

INPE-13036-PRE/8313

DETERMINAÇÃO DE PARÂMETROS DE ONDAS DE CHOQUE NO MEIO INTERPLANETÁRIO

Vânia Fátima Andrioli*

*Bolsista UFSM

Relatório Final de Projeto de Iniciação Científica (PIBIC/CNPq/INPE), orientado pelo Dr. Ezequiel Echer

> INPE São José dos Campos 2005

DETERMINAÇÃO DE PARÂMETROS DE ONDAS DE CHOQUE NO MEIO INTERPLANETÁRIO

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA PIBIC/INPE - CNPq/MCT

Vânia Fátima Andrioli (UFSM, Bolsista PIBIC/INPE – CNPq/MCT) E-mail: <u>vania@lacesm.ufsm.br</u>

Dr. Ezequiel Echer (DGE/CEA/INPE-MCT, Orientador) E-mail: <u>eecher@dge.inpe.br</u>

Santa Maria, Maio de 2005

Dados de Identificação:

Bolsista:

Vânia Fátima Andrioli

Acadêmica do Curso de Física Licenciatura Plena

Universidade Federal de Santa Maria - UFSM

Processo N°:

Processo CNPq N° 119579/2004-9

Orientador:

Ezequiel Echer Divisão de Geofísica Espacial – DGE/CEA/INPE - MCT Instituto Nacional de Pesquisas Espaciais – INPE/MCT

Título do Projeto:

DETERMINAÇÃO DE PARÂMETROS DE ONDAS DE CHOQUE NO MEIO INTERPLANETÁRIO

Local de execução do projeto

- Laboratório de Ciências Espaciais de Santa Maria LACESM/CT/UFSM.
- Laboratório de Raios Cósmicos e Previsão de Tempestades Magnéticas CRSPE/INPE-MCT, em Santa Maria, RS

Pesquisadores e Estudantes Colaboradores:

- Dr. Nelson Jorge Schuch CRSPE/INPE-MCT
- Dr. Alisson Dal Lago DGE/CEA/INPE MCT
- Dr. Luiz Eduardo Vieira DGE/CEA/INPE MCT
- Mestrando Marlos Rockenbach da Silva INPE/MCT
- Acadêmico Jairo Francisco Savian UFSM

"A Humanidade não ficará na Terra para sempre, mas na sua busca de luz e espaço irá primeiro timidamente penetrar para lá dos confins da atmosfera, e mais tarde conquistar para si própria todo o espaço perto do Sol".- Konstantin E. Tsiolkovsky

Aos meus pais, LUIS SANTINO ANDRIOLI e SIRLEI MELANIA ANDRIOLI

AGRADECIMENTOS

A bolsista gostaria de agradecer aos seus pais, Luis e Sirlei Andrioli pelo dom da vida, bem como o apoio moral e financeiro, estimulando a continuação dos estudos e a resolução dos problemas com garra e vontade de vencer. A eles é dedicado cada mérito recebido.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq/MCT, pela oportunidade oferecida através do Programa PIBIC/CNPq/MCT, possibilitando e incentivando estudantes da graduação a interessarem-se pelo mundo Científico, formando mentes pensantes para a desenvoltura do futuro da Ciência.

À missão ACE, Advanced Composition Explorer pelo fornecimento dos dados interplanetários de plasma e campo magnético possibilitando a realização do Projeto.

Do mesmo modo, gostaria de agradecer ao Dr. Ezequiel Echer pela dedicação e orientação deste trabalho, não medindo esforços para que os conceitos físicos fossem assimilados e o projeto fosse desenvolvido da melhor forma possível.

Agradecer aos alunos do Laboratório de Clima Espacial e Previsão de Tempestades Geomagnéticas pela amizade, companheirismo e colaboração na execução desse Projeto.

Agradecimento especial ao Dr Nelson Jorge Schuch por disponibilizar espaço físico no Laboratório de Clima Espacial e Tempestades Geomagnéticas no Centro Regional Sul de Pesquisas Espaciais – CRSPE/INPE – MCT. Pelo tempo dedicado na correção de trabalhos dando incentivo e apoio na produção científica.

Em fim agradecer a Deus pelos mistérios dos fenômenos físicos permitindo assim o prazer da descoberta por meio de investigações.

RESUMO

Ondas Magnetohidrodinâmicas viajam no meio interplanetário, permeado pelo Vento Solar, um plasma magnetizado sem colisões, onde diversos fatores podem levar a ocorrência de choques. Um exemplo é a Atividade Solar, onde variações proporcionais são observadas quando comparamos o ciclo de Atividade Solar e a ocorrência de ondas de choque interplanetárias. Podemos identificar a ocorrência desses choques através da análise dos parâmetros interplanetários de plasma, como densidade de prótons, temperatura e velocidade do Vento Solar, e de campo magnético, a partir de observações *in-situ* no Vento Solar. Na realização deste trabalho utilizamos dados da sonda ACE, Advanced Science Explorer, com o objetivo de analisar as variações dos parâmetros do meio interplanetário, utilizando as Equações de Ranquine-Hugoniot, e classificar os tipos de choques através de seus perfis. Neste trabalho são calculadas as variações desses parâmetros e elaborado um catálogo com a ocorrência de choques interplanetários no período do máximo de atividade solar 2000-2001, classificando cada evento de acordo com o perfil de choque.

SUMÁRIO

LISTA DE FIGURAS			
LISTA DE TABELAS			
CAPÍTULO 1			
INTRODUÇÃO12			
– JUSTIFICATIVA			
CAPÍTULO 2			
2.1 INT	RODUÇÃO ÀS ONDAS DE CHOQUE		
2.1.1	Ondas Sonoras		
2.2 FIS	ICA DE PLASMA	10	
2.2.1	Movimento de uma particula	10	
2.2.2	Conjunto de particulas		
2.3 0 5	O Comme Magnétice de Sel	20	
2.3.1	Vente Seler		
2.3.2	Atividada da Sal	24 27	
2.3.3	DAS DE CHOOLE NO MEIO INTEDDI ANETÁDIO	27 30	
2.4 01	Classificação dos Choques		
2.4.1 2 4 2	Equações de Rankini-Hugoniot	32	
2.4.3	Choques perpendiculares	35	
2.4.4	Choques paralelos	36	
2.4.5	Número de Mach		
2.4.6	Possíveis origens para ondas de choque no espaco interplanetário.		
2.4.7	A Espaçonave ACE	40	
CAPÍTULO 3	3		
MATERIAIS	E MÉTODOS UTILIZADOS PARA ANÁLISE DOS DADOS		
CAPÍTULO 4	4		
RESULTADO E ANÁLISE			
4.1 Atividade do bolsista			

4.2	Perspectivas Futuras	0
4.3	Redução e análise dos dados	1
CAPÍTU	ILO 56	1
CONCL	USÕES E TRABALHOS FUTUROS6	1
REFERÊ	ÈNCIAS	3
APÊNDI	ICE A	5
APÊNDI	ICE B	8
APÊNDI	ICE C7	1
APÊNDI	ICE D	8
APÊNDI	ICE E	3
ANEXO	A	8
ANEXO	B	C
ANEXO	C	2
ANEXO	D	4

