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Current-voltage scaling of chiral and gauge-glass models of two-dimensional superconductors
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The scaling behavior of the current-voltage characteristics of chiral and gauge-glass models of disordered
superconductors, are studied numerically, in two dimensions. For both models, the linear resistance is nonzero
at finite temperatures and the scaling analysis of the nonlinear resistivity is consistent with a phase transition
at T=0 temperature characterized by a diverging correlation le&gfhi~*7 and thermal critical exponent; .

The values ofvy, however, are found to be different for the chiral and gauge-glass models, suggesting
different universality classes, in contrast to the result obtained recently in three dimensions.
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Considerable attention has been paid recently to the nas. for the chiral glass turns out to agree with the exponent
ture of the glass phase and the universality class of the poser the gauge-glass mod&l.The question then arises as to
sible glass transitions in ceramic or granular highsuper- ~ what correlation length is actually probed by nonlinear resis-
conductors. In the presence of an applied magnetic field, &ence measurements since this will determine the current-
vortex-glass phase transition with vanishing linear resistanc¥oltage scaling and the resulting behavior could be either
in the low-temperature phase has been predicted in thregonsistent withvr= v, the same as the gauge-glass model,
dimension&? while, in two dimensions, the linear resistance or vt=wvs, which could serve to identify the zero-
is nonzero at finite temperatur&sbut there is, nevertheless, temperature chiral glass transition.

a zero-temperature transitiomith a divergent correlation In this work we present a numerical study of the current-
length ¢ =TT and critical exponenvt~2 which deter- Voltage characteristics of chiral and gauge-glass models, in
mines the behavior of the current-voltage characteristics. Thvo dimensions, in a representation in terms of the phases of
absence of a finite-temperature vortex-glass transition antéhe local superconducting order parameter. For both models,
current-voltage scaling has been verified in some twowe find that the linear resistance is nonzero at finite tempera-
dimensional superconducting filfhwith a critical exponent tures and a scaling analysis of the nonlinear resistance is
v7 in agreement with theory. In the theoretical studies, aconsistent with a phase transitionTat0 temperature char-
gauge-glass model has been widely used which is believed &cterized by a diverging correlation lengfh T~ "7 and ther-

be in the same universality class as the vortex glass. In zem@al critical exponenbr, in agreement with previous work.
external field, however, only the standard superconductinghe values ofv, however, are found to be different for the
transition takes place. In contrast,davave superconductor chiral and gauge-glass models, suggesting that measurements
materials containing % junctions® a chiral-glass phase has of a nonlinear resistance probe, mainly the phase correlation
been predicted even at zero external field in three dimensiorlength and the models are in different universality classes, in
based on numerical studies of the chiral glass mddely  contrast to the result obtained in three dimensions in the
alternatively,XY spin glas$ The chiral-glass order param- vortex representatiott. Thus, in two dimensions, measure-
eter is the chirality, which represents the direction of localments of nonlinear resistance could, in principle, be used to
current loops introduced by frustration effects. As for theidentify a possible chiral glass in two-dimensional ceramic
gauge glass, in two dimensions, the chiral-glass transitiosuperconductors.

only occurs at zero temperatté°lt is well known that the The chiral glass and gauge-glass models can be described
chiral glass model has an additional reflection symmetrypy the same Hamiltonian

which gives rise %o quenching in vortices in the proposed

chiral glass phase.n spite of this, a recent study of the

current-voltage characteristics of the chiral and gauge-glass H= _‘JO% cos 60— 0;— Ayj) @
models in the vortex representattofiound that they exhibit,

within the numerical accuracy, the same critical exponents invhered; is the phase of the superconducting order parameter
three dimensions, suggesting a common universality clasef a “grain” at site i of a regular latticeJ,>0 is a constant
This would imply that resistivity measurements alone are noflosephson coupling and screening effects have been ignored.
able to distinguish between chiral and vortex glass statedn the gauge-glass modb’i',llAij represents a quenched line-
However, in two dimensions the problem has not yet beerintegral of the vector potential which is taken to be uni-
analyzed in detail although several studies have alreadformly distributed in the interval0,2#], representing the
shown that the zero-temperature chiral glass transition isombined effect of disorder and the external magnetic field,
characterized by two different divergent correlationwhile in the chiral-glass moo%Aij has a binary distribution,
lengths®®12 £ and &, with different critical exponentsy, 0 or 7, with equal probability, which may represent the
~2 andv¢~ 1, describing chiral glas®r vortex glass ordgr  phase shift across Josephson junctions in modetswéve

