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Current-voltage scaling of chiral and gauge-glass models of two-dimensional superconductors
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~Received 30 June 1998!

The scaling behavior of the current-voltage characteristics of chiral and gauge-glass models of disordered
superconductors, are studied numerically, in two dimensions. For both models, the linear resistance is nonzero
at finite temperatures and the scaling analysis of the nonlinear resistivity is consistent with a phase transition
at T50 temperature characterized by a diverging correlation lengthj}T2nT and thermal critical exponentnT .
The values ofnT , however, are found to be different for the chiral and gauge-glass models, suggesting
different universality classes, in contrast to the result obtained recently in three dimensions.
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Considerable attention has been paid recently to the
ture of the glass phase and the universality class of the
sible glass transitions in ceramic or granular high-Tc super-
conductors. In the presence of an applied magnetic fiel
vortex-glass phase transition with vanishing linear resista
in the low-temperature phase has been predicted in t
dimensions1,2 while, in two dimensions, the linear resistan
is nonzero at finite temperaturesT, but there is, nevertheless
a zero-temperature transition3 with a divergent correlation
length j }T2nT and critical exponentnT;2 which deter-
mines the behavior of the current-voltage characteristics.
absence of a finite-temperature vortex-glass transition
current-voltage scaling has been verified in some tw
dimensional superconducting films4 with a critical exponent
nT in agreement with theory. In the theoretical studies
gauge-glass model has been widely used which is believe
be in the same universality class as the vortex glass. In
external field, however, only the standard superconduc
transition takes place. In contrast, ind-wave superconducto
materials containing ‘‘p’’ junctions5 a chiral-glass phase ha
been predicted even at zero external field in three dimens
based on numerical studies of the chiral glass model,6,7 or
alternatively,XY spin glass.8 The chiral-glass order param
eter is the chirality, which represents the direction of lo
current loops introduced by frustration effects. As for t
gauge glass, in two dimensions, the chiral-glass transi
only occurs at zero temperature.6,9,10It is well known that the
chiral glass model has an additional reflection symme
which gives rise to quenching in vortices in the propos
chiral glass phase.8 In spite of this, a recent study of th
current-voltage characteristics of the chiral and gauge-g
models in the vortex representation11 found that they exhibit,
within the numerical accuracy, the same critical exponent
three dimensions, suggesting a common universality cl
This would imply that resistivity measurements alone are
able to distinguish between chiral and vortex glass sta
However, in two dimensions the problem has not yet be
analyzed in detail although several studies have alre
shown that the zero-temperature chiral glass transition
characterized by two different divergent correlati
lengths,6,9,12 jc andjs , with different critical exponents,nc
;2 andns;1, describing chiral glass~or vortex glass order!
and phase glass order, respectively. In particular the valu
PRB 580163-1829/98/58~17!/11161~4!/$15.00
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nc for the chiral glass turns out to agree with the expon
for the gauge-glass model.13 The question then arises as
what correlation length is actually probed by nonlinear res
tance measurements since this will determine the curr
voltage scaling and the resulting behavior could be eit
consistent withnT5nc , the same as the gauge-glass mod
or nT5ns , which could serve to identify the zero
temperature chiral glass transition.

In this work we present a numerical study of the curre
voltage characteristics of chiral and gauge-glass models
two dimensions, in a representation in terms of the phase
the local superconducting order parameter. For both mod
we find that the linear resistance is nonzero at finite temp
tures and a scaling analysis of the nonlinear resistanc
consistent with a phase transition atT50 temperature char
acterized by a diverging correlation lengthj}T2nT and ther-
mal critical exponentnT , in agreement with previous work
The values ofnT , however, are found to be different for th
chiral and gauge-glass models, suggesting that measurem
of a nonlinear resistance probe, mainly the phase correla
length and the models are in different universality classes
contrast to the result obtained in three dimensions in
vortex representation.11 Thus, in two dimensions, measure
ments of nonlinear resistance could, in principle, be used
identify a possible chiral glass in two-dimensional ceram
superconductors.