LISTA DE FIGURAS

FIGURA 1– ONDA DE CHOQUE OU CONE DE MACH15
FIGURA 2.2 - ESQUEMA MOSTRANDO O MOVIMENTO DAS PARTÍCULAS,
PRÓTON E ELÉTRON, EM UM CAMPO MAGNÉTICO B UNIFORME
NA PRESENÇA DE UM CAMPO ELÉTRICO, E, PERPENDICULAR À
B. O DIAGRAMA REPRESENTA O MOVIMENTO NUM PLANO
PERPENDICULAR AO CAMPO MAGNÉTICO. PARA AMBOS SINAIS
DAS CARGAS O MOVIMENTO SE DÁ COM VELOCIDADE
CONSTANTE, NÃO AFETADA PELA PRESENÇA DOS CAMPOS 18
FIGURA 2.3 - DIAGRAMA SOLAR IDENTIFICANDO CADA COMPONENTE
FIGURA 2.5 - DIAGRAMA MOSTRANDO A ATIVIDADE SOLAR DO CICLO
SOLAR 23
FIGURA 2.6 - IMAGENS DO CORONÓGRAFO LASCO C2 E C3,
RESPECTIVAMENTE, DE UMA ECM DO DIA 18 DE NOVEMBRO DE
2003
FIGURA 2.7- ILUSTRAÇÃO DA ESPAÇONAVE ACE DEMONSTRANDO OS
MAGNETOMETROS
FIGURA 2.8 – REPRESENTAÇÃO DA ORBITA DA ESPAÇONAVE ACE41
FIGURA 3. 1 – MOSTRA A IMAGEM DA TELA DO ORIGIN COM OS DADOS DA
ESPAÇONAVE ACE SEGUNDO A RELAÇAO ACIMA
MENCIONADA. EM DESTAQUE EM VERMELHO ALGUNS
EXEMPLOS DE DADOS QUE SERÃO ELIMINADOS, POIS SÃO
CONSIDERADOS ERROS DO EQUIPAMENTO
FIGURA 3. 2 - MOSTRA OS DADOS PROCESSADOS, OU SEJA, SEM OS
VALORES CONSIDERADOS ERROS
FIGURA 3. 3 - DIAGRAMA ILUSTRANDO OS PERFIS DE QUATRO TIPOS
DIFERENTES DE CHOQUES: FRONTAIS RAPIDOS, FRONTAIS
LENIUS, REVERSUS RAPIDUS E REVERSUS LENIUS, COM A
RESPECTIVA VARIAÇÃO NOS PARAMETROS DE PLASMA E
CAMPO MAGNETICOINTERPLANETARIO
FIGURA 5. 4 - MUSTRA A DIVISAU DU GRAFICU EM 5 JANELAS, AS LINHAS
REPRESENTAM AS REGIOES UPSTREAM (U), CHOQUE (S) E
DOWNSTREAM (D). ESTE METODO FOI UTILIZADO PARA O
EICLIDA 4 1 DEDECENTAÇÃO DA CUECADA DE LIM CUOQUE INDICADA
FIGURA 4. I- REPRESENTAÇÃO DA CHEGADA DE UM CHOQUE, INDICADA
CIMA DADA DAIVO D (NT) MÓDULO DA INTENSIDADE DO
CINIA FARA DAIAO D (INT), MODULO DA INTENSIDADE DU CAMDO MACNÉTICO INTEDDI ANETÁDIO ND (CM^{-3}) DENSIDADE
CANTO MAGNETICO INTERPLANETARIO, NE (UNI), DENSIDADE DE DIASMA TO (V) TEMDEDATUDA DO VENTO SOLADE VSW
(KM/S) VELOCIDADE DO VENTO SOL AD
$(\mathbf{M}\mathbf{W}\mathbf{S}) \mathbf{V} \mathbf{E} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$

FIGURA 4. 2 - CHOQUE FRONTAL LENTO OBSERVADO NO DIA 19 DE
JANEIRO DE 2002. DADOS DO CAMPO MAGNÉTICO TOTAL E
PLASMA DO ACE54
FIGURA 4. 3 - CHOQUE REVERSO RÁPIDO INDICADO PELA LINHA
PONTILHADA. OBSERVADO NO DIA 14 DE MAIO DE 2001. DADOS
DO CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE55
FIGURA 4. 4 - CHOQUE REVERSO LENTO, OBSERVADO NO DIA 03 DE
MARÇO DE 2002. DADOS DE CAMPO MAGNÉTICO TOTAL E
PLASMA DO ACE
FIGURA 4. 5 - GRÁFICO DAS PERCENTAGENS DE TIPO DE CHOQUES
OCORRIDOS NO PERÍODO DE DECLÍNIO DO CICLO SOLAR, 2002 –
2003
FIGURA 4. 6 – DIAGRAMA MOSTRANDO OS TOTAIS DE EVENTOS DE
CHOQUES OCORRIDOS EM CADA ANO CORRESPONDENTE. OS
VALORES ACIMA DE CADA COLUNA CORRESPONDEM À
QUANTIDADE DE EVENTOS IDENTIFICADOS NAQUELE ANO 60
FIGURA A 1 - CHOQUE OBSERVADO EM 26 DE FEVEREIRO DE 2003, DADOS
DE CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE
FIGURA A 2 - CHOQUE OBSERVADO EM 22 DE OUTUBRO DE 2001, DADOS DE
CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE
FIGURA A 3 -CHOQUE OBSERVADO EM 17 DE JANEIRO DE 2000, CAMPO
MAGNÉTICO TOTAL E PLASMA, ACE
FIGURA A 4 - CHOQUE OBSERVADO EM 06 DE JUNHO DE 2001, DADOS DE
CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE
FIGURA A 5 - CHOQUE OBSERVADO EM 10 DE OUTUBRO DE 1999, DADOS DE
CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE
FIGURA A 6 -CHOQUE REVERSO RÁPIDO, OBSERVADO EM 25 DE MAIO DE
1999, DADOS DE CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE 79
FIGURA A 7 - CHOQUE FRONTAL RÁPIDO, OBSERVADO EM 26 DE
NOVEMBRO DE 2002, DADOS DE CAMPO MAGNÉTICO TOTAL E
PLASMA DO ACE
FIGURA A 8 - CHOQUE REVERSO RÁPIDO, OBSERVADO EM 06 DE
FEVEREIRO DE 2002, DADOS DE CAMPO MAGNÉTICO TOTAL E
PLASMA DO ACE
FIGURA A 9 - CHOQUE FRONTAL RÁPIDO, OBSERVADO EM 23 DE MAIO DE
2002, DADOS DE CAMPO MAGNÉTICO TOTAL E PLASMA DO ACE. 82

LISTA DE TABELAS

TABELA A – PROPRIEDADES TÍPICAS DE PLASMAS. FONTE - ADAPTADA DE
KIVELSON E RUSSEL (1995) PÁGINA 41. THE PLASMA STATE 19
TABELA B - PROPRIEDADES DO VENTO SOLAR OBSERVADOS PRÓXIMOS A
ÓRBITA DA TERRA (1UA)25
TABELA 4.1– EXEMPLO DO CÁLCULO DA VARIAÇÃO DE PARÂMETROS
PARA CADA TIPO DE CHOQUE ONDE, OS SUBSCRITOS, U E D,
REPRESENTAM RESPECTIVAMENTE UPSTREAM E
DOWNSTREAM. US REPRESENTA A VELOCIDADE DO CHOQUE
MEDIDAS POR UMA ÚNICA ESPAÇONAVE, E R B E R NP
REPRESENTAM AS RAZÕES ENTRE OS VALORES DOWNSTREAM
E UPSTREAM DA INTENSIDADE DO CAMPO MAGNÉTICO E DA
DENSIDADE RESPECTIVAMENTE
TABELA A1 – CÁLCULO DE VARIAÇÃO DE PARÂMETROS PARA O CHOQUE
DO DIA 25 DE MAIO DE 1999
TABELA A2 – CÁLCULO DA VARIAÇÃO DE PARÂMETROS DO CHOQUE
OCORRIDO NO DIA 26 DE NOVEMBRO DE 2002
TABELA A3 – CALCULO DA VARIAÇÃO DE PARAMETROS DO CHOQUE
OCORRIDO EM 06 DE FEVEREIRO DE 2002
TABELA A5 – LISTA DOS CHOQUES DE 2000 84
TABELA A6 - LISTA DOS CHOQUES DE 2001
TABELA A7 - LISTA DOS CHOQUES 2002 86
TABELA A8 – LISTA DOS CHOQUES 2003 87

CAPÍTULO 1

INTRODUÇÃO

- JUSTIFICATIVA

O ser humano em busca de novas tecnologias visando aprimorar sua vida, utiliza-se de instrumentos eletrônicos os quais podem ter o funcionamento prejudicado pelos efeitos das variabilidades do Clima Espacial. O estudo das ondas de choque interplanetárias faz-se necessário uma vez que, este estudo poderá contribuir para futuras técnicas de previsão das estruturas interplanetárias capazes de provocar Tempestades Geomagnéticas as quais são danosas a muitos equipamentos eletrônicos.