and phase glass order, respectively. In particular the value aferamic superconductors in the absence of a magneticfield.
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Alternatively, the chiral glass model is just another represen- o[ R T ]
tation of theXY spin glas&'°with random couplings);; = 10 (a) P i
=+ JO . [ _o-0 DB@;g/g/g
To study the current-voltage characteristics of disordered 10"k 2/828—2 O QAN vV;X/ -
superconductors described by the Hamiltonian of @&g.we g F o oa—oT0 vZZoO Co-T-07 ]
assume a resistively shunted Josephson-junctiB®) v/v/v o,o-o ~O-T=06
model for the current flow between grathand use an over- 10°F o Tostios 3
damped Langevin dynamiso simulate the nonequilibrium o —o-T=03
behavior. The Langevin equations can be written as 5
10 L L =
2 - 0
10
c d26i+ 1 d(6,-6) 10 0
0_ R A 4t 0
dtz RO J dt 10 T T T T T
(b)
:_JO; SIFI(&,—QJ—A,]) 10'1_ -
RL
+ I ieXt+ 2]: 77” ’ (2) 10-2 = .
where 1®*t is the external currenty;; represents Gaussian s
thermal fluctuations satisfying 10F . ! , A . L L3
1.5 2.0 25 3.0 3.5
(m;(1))=0, () v
kT FIG. 1. (a) Nonlinear resistanc&/J as a function of tempera-
2B L ture T for the gauge-glass modeb) Arrhenius plot for the tem-
(i (O 7)) = Ro Sij ki O(t=t), (4) perature dependence of the linear resistaRce

and a capacitance to the grou@g is allowed, in addition to
the shunt resistandg,, in order to facilitate the numerical
integration'® We use units wheré2e=1,R,=1,J,=1 and

set the parameted RSCO=O.5 in the simulations, corre-

The nonlinear resistand®/J as a function of current den-
sity J and temperaturg& for the gauge-glass is shown in Fig.
1(a) and an Arrhenius plot of the linear resistarigein Fig.
1(b). They are consistent with previous results obtained in

sponding to the overdamped regime. The above equationsmaller system3.The corresponding results for the chiral

were integrated numerically using, typically, a time s@#p
=0.02-0.05(7=1/RyJy), time averages computed with

glass are shown Figs(@ and Zb). The data for both models
show the expected behavior for B=0 superconducting

2-4x10° time steps and the results averaged over 5—1@ransition?® In Figs. Xa) and 2a), the ratioE/J tends to a
different realizations of the disorder. To determine the non{inite value for small, corresponding to the linear resistance

linear resistivity (or resistance in two dimensionspy,
=E/J, an external currentis injected uniformly with den-
sity J=1/L along one edge of a square lattice of siz&L

R., which depends strongly on the temperature. This is con-
firmed in Figs. 1b) and Zb) where the linear resistance ob-
tained atJ=0 from Eq.(6) is consistent with an exponential

and extracted at the opposite one, with periodic boundarglecrease with temperature indicating a finite energy barrier
conditions in the transverse direction. The average voltagéor vortex motion. For increasing, there is a smooth cross-

drop V across the system is computed as

1 L
v=—> ( (5)

dé,; dGL,j)
=1

dt dt

and the average electric field B=V/L. We have also com-
puted the linear resistanc® =lim;_yE/J, without finite
current effects, directly from the long-time equilibrium fluc-
tuations of the phase difference across the sysfefit)
=37_(01;— 6, ))/L as

1
_ = 2
which can be obtained from Kubo formula of equilibrium
voltage-voltage fluctuations,R, = (1/2T) [dt{V(t)V(0)),
using the Josephson relatidh=d6/dt. Lattices of sized

over to nonlinear behavior that appears at smaller currents
for decreasing temperatures. If one assum@s=® transi-
tion with a power-law divergent correlation length;
«T~"T, and since the external current densityntroduces
and additional length scale-kT/J, the behavior of the non-
linear resistivity normalized t&®, can be cast into the scal-
ing form?:3
J
Titvr !