The chiral glass and gauge-glass models can be desc
by the same Hamiltonian

H52J0(̂
i j &

cos~u i2u j2Ai j ! ~1!

whereu i is the phase of the superconducting order param
of a ‘‘grain’’ at site i of a regular lattice,J0.0 is a constant
Josephson coupling and screening effects have been ign
In the gauge-glass model,13,11Ai j represents a quenched line
integral of the vector potential which is taken to be un
formly distributed in the interval@0,2p#, representing the
combined effect of disorder and the external magnetic fie
while in the chiral-glass model6 Ai j has a binary distribution,
0 or p, with equal probability, which may represent th
phase shift across Josephson junctions in models ofd-wave
ceramic superconductors in the absence of a magnetic fie14
11 161 ©1998 The American Physical Society
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Alternatively, the chiral glass model is just another repres
tation of theXY spin glass8–10 with random couplingsJi j 5
6J0 .

To study the current-voltage characteristics of disorde
superconductors described by the Hamiltonian of Eq.~1!, we
assume a resistively shunted Josephson-junction~RSJ!
model for the current flow between grains15 and use an over
damped Langevin dynamics16 to simulate the nonequilibrium
behavior. The Langevin equations can be written as

C0

d2u i

dt2
1

1

R0
(

j

d~u i2u j !

dt

52J0(
j

sin~u i2u j2Ai j !

1I i
ext1(

j
h i j , ~2!

where I ext is the external current,h i j represents Gaussia
thermal fluctuations satisfying

^h i j ~ t !&50, ~3!

^h i j ~ t !hkl~ t8!&5
2kBT

R0
d i j ,kld~ t2t8!, ~4!

and a capacitance to the groundC0 is allowed, in addition to
the shunt resistanceR0 , in order to facilitate the numerica
integration.16 We use units where\2e51,R051,J051 and
set the parameterJR0

2C050.5 in the simulations, corre
sponding to the overdamped regime. The above equat
were integrated numerically using, typically, a time stepdt
50.02– 0.05t(t51/R0J0), time averages computed wit
2 – 43105 time steps and the results averaged over 5–
different realizations of the disorder. To determine the n
linear resistivity ~or resistance in two dimensions!, rnl
5E/J, an external currentI is injected uniformly with den-
sity J5I /L along one edge of a square lattice of sizeL3L
and extracted at the opposite one, with periodic bound
conditions in the transverse direction. The average volt
drop V across the system is computed as

V5
1

L
(
j 51

L S du1,j

dt
2

duL, j

dt
D ~5!

and the average electric field byE5V/L. We have also com-
puted the linear resistance,RL5 limJ→0E/J, without finite
current effects, directly from the long-time equilibrium flu
tuations of the phase difference across the systemDu(t)
5( j 51

L (u1,j2uL, j )/L as

RL5
1

2T
@Du~ t !#2/t, ~6!

which can be obtained from Kubo formula of equilibriu
voltage-voltage fluctuations,RL5(1/2T) *dt^V(t)V(0)&,
using the Josephson relationV5du/dt. Lattices of sizesL
516, 24, and 34 were used in the simulations with the m
results obtained for the largest system size.
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The nonlinear resistanceE/J as a function of current den
sity J and temperatureT for the gauge-glass is shown in Fig
1~a! and an Arrhenius plot of the linear resistanceRL in Fig.
1~b!. They are consistent with previous results obtained
smaller systems.3 The corresponding results for the chir
glass are shown Figs. 2~a! and 2~b!. The data for both models
show the expected behavior for aT50 superconducting
transition.2,3 In Figs. 1~a! and 2~a!, the ratioE/J tends to a
finite value for smallJ, corresponding to the linear resistan
RL , which depends strongly on the temperature. This is c
firmed in Figs. 1~b! and 2~b! where the linear resistance ob
tained atJ50 from Eq.~6! is consistent with an exponentia
decrease with temperature indicating a finite energy bar
for vortex motion. For increasingJ, there is a smooth cross
over to nonlinear behavior that appears at smaller curre
for decreasing temperatures. If one assumes aT50 transi-
tion with a power-law divergent correlation lengthjT
}T2nT, and since the external current densityJ introduces
and additional length scalel;kT/J, the behavior of the non-
linear resistivity normalized toRL can be cast into the sca
ing form2,3

E

JRL
5gS J

T11nT
D , ~7!

whereg is a scaling function andg(0)51, which contains a
single parameter, the critical thermal exponentnT . This scal-
ing form implies that the characteristic current densityJnl at
which nonlinear behavior is expected to set in decreases
temperature as a power lawJnl}T11nT.