- O PROJETO "DETERMINAÇÃO DE PARÂMETROS DE ONDAS DE CHOQUE NO MEIO INTERPLANETÁRIO"

Este Projeto de atividades de Iniciação Científica no Programa PIBIC/INPE - CNPq//MCT tem por objetivo capacitar o bolsista a identificar ondas de choque no meio interplanetário a partir de observações *in-situ* no vento solar; capacitar o bolsista a adquirir conhecimentos físicos básicos referentes à propagação de ondas de choque no espaço interplanetário e de seus efeitos sobre a magnetosfera terrestre. O plano do bolsista consiste em estudos básicos da relação Sol-Terra e da física de ondas de choque sem colisões; da aquisição de dados de plasma e campo magnético medidos por sondas do vento solar e de índices geomagnéticos, a partir da Internet; da organização destes dados; do desenvolvimento de programas para análise dos dados e geração de gráficos; da identificação dos eventos de ondas de choque no espaço interplanetário durante o ano 2000 e 2001 do máximo do ciclo solar 23, com a elaboração de um catálogo de choques; do cálculo dos parâmetros de choques e seus efeitos magnetosféricos (impulsos súbitos); estudar a transformada ondeleta de Haar para aplicação no estudo de choques.

CAPÍTULO 2

2.1 INTRODUÇÃO ÀS ONDAS DE CHOQUE

Introduzimos nosso estudo das ondas de choque no meio interplanetário, estudando e relatando alguns tópicos das ondas sonoras. Estes tópicos nos ajudarão a entender melhor o fenômeno das ondas de choque no meio interplanetário, fazendo-se associações entre o fenômeno ocorrido nas ondas sonoras com o ocorrido no meio interplanetário.

2.1.1 Ondas Sonoras

Ondas elásticas também são chamadas de som. Na linguagem comum, o conceito de som está relacionado à sensação de audição. Sempre que uma onda elástica, propagando-se através de um gás, um líquido, ou um sólido atinge o nosso ouvido, ela produz vibrações na membrana do ouvido. Essas vibrações provocam uma resposta dos nervos constituindo o processo conhecido como audição. (Alonso e Finn, 1972).

O som envolve o deslocamento de átomos e moléculas do meio através do qual ele se propaga. Mas este deslocamento constitui um movimento coletivo ordenado em que todos os átomos, em volume pequeno, sofrem o mesmo deslocamento. Portanto esse movimento ordenado sobrepõe-se à agitação molecular ao acaso, ou desordenada, dos líquidos e gases. O resultado global é que enquanto a onda sonora se propaga, a intensidade do som diminui ou é atenuada, porque parte da energia da onda é dissipada nas colisões entre as moléculas do meio. (Alonso e Finn, 1972).

2.1.1.1 A velocidade do som

A velocidade da onda sonora varia de acordo com as propriedades do meio em que está se propagando e é dada por:

$$v = \sqrt{\frac{B}{\rho}}$$
 Equação 2-1

onde ρ é a densidade do meio e **B** é o módulo de compressão volumétrica, definido por

$$B \equiv -\frac{\Delta p}{\Delta V/V}$$
Equação 2-2

onde uma mudança na pressão Δp causa uma mudança no volume ΔV de um meio.

A velocidade de propagação do som, num intervalo muito grande de freqüências que se estendem acima de 10^8 Hz, é praticamente independente da freqüência. Entretanto, devido à dependência da velocidade em relação à densidade, a velocidade de propagação é bastante sensível às variações de temperatura e de pressão.(Alonso e Finn, 1972).

2.1.1.2 Cone de Mach ou Ondas de Choque

Quando o observador está em repouso em relação a uma fonte sonora que se movimenta com uma velocidade maior que v, velocidade do som naquele meio ocorre uma situação especial. Em um dado tempo, a fonte avança mais do que a frente de onda; por exemplo, se em um intervalo de tempo t, a fonte move-se de A para B, FIGURA 2.1, a onda emitida em A apenas caminha de A para A'. a superfície tangente a todas as ondas sucessivas é um cone cujo eixo é a linha de movimento da fonte e cuja abertura α é dada por:

$$sen\alpha = \frac{V}{Vs}$$
 Equação 2-3

O movimento ondulatório resultante é, portanto, uma onda cônica que se propaga como indica a FIGURA 2.1. Algumas vezes, essa onda é chamada de onda de Mach, ou uma onda

de choque, e constitui o som repentino e violento que ouvimos quando um avião supersônico passa por perto. (Alonso e Finn, 1972).

FIGURA 1– Onda de Choque ou Cone de Mach. FONTE: Alonso e Finn, 1972, vol II, página 277.

Assim, quanto maior for a velocidade supersônica do objeto, menor será o ângulo de abertura do cone de Mach. Todas as seções das ondas junto à superfície cônica têm a mesma forma e se superpõem, reforçando-se mutuamente. A onda de choque é uma estrutura cônica delgada de ar a uma pressão muito maior que a pressão atmosférica normal e que se arrasta por trás do objeto A formação dessas ondas sonoras consome energia do corpo. Em outras palavras, o corpo sofre uma força de resistência ao seu movimento. As

ondas sonoras se amortecem com o tempo devido ao seu espalhamento por uma região do espaço cada vez maior e devido ao atrito interno do próprio gás (viscosidade).

2.2 FÍSICA DE PLASMA

Outro aspecto importante que nos ancora no entendimento das ondas de choque no meio interplanetário é o estudo do da física do plasma, pois nos da fundamentação teórica necessária para compreender o meio de propagação dessas ondas.

2.2.1 Movimento de uma partícula

O plasma é um gás ionizado, porém macroscopicamente neutro. Consiste de partículas carregadas e de partículas neutras, sendo que a quantidade de partículas neutras pode variar bastante desde uns poucos por cento ou menos, atmosfera solar, até uma quantidade de neutros igual ao de íons, ionosferas. O papel das forças magnética e elétrica é útil para entender o comportamento do plasma. Isto nos faz presumir que as equações de importância na física de plasma devem conter forças eletromagnéticas. Se um campo elétrico \vec{E} e um campo magnético \vec{B} atuam em uma partícula com carga q e velocidade \vec{v} , esta partícula experimenta uma força $\vec{F_L}$, chamada de força de Lorentz:

$$\vec{F}_{L} = q\vec{E} + q(\vec{v} \times \vec{B})$$
 Equação 2-4 – Equação da Lei das forças Lorentz

Esta equação da forma que está expressa aqui, é trabalhada no Sistema Internacional de Unidades, expressando massa, comprimento e tempo em: quilograma (Kg), metros (m) e segundos (s) respectivamente. Assim também é expresso, campo elétrico \vec{E} , em Volts por metro, (V/m) a carga é expressa em Coulomb (C).

Através das Leis de Newton nós temos que a variação do momento é dada por:

$$m\frac{d\vec{v}}{dt} = q\vec{E} + q\vec{v} \times \vec{B} + \vec{F_g}$$

Equação 2-5 – Equação relacionando a equação 1 com as Leis de Newton da conservação do momento

onde \vec{F}_g representa as forças não eletromagnéticas, e sim forças gravitacionais que podem estar presentes. Normalmente podemos considerar que a influencia dessas forças sejam pequenas assim podemos dizer que $\vec{F}_g = 0$. Porém \vec{F}_g é muito importante, por exemplo, no estudo da coroa solar ou na ionosfera planetárias.

O movimento circular em um campo magnético uniforme não varia a energia cinética da partícula, $\frac{1}{2}mv^2$, como pode ser observado através da Equação 2-5, com $\overline{E} = 0$ e fazendo o produto escalar com o vetor velocidade obtemos:

$$m\frac{d\vec{v}}{dt}\cdot\vec{v} = \frac{d(\frac{1}{2}mv^2)}{dt} = q\vec{v}\cdot(\vec{v}\times\vec{B}) = 0$$
 Equação 2-6

Se o campo magnético não desaparece, ou se existir o gradiente no campo magnético, o movimento da partícula será modificado. No plasma espacial, até mesmo se existe um campo elétrico, ele é fraco que nos possibilita supor que a componente paralela ao campo magnético é nula. ($\vec{E} \cdot \vec{B} = E_{\parallel} B = 0$). Isto porque a Equação 1-3, com $\vec{F}_g = 0$, diz nos que somente um campo elétrico pode exercer força ao longo de \vec{B} . A força move a partícula carregada positivamente na direção paralela à \vec{E} e a partícula carregada negativamente na direção oposta.