whereg is a scaling function and(0)= 1, which contains a
single parameter, the critical thermal exponept This scal-
ing form implies that the characteristic current densityat
which nonlinear behavior is expected to set in decreases with
temperature as a power ladyoc T,

We now proceed to verify the scaling hypothesis and ob-

Y

=16, 24, and 34 were used in the simulations with the mairtain a numerical estimate of the critical exponertfor the

results obtained for the largest system size.

gauge and chiral glass models. Figui@ 3hows the tem-
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FIG. 2. (&) Nonlinear resistanc&/J as a function of tempera-
tureT for the chiral glass mode(b) Arrhenius plot for the tempera-
ture dependence of the linear resistaRge
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FIG. 4. (a) Crossover current densit}, as a function of tem-
perature for the chiral glass modelb) Scaling plot E/JR,
X TP for vr=1.2.

perature dependence 6f, for the gauge-glass, defined as power-law behavior and the slope of the log-log plot pro-
the value of] whereE/JR, starts to deviate from a fixed vides a direct estimate of;=2.2(2). Ascaling plot accord-
value, chosen to be 2. The behavior is consistent with dng to Eq.(7) for the gauge-glass is shown FigbBobtained
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FIG. 3. (a) Crossover current densit},, as a function of tem-
perature for the gauge-glass modéb) Scaling plot E/JR,
X TV for vr=2.35.

by adjusting the parametet so that a best data collapse is
obtained. The data collapse supports the scaling behavior of
Eqg. (7) and provides an independent estimatevef=2.4.
From the two independent estimates we finally géf
=2.3(2), aresult consistent with a similar analysis of the
nonlinear resistivity obtained from the Coulomb-gas repre-
sentation of the gauge-glass modé&lollowing the same pro-
cedure for the chiral glass model, we obtaip=0.9(2) from

the log-log plot in Fig. 48) and vt=1.2 for the best data
collapse in Fig. &), giving a final estimate/$%=1.1(2).

The values ofyvy for the gauge-glass and chiral glass
models obtained from the above analysis are quite different
from each other suggesting different universality classes for
the T=0 transition. This is consistent with the additional
reflection symmetry property of the chiral gld<swhere
changing #,— — 6; leaves the Hamiltonian of Eql1) un-
changed, whereas for the gauge-glass there is only a continu-
ous symmetry. In fact, other studies of the chiral dfids8
find that theT =0 transition is characterized by two different
correlation lengths with different critical exponent§,
T~ e describing chiral glass order arg=T ™ "s describing
phase glassor alternatively,XY spin glas$ order with the
estimatesv.~2.0 and v,~1.0. Since the relevant length
scale for phase slippage, which leads to voltage fluctuations
at finite temperatures is given ldy, we expect that the non-
linear resistivity scaling can be described by E@). with
vr=rvg, Which agrees with our numerical result fo}?. A
more complicated scaling analysis is also possible involving
two correlation lengths but sinég<< ¢ at low temperatures,
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& should dominate the resistive behavior and a scalindetween chiral and gauge-glass states. However, our results

analysis with a single length scale is a reasonable approxsuggest that, at least in two dimensions, measurements of

mation. nonlinear resistivity probe mainly the phase correlation
The distinct critical exponents found for the chiral and length, which has different critical exponents for the chiral

gauge-glass models in two dimensions is in sharp contrag@nd gauge-glass and could, in principle, be used to identify,

with the result obtained for the same models in three dimen@S has been done for the vortex glasspossible chiral glass

sions by Wengel and Youhbwhere the critical exponents at N two-dimensional ceramic superconductors.

the finite-temperature transition agree within errors suggest- This work was supported by FAPESFGrant No.

ing a common universality class. This implies that in threeg7/07250-8. Allocation of computer time at the Plasma

dimensions, resistivity measurement alone cannot distinguisGroup (LAP/INPE) is gratefully acknowledged.
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