We now proceed to verify the scaling hypothesis and
tain a numerical estimate of the critical exponentnT for the
gauge and chiral glass models. Figure 3~a! shows the tem-

FIG. 1. ~a! Nonlinear resistanceE/J as a function of tempera
ture T for the gauge-glass model.~b! Arrhenius plot for the tem-
perature dependence of the linear resistanceRL .
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perature dependence ofJnl for the gauge-glass, defined a
the value ofJ where E/JRL starts to deviate from a fixed
value, chosen to be 2. The behavior is consistent wit

FIG. 2. ~a! Nonlinear resistanceE/J as a function of tempera
tureT for the chiral glass model.~b! Arrhenius plot for the tempera
ture dependence of the linear resistanceRL .

FIG. 3. ~a! Crossover current densityJnl as a function of tem-
perature for the gauge-glass model.~b! Scaling plot E/JRL

3J/T11nT for nT52.35.
a

power-law behavior and the slope of the log-log plot pr
vides a direct estimate ofnT52.2(2). Ascaling plot accord-
ing to Eq.~7! for the gauge-glass is shown Fig. 3~b! obtained
by adjusting the parameternT so that a best data collapse
obtained. The data collapse supports the scaling behavio
Eq. ~7! and provides an independent estimate ofnT52.4.
From the two independent estimates we finally getnT

gg

52.3(2), aresult consistent with a similar analysis of th
nonlinear resistivity obtained from the Coulomb-gas rep
sentation of the gauge-glass model.3 Following the same pro-
cedure for the chiral glass model, we obtainnT50.9(2) from
the log-log plot in Fig. 4~a! and nT51.2 for the best data
collapse in Fig. 4~b!, giving a final estimatenT

cg51.1(2).
The values ofnT for the gauge-glass and chiral gla

models obtained from the above analysis are quite differ
from each other suggesting different universality classes
the T50 transition. This is consistent with the addition
reflection symmetry property of the chiral glass,8,6 where
changingu i→2u i leaves the Hamiltonian of Eq.~1! un-
changed, whereas for the gauge-glass there is only a con
ous symmetry. In fact, other studies of the chiral glass6,9,10

find that theT50 transition is characterized by two differen
correlation lengths with different critical exponents,jc
}T2nc describing chiral glass order andjs}T2ns describing
phase glass~or alternatively,XY spin glass! order with the
estimatesnc;2.0 and ns;1.0. Since the relevant lengt
scale for phase slippage, which leads to voltage fluctuati
at finite temperatures is given byjs, we expect that the non
linear resistivity scaling can be described by Eq.~7! with
nT5ns , which agrees with our numerical result fornT

cg . A
more complicated scaling analysis is also possible involv
two correlation lengths but sincejs!jc at low temperatures

FIG. 4. ~a! Crossover current densityJnl as a function of tem-
perature for the chiral glass model.~b! Scaling plot E/JRL

3J/T11nT for nT51.2.
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js should dominate the resistive behavior and a sca
analysis with a single length scale is a reasonable appr
mation.

The distinct critical exponents found for the chiral a
gauge-glass models in two dimensions is in sharp cont
with the result obtained for the same models in three dim
sions by Wengel and Young11 where the critical exponents a
the finite-temperature transition agree within errors sugg
ing a common universality class. This implies that in thr
dimensions, resistivity measurement alone cannot disting
.
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between chiral and gauge-glass states. However, our re
suggest that, at least in two dimensions, measurement
nonlinear resistivity probe mainly the phase correlati
length, which has different critical exponents for the chi
and gauge-glass and could, in principle, be used to iden
as has been done for the vortex glass,4 a possible chiral glass
in two-dimensional ceramic superconductors.
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