A resposta de uma partícula carregada para uma componente perpendicular à \vec{E} é totalmente diferente. Devido a este aspecto do movimento da partícula, é muito importante na notificação de propriedades especiais do plasma. É importante que se entenda não

somente matematicamente como é o comportamento dessas partículas, mas como é o movimento das partículas positivas e negativas em um campo magnético uniforme, se um campo elétrico perpendicular ao campo magnético esteja presente. Imaginamos primeiramente que somente o campo magnético esteja presente. A partícula giraria em círculos, e a direção do giro dependeria do sinal da carga da partícula,m porém seu deslocamento será perpendicular à **E**, e não depende do sinal da carga, veja na FIGURA 2.2. O raio do circulo variaria com a massa da partícula e então seria muito maior para uma carga positiva do que para uma carga negativa, visto que a massa do próton é maior que a massa do elétron, se suas velocidades forem às mesmas. A força elétrica acelera a partícula durante parte de cada órbita. O resultado é que sua órbita será um espiral.

FIGURA 2.2 - Esquema mostrando o movimento das partículas, próton e elétron, em um campo magnético B uniforme na presença de um campo elétrico, E, perpendicular à B. o diagrama representa o movimento num plano perpendicular ao campo magnético. Para ambos sinais das cargas o movimento se dá com velocidade constante, não afetada pela presença dos campos.

FONTE: Adaptada de Kivelson E Russell (1995).

A velocidade u da partícula obedece a seguinte equação:

$$\vec{u} = \left(\vec{E} \times \vec{B}\right) / B^2$$

Equação 2-7

Como observamos a velocidade é perpendicular a ambos, campo elétrico e magnético.

2.2.2 Conjunto de partículas

Até este momento descrevemos o movimento de uma única partícula. O plasma consiste em um conjunto de partículas, algumas carregadas positivamente e outras negativamente e muitas delas com diferentes velocidades. As aproximações são bastante sensíveis. Nós descrevemos as propriedades de um grande número de partículas dizendo quantas delas existem por unidade de volume, ou seja, a densidade de plasma e por meio de cálculos específicos, que não entraremos em detalhes neste relatório, encontramos a velocidade média do fluxo dessas partículas.

Qualitativamente o plasma ideal é tratado como sendo um gás ionizado eletricamente neutro de baixa densidade e altíssimas temperaturas. Como exemplos de plasma temos: vento solar, ionosfera auroral entre outros.

A tabela abaixo mostra as propriedades características do plasma.

Tabela A – Propriedades típicas de plasmas. Fonte - Adaptada de Kivelson e Russel (1995) página 41. The plasma state

Tipo de plasma	Densidade(m ⁻³)	Temperatura (eV)
Interestelar	10^{6}	10-1
Vento solar	10^{7}	10
Coroa solar	10^{12}	10^{2}
Atmosfera solar	10^{20}	1
Magnetosfera	10^{7}	10^{3}
Ionosfera	10^{12}	10 ⁻¹

Felizmente, as propriedades comuns do plasma são governadas pelas leis básicas de conservação da massa, momentum e energia em um fluido. Se os efeitos dos campos eletromagnéticos pudessem ser ignorados, as equações relevantes do fluido são as equações da hidrodinâmica, mas como os campos elétrico e magnético e corrente são sempre muito importantes em plasma, devemos incluir estes efeitos. Aqui devemos introduzir então as equações da Magnetohidrodinâmica – MHD. Estas equações englobam as leis da mecânica familiar, mas também consideram as propriedades eletromagnéticas

2.3 O SOL

O estudo da física solar faz-se indispensável para a compreensão do estudo das ondas de choque no meio interplanetário, pois o Sol é a fonte, princípio, dessa fenomenologia. O Sol embora seja considerado uma bola de plasma, possui várias camadas distintas como pode ser observado na FIGURA 2.3.

FIGURA 2.3 - Diagrama Solar identificando cada componente FONTE: Adaptado de http://www.spaceweathercenter.org/>

O Núcleo é a camada que produz uma enorme quantidade de energia. Em conseqüência da alta pressão e da alta temperatura, existentes neste local, dois átomos de hidrogênio se unem formando o átomo de hélio, este processo é conhecido como fusão nuclear. A energia produzida no Núcleo atravessa lentamente uma região muito densa, a Zona Radiativa. A transferência dessa energia para a superfície é feita pela Zona Convectiva, como o próprio nome sugere ocorrem correntes de convecção semelhantes as que ocorrem quando a água ferve. Acredita-se que o campo magnético do Sol forme-se na região entre a Zona Radiativa e a Zona Convectiva. A Fotosfera emite radiação na faixa do visível do espectro eletromagnético, assim sendo a primeira camada visível aqui da Terra, então definida como superfície solar. Porém o Sol não possui uma superfície como o caso da Terra. A Fotosfera é a primeira região onde o processo de absorção de radiação permite que nossos olhos vejam algo. A camada solar mais externa é a Coroa Solar, ela é visualizada quando a Lua encobre o disco solar durante um eclipse. É a zona em que aparecem as *proeminências*, nuvens imensas de gás brilhante que emergem da cromosfera superior, envolta em campos magnéticos intensos estas proeminências podem liberar no espaço enorme quantidade de energia. A zona exterior da coroa alonga-se muito pelo espaço e consiste de partículas que se afastam lentamente do Sol.

O espectro de radiação solar segue a lei de Planck com boa aproximação, comportando-se como um corpo negro emitindo energia no espaço. As regiões extremas do espectro solar, comprimento de onda menor que $10^3 \text{ A}^{\circ}(\text{x}10^{-10}\text{ m})$ e maior que 10^7 A° , são as mais afetadas durante fenômenos associados às tempestades e erupções solares (Kirchhoff, 1991). As radiações solares provém de 3 camadas da atmosfera solar, Cromosfera, Coroa e a Fotosfera.

A radiação mais intensa, no espectro do visível, tem como origem à Fotosfera. Esta camada possui cerca de 500Km de espessura, uma densidade de 10^{23} m⁻³ e a temperatura decresce com a distância do centro do Sol variando de 500.000K a 5.000K. A camada intermediária é a cromosfera ela é composta de gases, basicamente hidrogênio e hélio,

possui uma espessura de aproximadamente 2.500Km e densidade de 10^{17} m⁻³, é fonte da radiação ultravioleta que chega na Terra. Nessa camada ocorre um fenômeno curioso, a temperatura volta a crescer, enquanto a temperatura na superfície visível do Sol é de aproximadamente 6.000K na cromosfera atinge temperaturas superiores a 1000.000K. O modelo mais antigo para a explicação desse fenômeno, dada pelos astrônomos que o descobriram, é que "...parte da energia que chega na cromosfera é acústica, som e ruídos, que ao chegar na cromosfera são dissipados na forma de calor, como nesta região os gases são rarefeitos essa dissipação é suficiente para elevar a temperatura aos valores observados..." [Universidade Federal do Ceará, http://www.fisica.ufc.br/ativsolar/ativsolar1.htm], porém modelos mais recentes atribuem este papel a dissipação de ondas MHD, pois o interior do Sol é muito opaco, tal como névoa densa, e a radiação experimenta varias deflexões. Se essa radiação viesse diretamente para fora chegaria na superfície em apenas 2 segundos, mas há muito espalhamento que ela leva 10milhões de anos! (Kivelson e Russell, 1995, pág. 61). A camada mais externa do Sol, acima da Cromosfera, é a chamada Corona Solar, ela apresenta temperaturas muito altas, da ordem de milhões de K, acredita-se que este fenômeno também seja explicado devido à densidade da Corona ser ainda menor que a da Cromosfera, o fenômeno de aumento de temperatura é acentuado devido à dissipação da energia na forma de calor. Essa camada não é bem definida seus limites confundem-se com o meio interplanetário, assim não é possível dar uma mediada precisa de sua espessura.

