JMKD3MGPCW/3ESR3H2 %@archivingpolicy denypublisher denyfinaldraft24 %@resumeid %@resumeid %@resumeid 8JMKD3MGP5W/3C9JGJC %@resumeid %@resumeid %@resumeid %@resumeid 8JMKD3MGP5W/3C9JGUH %@usergroup administrator %@usergroup sergio %3 electrical resistivity.pdf %@dissemination WEBSCI; PORTALCAPES. %X The critical impurity concentration Nc of the metalnonmetal (MNM) transition for the cubic GaN, InN and AlN systems, is calculated using the following two different criteria: vanishing of the donor binding energy and the crossing point between the energies in the metallic and insulating phases. A dielectric function model with a LorentzLorenz correction is used for the insulating phase. The InN presents an order of magnitude increase in Nc as compared to the other two systems. The electrical resistivity of the Si-donor system GaN is investigated theoretically and experimentally from room temperature down to 10 K. It presents a metallic character above a certain high impurity concentration identified as Nc: The samples were grown by plasma assisted molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. The model calculation is carried out from a recently proposed generalized Drude approach (GDA) presenting a very good estimation for the metallic region. The band-gap shift (BGS) of Si-doped GaN has also been investigated above the MNM transition where this shift is observed. Theoretical and experimental results have a rough agreement in a range of impurity concentration of interest. r 2001 Elsevier Science B.V All rights reserve. %8 Oct. %N 3 %T Electrical resistivity and band-gap shift of Si-doped GaN and metal-nonmetal transition in cubic GaN, InN and AlN systems %K A1. Characterization, A1. Doping, A3. Molecular beam epitaxy, B1. Nitrides. %@secondarytype PRE PI %@group LAS-INPE-MCT-BR %@copyholder SID/SCD %@secondarykey INPE-12254-PRE/7584 %@issn 0022-0248 %2 sid.inpe.br/marciana/2005/03.04.15.47.12 %@affiliation Universidade de São Paulo Instituto de Física, São Paulo, SP, Brazil, %@affiliation Universidade Federal da Bahia. Instituto de Física, Salvador, Bahia, Brazil, %@affiliation Department of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping, Sweden, %@affiliation Instituto Nacional de Pesquisas Espaciais (INPE-LAS), São José dos Campos, SP, Brazil, %@affiliation Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden, %@affiliation Universität Paderborn, FB-6 Physik, D-33095 Paderborn, Germany, %B Journal of Crystal Growth %P 420-427 %4 sid.inpe.br/marciana/2005/03.04.15.47 %D 2001 %V 231 %A Fernandez, J. R. L., %A Araújo, C. Moysés, %A Silva, Antonio Ferreira da, %A Leite, J. R., %A Sernelius, E., %A Tabata, A., %A Abramof, Eduardo, %A Chitta, V. A., %A Persson, C., %A Ahuja, R., %A Pepe, I., %A As, D. J., %A Frey, T., %A Schikora, D., %A Lischka, K., %@area FISMAT