2.3.1 O Campo Magnético do Sol

Acredita-se que os fenômenos que ocorrem na coroa estão fortemente ligados à presença de intensos campos magnéticos que se originam em regiões internas do Sol e se espalham pela parte externa. Diferentemente do campo magnético da Terra que é aproximadamente constante e vai de um pólo a outro, as linhas de campo magnético na superfície do Sol são inteiramente irregulares. Como veremos adiante, elas estão associadas ao comportamento das chamadas "manchas solares", são regiões mais frias (cerca de 2000

K) e mais escuras (por efeito de contraste) do que a fotosferas solar circunvizinhanças. Elas emitem menos energia do que a fotosfera em geral porque possuem intensos campos magnéticos (cerca de 1000 vezes mais intensos que a superfície solar normal, 0,1 T contra 10^{-4} T, onde T = Tesla) que parcialmente bloqueiam a energia transmitida para cima pelas células de convecção na região sub-fotosférica (Eddy, 1976; Schove, 1983; Kivelson and Russel, 1995). De maneira geral é dessa variabilidade do campo magnético a responsabilidade da ocorrência da maioria dos fenômenos das atividades solares as quais estudaremos a seguir.

O Sol possui um campo magnético, cuja intensidade é da ordem de 10^{-4} T(Tesla) na superfície da Fotosfera. Este campo é aproximadamente dipolar - Pneuman e Kopp, 1970 - porém devido ao Vento Solar ser altamente condutor ele é transportado pelo meio interplanetário, constituindo o chamado Campo Magnético Interplanetário – CMI – com uma intensidade de aproximadamente 5nT nas circunvizinhanças da Terra.

O eixo do dipolo magnético é próximo ao eixo de rotação do Sol, e pode-se imaginar um plano de simetria cortando o seu equador. As linhas de Campo Magnético Interplanetário são aproximadamente radiais próximas ao Sol - de 1,5 a 2,5 raios solares -, entrando no Sol acima do plano de simetria e saindo abaixo deste plano, dependendo da fase do ciclo solar de 22 anos. No meio interplanetário, a transição entre as linhas de campo entrando e saindo do Sol constitui uma estreita região, não necessariamente planar, onde se forma uma lamina de corrente, chamada Lamina de Corrente Heliosferica, LCH - Schultz, 1973 -. Essa lamina separa um hemisfério com polaridade negativa de outro com polaridade positiva.

FIGURA 2.4 – (a) Lamina de Corrente Heliosferica – LCH, próxima ao Sol. (b) Aspecto do Campo Magnético Interplanetário.

FONTE: http://lepmfi.gsfc.nasa.gov/mfi/hcs/hcs e http://www.spaceweathercenter.org/

Devido á rotação solar, o Campo Magnético Interplanetário – CMI – tem, em larga escala, o aspecto de uma espiral de Arquimedes, sendo quase radial próximo ao Sol e praticamente perpendicular a direção radial além de 5-10 UA. Na circunvizinhança da Terra, 1 UA, o CMI tem inclinação de aproximadamente 45°.

2.3.2 Vento Solar

O meio interplanetário está permeado pelo vento solar, um fluxo de plasma ionizado, juntamente com o campo magnético solar. O vento solar é resultado de uma enorme diferença de pressão de gás entre a coroa solar e o espaço interestelar. Esta diferença conduz o plasma pra fora, apesar da influencia da gravidade solar.

O primeiro interesse da comunidade científica em estudar este distante e tênue plasma esta nas relações Sol-Terra. O vento solar é significantemente influenciado pela atividade solar e transmite esta influencia para os planetas, cometas, partículas e raios cósmicos que estão imersos nele. A origem da influencia solar através da interação do campo magnético solar com plasma coronal tem sido o maior tópico da pesquisa do vento solar até hoje.

O segundo aspecto importante da pesquisa do vento solar tem ajudado a explicar o contínuo interesse nos processos físicos que ocorrem na formação e expansão da quente coroa solares para as frias, tênues e longínquas regiões de fora do vento solar. Esta expansão leva o plasma magnetizado a grandes variações em suas propriedades; mas extremamente raras no meio interplanetário.

2.3.2.1 Propriedades do vento solar:

O vento solar que passa nas proximidades da Terra é quente, tênue e move-se rápido pelos padrões da Terra. É constituído principalmente por hidrogênio ionizado, com uma pequena mistura de hélio ionizado (~5%), e ainda menos íons de elementos mais pesados. Embebido neste plasma está um campo magnético orientado aproximadamente paralela ao plano da eclíptica, mas em aproximadamente 45° à linha Sol-Terra para um observador a 1 UA. (Kivelson, M. G. e Russell, 1995).

As observações do vento solar têm sido feitas por satélites próximos á órbita da Terra. A Tabela 01 mostra algumas propriedades físicas do plasma e campo magnético em 1UA.

Densidade de prótons	$6,6 \text{ cm}^{-3}$
Densidade de elétrons	$7,1 \text{ cm}^{-3}$
Densidade He ²⁺	$0,25 \text{ cm}^{-3}$
Velocidade (aproximadamente radial)	450 Km/s
Temperatura de prótons	$1.4 \mathrm{x} 10^5 \mathrm{K}$
Temperatura de elétrons	$1.4 \mathrm{x} 10^5 \mathrm{K}$
Intensidade do campo magnético	7x10 ⁻⁹ T

Tabela B - Propriedades do vento solar observados próximos a órbita da Terra (1UA)

O fluxo de momento angular freqüentemente chamado de pressão dinâmica, devido ao seu papel no confinamento do campo magnético. Maior parte da energia está na forma de energia cinética destas mesmas partículas. Estas médias das medidas feitas próximas ao plano da eclíptica são de condições típicas sobre uma esfera centrada no Sol, com raio de 1UA, nós podemos obter os fluxos totais destas quantidades se multiplicamos a área total dessa esfera, 2,82 x 10^{27} cm².

A pressão do gás ionizado com igual densidade de prótons e elétrons n é:

$$p_{gas} = n\kappa(T_p - T_e)$$
 Equação 2-8

onde k é a constante de Boltzmann, T_p e T_e são as temperaturas dos prótons e elétrons respectivamente.

Ondas sonoras em um gás ionizado com pressão de gás p_{gas} e densidade de massa $\rho = n(m_p + m_e)$ Equação 2-9

onde m_p e m_e são respectivamente as massas do próton e do elétron viajando com uma velocidade

$$c_{s} = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\frac{\gamma k}{\left(m_{p} + m_{e}\right)}} \left(T_{p} + T_{e}\right)$$
Equação 2-10

onde γ é a relação do calor específico a pressão e volume constantes, e c_s é a velocidade do som. Usando $\gamma = \frac{5}{3}$ para um gás de hidrogênio ionizado e as temperaturas da Tabela 01, encontramos uma velocidade para o som em 1UA que é de $c_s \approx 60 \text{km/s}$.

Deste modo a velocidade típica do fluxo solar de 400Km/s é quase uma ordem de magnitude maior que a velocidade do som em 1UA; o fluxo do vento solar é altamente supersônico. Finalmente a presença de um capo magnético em um gás ionizado pode levar

a efeitos hidromagnéticos, podendo, de varias maneiras exercer uma pressão magnética

$$p_{mag} = \frac{B^2}{2\mu_0}$$
 Equação 2-11

onde μ_0 é a constante de permeabilidade magnética , e a pressão magnética possuindo um valor comparável a pressão do gás, indicando que o efeito magnético de ser tão importante quanto o efeito da pressão do gás no vento solar.

Para tentar entender a origem do vento solar, é necessário retomar algumas propriedades da coroa solar acima citadas, como a que temperatura do Sol diminui de ~ 15×10^6 K em seu interior para ~5000K na superfície visível. Surpreendentemente, em maiores latitudes na atmosfera, a temperatura sobe novamente, tornando-se maior que 10^6 K e então diminui suavemente com o aumento da altitude na coroa. É esta suave variação de temperatura de aproximadamente 1,5 x 10^6 K que é a característica distinguível da coroa a razão física da formação do vento solar.

2.3.2.2 Concepções básicas da formação do vento solar na coroa solar

Apresentaremos aqui três facetas que nos conduzirão à teoria clássica do vento solar. A primeira faceta envolve um modelo de fluido para o estado de equilíbrio da coroa solar que conduz ao conceito básico de um fluido supersônico contínuo de plasma da coroa solar para o meio interplanetário. A segunda envolve uma descrição da configuração das linhas de campo magnético solar que estão congeladas no plasma, sendo arrastadas para o meio interplanetário pelo vento solar. Finalmente consideramos que o vento solar alcança grandes distâncias no sistema solar combinando-se com o meio interestelar.

2.3.3 Atividade do Sol

As características mais claras da variabilidade solar são as mudanças com o tempo no número de manchas solares vistas na metade visível do Sol (Stuiver e Quay, 1980). Os registros observados do número de manchas solares mostram um ciclo médio da atividade solar próximo dos 11 anos. Modernas teorias atribuem as características periódicas das manchas solares à existência de um dínamo solar em que a convecção e a rotação diferencial da superfície interagem para amplificar e manter um assumido campo magnético inicial (Leighton, 1969). Modelos de dínamo são bem sucedidos na reprodução de certas características do Ciclo Solar de 11 anos, mas ainda não é possível explicar a variação de amplitude nas épocas de máximo e de outras mudanças características de longo período (Eddy, 1976). A FIGURA 2.5 ilustra um diagrama da atividade solar do Ciclo Solar 23.

FIGURA 2.5 - Diagrama mostrando a atividade solar do Ciclo Solar 23 FONTE:< http://www.spaceweathercenter.org>

Durante o Ciclo Solar são identificadas fases distintas, a fase de mínimo solar, fase ascendente, fase de máximo solar e fase descendente. Durante o máximo do ciclo ocorre o

aumento de fenômenos energéticos nas regiões ativas associadas ás manchas. Estes fenômenos são chamados de explosões solares ou "Flares", podendo estar associadas a Ejeções Coronais de Massa – CME (Coronal Mass Ejection) – e a Tempestades Geomagnéticas.

2.3.3.1 Ejeções Coronais de Massa – ECM

São designadas como grande quantidade de matéria 10^{15} a 10^{16} g – entremeadas nas linhas de campo magnético do Sol. São expulsas do Sol durante um período de várias horas, formando uma enorme erupção que se expande para o espaço interplanetário a velocidades de varias centenas e poucos milhares de km/h.

As Ejeções Coronais de Massa tem uma freqüência relacionada com o Ciclo Solar, podendo ser observados cerca de 1 evento por semana, no mínimo do ciclo, enquanto podem ocorrer 2 a 3 eventos por dia nos períodos do máximo da atividade solar. As ECMs são perturbações que se propagam no vento solar de background e possuem características diferentes, maior campo magnético, menor temperatura, maior velocidade, do vento solar normal. Estas características são de um vento solar perturbado, e podem ter importantes efeitos sobre os sistemas tecnológicos.

FIGURA 2.6 - Imagens do coronógrafo LASCO C2 e C3, respectivamente, de uma ECM do dia 18 de novembro de 2003.

FONTE: <http://sohowww.nascom.nasa.gov/>

A bordo do satélite SOHO da Agencia Espacial Norte Americana – NASA encontra-se um instrumento, o coronógrafo, que mede a radiação fotosférica espalhada por elétrons no Plasma coronal ionizado, mostrando a estrutura da densidade da Coroa. Essas imagens são feitas do Sol ocultando o disco solar possibilitando o estudo da coroa solar, assim na FIGURA 2.6 podemos observar duas imagens feitas pelo coronógrafo LASCO -Large Angle Spectrometric Coronagraph -, C2 que mostra a coroa interna até 8,4 milhões de quilômetros do Sol, e C3 que possui um grande campo de visão, em perspectiva suas imagens são de aproximadamente 45milhões de quilômetros do Sol, de uma ejeção coronal de massa.

2.4 ONDAS DE CHOQUE NO MEIO INTERPLANETÁRIO

Na teoria Magnetohidrodinâmica – MHD, assim como em dinâmica dos fluidos, existem superfícies sobre a qual os campos físicos variam descontinuamente e em qualquer

lados dessa descontinuidade o campo permanece constante. Estas superfícies incluem estruturas que não se propagam, descontinuidades tangenciais e descontinuidades de contato, e estruturas que se propagam, descontinuidades rotacionais e ondas de choque. Na realidade cada tipo de superfície possui uma estrutura interna determinada pelos processos de plasma, mas estas estruturas são ignoradas nas aproximações MHD.

Em dinâmica de gases ordinários, há somente uma velocidade característica do meio – a velocidade do som. Portanto há apenas um tipo de onda de choque, uma superfície que se propaga mais rapidamente que a velocidade do som no meio à frente dela. Em Magnetohidrodinâmica (MHD), há três velocidades características, a velocidade do som, a velocidade de Alfvén e a velocidade magnetossônica. Há cinco tipos possíveis de choques MHD: choques rápidos, choques lentos e três tipos de choques intermediários, dependendo da velocidade da superfície do choque relativa às outras velocidades características (Parks, 1991; Burgess, 1995; Echer et al., 2003).

2.4.1 Classificação dos Choques

Choques interplanetários podem ser classificados de acordo com:

• A propagação: se estiver se propagando para o Sol, Choque Reverso, ou para longe do Sol, Choque Frontal, essa propagação é relativamente ao próprio Sol;

• Ao modo de onda: se a velocidade relativa ao vento solar é maior que o modo rápido da onda magnetossônica, choque rápido, ou se é maior que o modo lento da onda magnetossônica, choque lento.

Como o meio ambiente, vento solar, move-se supersonicamente para fora a partir do Sol, ambos choques frontais ou reversos, movem-se para fora a partir do Sol em relação ao Sol. Qualquer tipo de onda sendo uma superfície, possui um vetor unitário **n**, que é definido no ponto em direção contrária ao fluxo de plasma, região de mais baixa entropia. Na teoria MHD, os choques são classificados tomando como base o ângulo α entre a **n** e o campo magnético ambiente **B**₁. Se $\alpha = 90^{\circ}$ o choque é chamado de "choque perpendicular". Se α é próximo de 90°, o choque é chamado de "choque quase perpendicular". Um choque em que $\alpha=0^{\circ}$ é chamado de "choque paralelo", e um choque onde α é próximo de 0° é um "choque quase paralelo". Um choque onde $\alpha \approx 45^{\circ}$ é chamado de "choque oblíquo". O salto nos campos e as variações de velocidade através de um choque depende de α , assim como do beta de plasma, β e o número de Mach.

2.4.2 Equações de Rankini-Hugoniot

Todos os tipos de choque e certamente todos os tipos de superfícies de descontinuidade em um fluido MHD devem satisfazer as equações de *Rankine-Hugoniot*. Estas equações são relações físicas fundamentais para uma superfície plana de descontinuidade (choque), através das quais há um salto nos campos físicos do lado *upstream* para o *downstream*,ou seja, do lado contrário ao fluxo, denotado com o subscrito u, para o lado do fluxo, denotado com o subscrito d. Essas equações expressam a conservação da massa, de fluxo de momentum tangencial, de energia e de fluxo magnético. Burlaga (1995) apresenta estas equações relativamente a um sistema de referência com origem no choque.

Assumindo que os campos são constantes em ambos os lados do choque, então há variações somente no choque. As grandezas escalares são a densidade ρ e a pressão total P, assumida como sendo isotrópica. As grandezas vetoriais são a velocidade do vento solar **v** e ao campo magnético **B**. As componentes do campo vetorial ao longo da normal do choque **n** são denotadas com o subscrito n, e as componentes perpendiculares a normal do choque pelo subscrito t.

As equações de Rankini-Hugoniot para uma descontinuidade MHD, em relação ao sistema de referencia com a origem, fixo ou se movendo, na superfície da descontinuidade, são como segue.

Conservação da massa:

$$\rho_{\rm u} v_{\rm un} = \rho_{\rm d} v_{\rm dn}$$
 Equação 2-12

Conservação do fluxo de momentum normal:

$$\rho_{u} v_{un}^{2} + P_{u} + \frac{B_{u}^{2}}{8\pi} = \rho_{d} v_{dn}^{2} + P_{d} + \frac{B_{d}^{2}}{8\pi}$$
 Equação 2-13

Conservação do fluxo de momentum tangencial:

$$\rho_{u} V_{un} V_{ut} + \frac{B_{n}B_{ut}}{4\pi} = \rho_{d} V_{dn} V_{dt} + \frac{B_{n}B_{dt}}{4\pi}$$
Equação 2-14

Conservação da energia:

$$\left(\frac{\rho_{u}v_{u}^{2}}{2} + \frac{5P_{u}}{2} + \frac{B_{ut}^{2}}{4\pi}\right)v_{un} - \frac{B_{n}B_{ut}v_{ut}}{4\pi} = \left(\frac{\rho_{d}v_{d}^{2}}{2} + \frac{5P_{d}}{2} + \frac{B_{dt}^{2}}{4\pi}\right)v_{dn} - \frac{B_{d}B_{dt}v_{dt}}{4\pi} \quad Equação \ 2-15$$

A conservação do fluxo magnético:

$$B_{un} = B_{dn} = B_{n}$$
 Equação 2-16

A condição de campo magnético congelado implica em:

$$B_{n}(v_{ut} - v_{dt}) = B_{ut}v_{un} - B_{dt}v_{dn}$$
Equação 2-17

Se um choque esta se movendo radialmente para longe do Sol com velocidade U_s relativa ao Sol, sendo as velocidades de plasma nos lados *upstream* e *downstream* respectivamente u_1 e u_2 e predominantemente radiais, então a conservação de massa fornece a velocidade do choque em termos da densidade e da velocidade medidas por uma única espaçonave:

$$U_{s} = \frac{n_{2}u_{2} - n_{1}u_{1}}{n_{2} - n_{1}}$$
 Equação 2-18

Onde, $n_1 e n_2$ são respectivamente as densidades *upstream* e *downstream*.

As equações de Rankini-Hugoniot são essenciais para identificar os choques, calcular sua velocidade e definir que tipo de choque. Contudo, elas requerem o conhecimento da normal do choque e de sua velocidade, pois elas são escritas em um sistema de referencias que se move com a velocidade do choque, orientado ao longo da normal **n**.

2.4.2.1 Cálculo da normal do choque

Existem dois métodos de calcular a normal dos choques. O primeiro utiliza medidas dos campos físicos obtidos somente por um satélite. O segundo utiliza medidas do tempo de chegada do choque em dois os mais satélites, juntamente com as equações de Rankini-Hugoniot. Neste trabalho calculamos a normal dos choques utilizando as medidas de somente um satélite.

Teoricamente, pode-se calcular a normal do choque **n** a partir de observações do campo magnético por um único satélite usando o teorema da coplnaridade (Colburn and Sonett, 1966). O teorema da coplanaridade diz que B_u , B_d e **n** estão em um plano. A continuidade da componente normal do campo magnético B_n através do choque implica que $(B_d - B_u)$ seja paralelo à superfície do choque. Se B_{ut} é paralelo a B_{dt} , então $B_u \times B_d$ é

também paralelo à superfície do choque. Portanto, $(B_u \times B_d) \times (B_d - B_u)$ está ao longo da direção normal ao choque. O vetor unitário normal ao choque será portanto

$$n = \frac{(B_u \times B_d) \times (B_d - B_u)}{|(B_u \times B_d) \times (B_d - B_u)|}.$$
 Equação 2-19

A vantagem desse modelo, chamado modelo magnético coplanar, é que necessita somente das medidas do campo magnético antes e depois do choque. A desvantagem é que não é muito preciso, pois as variações do campo magnético através do choque são pequenas, da ordem de 10°, e também as incertezas em **B** são relativamente grandes devido as flutuações em **B** que estão presentes tanto no lado upstream quanto no lado downstream. O metodo da coplanaridade magnética não funciona para choques paralelos, pois $B_u \times B_d = 0$ e é muito impreciso para choques quase paralelos.

2.4.3 Choques perpendiculares

Um choque MHD perpendicular rápido é aquele em que o campo magnético é perpendicular à normal antes e depois do choque; deste modo $B_n = 0$. A única onda que se propaga perpendicular à **B** é a onda magnetossônica. O fluxo entra com um velocidade maior que a velocidade magnetossônica e sai com uma veolocidade menor que a velocidade magnessônica. Portanto, o choque propaga-se super-magnetosonicamente.

Para um choque perpendicular, o fluxo de massa e a equação de campo congelado darão:

$$\frac{\overline{B}_{d}}{\overline{B}_{u}} = \frac{Np_{d}}{Np_{u}}$$
 Equação 2-20

que nos diz que a direção do campo magnético não muda através de um choque perpendicular.
2.4.4 Choques paralelos

Um choque MHD rápido paralelo é aquele cuja normal é paralela a **B.** como **B** = \mathbf{B}_n **n** é o mesmo em ambos os lados do choque, nem a direção nem a intensidade do campo magnético variam através do choque paralelo. Neste tipo de choque existem duas velocidades características, a velocidade do som, Equação 2-5, e a velocidade de Alfvén., velocidade característica do meio, que é dada por:

$$V_{A} = \frac{B_{u}}{\sqrt{\mu_{0}\rho_{u}}}$$
Equação 2-21

onde $B_u\!\!:$ campo magnético no lado upstream e $\rho_u\!:$ densidae de plasma do lado upstream.

Se a velocidade do som é maior que a velocidade de Alfvén à frente de choque, a velocidade do som é dominante e o choque é como se fosse um choque da dinâmica dos fluidos, com um fluido entrando mais rapidamente que a velocidade do som e saindo mais lentamente que a velocidade do som. O fluxo é super-Alfvénico em ambos os lados do choque.

Se a velocidade de Alfvén é maior que a velocidade do som à frente do choque, existem três possibilidades. Um choque paralelo ao gás entrando super-Alfvénicamente e saindo sub-Alvenicamente provavelmente não ocorre na natureza (Jeffrey e Tuniuti, 1964). Um choque paralelo com o gás entrando supersonicamente e super-Alfvénicamente e saindo subsonicamente e super-Alfvénicamente é permitido. Finalmente, o gás pode entrar supersonicamente e sub-Alfvénicamente e sair subsonicamente e sub-Alfvénicamente ou super-Alfvénicamente.

Para um choque paralelo, $V_{ut} = V_{dt}$, assim não existe coplanaridade da velocidade. O campo magnético não entra nas equações de Rankini-Hugoniot, tornando-se idênticas as equações de fluidos, exceto pela pressão que pode ser anosotrópica.

2.4.5 Número de Mach

Como discutimos anteriormente, a razão entre a velocidade do fluxo e a velocidade característica do meio é denominada número de Mach. Para choques no meio interplanetário, o seu número de Mach será calculado através da razão entre a velocidade relativa entre o choque e o vento solar e a velocidade característica, velocidade magnetossônica ou Alfvênica. A velocidade da onda magnetossônica é dada por:

$$V_{MS} = \sqrt{\left(\left(\frac{1}{2} \right) \cdot \left(V_{A}^{2} + C_{S}^{2} \right)^{+} \left(\left(V_{A}^{2} + C_{S}^{2} \right)^{2} - 4C_{S}^{2} \cdot V_{A}^{2} \cos^{2}(\alpha) \right)^{\frac{1}{2}} \right)}$$
Equação 2-22

assim a equação para determinarmos o número de Mach Alfvênico é dada pela razão entre a velocidade diferencial do choque em relação à velocidade do vento solar no lado upstream pela velocidade Alfvênica:

$$M_{A} = \frac{|U_{S} - u_{u}|}{V_{A}}$$
Equação 2-23

similarmente, o numero de Mach Magnetossonico é dado por:

$$M_{A} = \frac{|U_{S} - u_{u}|}{V_{MS}}$$
Equação 2-24

O número de Mach indica a intensidade do choque, e é uma medida da quantidade de energia processada pelo choque; quanto maior o número de Mach, mais dramático será o choque.

2.4.6 Possíveis origens para ondas de choque no espaço interplanetário

O meio interplanetário é permeado pelo vento solar, um plasma magnetizado sem colisões onde o empilhamento de ondas não lineares pode ocorrer e gerar choque. O vento solar favorece a ação das forças Coulombianas de longo alcance. Essas forças exercem no meio interplanetário, um papel semelhante ao das colisões. Colisões em um gás ordinário servem para transferir momentum e energia entre as moléculas, além de fornecerem o acoplamento para que a onda sonora, meio básico de transferência de informação, exista (Burgess, 1995). Em um plasma sem colisões, tal acoplamento colisional está ausente, pois o livre caminho médio entre as colisões é muito maior que o sistema (E. Echer). No caso do plasma interplanetário o livre caminho médio na órbita da Terra é da ordem da distância Terra-Sol (1 Unidade Astronômica, 1,49598x10⁸ Km).

As estruturas interplanetárias podem ser geoefetivas ou não, isto é, quando elas interagem com a magnetosfera da Terra, podem causar tempestades magnéticas, especialmente se um componente intenso para o sul e de longa duração do campo magnético estiver presente. Como as ondas de choque têm uma maior extensão espacial do que as estruturas interplanetárias que as geram, é comum que espaçonaves próximas à órbita da Terra observem apenas o choque, mas não a ejeção que o impulsiona ou induz. Entretanto, o choque pode ter efeitos geoefetivos, especialmente impulsos súbitos e ondas MHD/micropulsações dentro da magnetosfera terrestre (Nishida, 1978; Kivelson e Russell, 1995; Echer et al., 2003).

Se as bordas laterais da frente de choque passam por uma espaçonave, pode ocorrer que nenhum sinal do gás propulsor ejetado do Sol seja detectado, devido à menor extensão espacial da ejeção, o que explica muitos eventos em que se detecta a frente de choque próximo a Terra, mas não a ejeção (Schwenn, 1986). Também existe a possibilidade de que alguns choques sem o sinal do gás propulsor sejam realmente as ondas de explosão de Parker (1961), criados por uma repentina liberação de energia, sem ejeção material

adicional, em uma configuração de campo coronal pré-existente. Outra possibilidade é de que a variação rápida da área de buracos coronais possa gerar perturbações de choque no meio interplanetário (Hewish e Bravo, 1986). Bravo et al. (1991) apresentaram evidencias teóricas e observacionais de que buracos coronais de baixa latitude, instáveis, poderiam ser em algumas circunstâncias, fontes de choques interplanetários. Desta forma, choques poderiam ser produzidos por buracos coronais quando mudanças suficientemente rápidas na geometria de seus tubos de fluxos ou em sua área efetiva ocorressem (Bravo et al., 1991). Outras fontes de choques observadas no vento solares são as Regiões de Interação Corrotantes (RIC ou RI), quando a compressão do vento solar mais lento pelos feixes rápidos emitidos de buracos coronais provoca o desenvolvimento de choques, principalmente do tipo reverso em 1UA, e mais raramente do tipo frontal rápido (Burlaga, 1995). As RIs são caracterizadas por campo magnético flutuante e produzem geralmente tempestades fracas/moderadas. As ejeções solares constituem-se de material coronal expelido do Sol, que se propaga através do meio interplanetário. As ondas de choque detectadas próximo à órbita da Terra são causadas principalmente por ejeções coronais de massa interplanetário, ECMIs. Se a velocidade relativa entre os remanescentes interplanetários da ejeção solar e do vento solar é maior que a velocidade característica do meio (magnetossônica) uma onda de choque pode se formar. A velocidade magnetossônica rápida no vento solar é cerca de 50-70 Km/s (Gonzales et al, 1999).

Segundo Gosling et al (1990), no seu estudo do período de 1979-1982, em cerca de metade de todos os eventos de choque a Terra não se encontra a ECMI diretamente, presumivelmente porque a perturbação de choque típica é mais larga que a ECMI que a induz, e cerca de metade das ECMIs, distinguidas por eventos de contra-fluxo de elétrons, não velocidade alta o suficiente, relativamente ao vento solar ambiente, para produzir perturbações de choques. Ainda deve-se considerar que um indutor de choque possui vários sinais característicos e comumente um destes sinais não é facilmente identificado, sendo necessário analisar vários sinais característicos para certificar-se da presença ou não do

indutor (Richardson e Cane, 1993). Para um indutor de choque ser observado, ele deve se estender em longitude sobre pelo menos a separação angular entre a fonte solar e a Terra.

2.4.7 A Espaçonave ACE

A espaçonave ACE, Advanced Composition Explorer, está em missão desde 25 de agosto de 1997 e sua principal tarefa é fazer medições da composição de partículas energéticas provenientes do Sol, da Heliosfera e da Galáxia. Sua órbita é ao redor Terra/Sol localizada no ponto lagrangeano L1, onde as forças gravitacionais da Terra e do Sol são equivalentes e se anulam. Possui massa de 785 Kg incluindo 196Kg de combustível, suficiente para lhe manter em órbita até 2019, não ocorrendo imprevistos na órbita. Possui quatro placas fixas receptoras de energia Solar, com potencia de 443W. Instrumentação: Oito instrumentos que medem plasma e composição de partícula energética, e um para que meça o campo magnético interplanetário, MAG.

FIGURA 2.7- Ilustração da espaçonave ACE demonstrando os magnetômetros.

FONTE: <http://www-ssg.sr.unh.edu/mag/ace/images/ace_mag.gif>

FIGURA 2.8 – Representação da órbita da espaçonave ACE.

FONTE: Adaptado de <u>http://swepam.lanl.gov/</u>

CAPÍTULO 3

MATERIAIS E MÉTODOS UTILIZADOS PARA ANÁLISE DOS DADOS

Foram utilizados dados de plasma e campo magnético do meio interplanetário fornecidos pela sonda ACE - Advanced Composition Explorer disponíveis em: <http://www.srl.caltech.edu/ACE/ASC/level2/index.html> com resolução temporal de 64 segundos. Para a familiarização da bolsista com os dados interplanetários de plasma e campo magnético foi utilizado o software Origin, o qual possibilitava a visualização das tabelas correspondentes aos valores das medidas dos parâmetros interplanetários e a identificação de cada coluna correspondente de acordo com a lista abaixo e conforme pode ser observado na FIGURA 3.1.

Cabeçalho dos arquivos

Coluna 1 - dia corrido do ano, calendário Juliano - diajuli

Coluna 2 - hora correspondente – hora

Coluna 3 - minutos - min

Coluna 4 - dia do ano corrido e fracionário - diafrac

Coluna 5 - densidade do vento solar (cm^-3) – Np

Coluna 6 - temperatura do vento solar (K) – Tp

Coluna 7 - velocidade do vento solar (km/s) - VSW

Coluna 8 - componente X (GSE) da velocidade do vento solar (km/s) - VxGSE

Coluna 9 - componente Y (GSE) da velocidade do vento solar (km/s) - VyGSE

Coluna 10 - componente Z (GSE) da velocidade do vento solar (km/s) - VzGSE

Coluna 11 - componente X (GSE) do campo magnético interplanetário (nT) - BxGSE

Coluna 12 - componente Y (GSE) do campo magnético interplanetário (nT) – ByGSE

Coluna 13 - componente Z (GSE) do campo magnético interplanetário (nT) – BzGSE

- Coluna 14 componente X (GSM) do campo magnético interplanetário (nT) BxGSM
- Coluna 15 componente Y (GSM) do campo magnético interplanetário (nT) ByGSM
- Coluna 16 componente Z (GSM) do campo magnético interplanetário (nT) BzGSM

📅 Microcal Origin - UNTITLED - [Data1]														
🔛 File Edit View Plot Column Analysis Tools Format Window Help														
	diajuli	hora	min	Diafrac(X)	Np(Y)	Tp(Y)	VSW(Y)	V×GSE(Y)	VyGSE(Y)	VzGSE(Y)	B×GSE(Y)	ByGSE(Y)	BzGSE(Y)	B×G:▲
1	114	17	54	114.74612	4.51	109780	488.2	-486.92	-34.82	-6.2	-2.112	5.595	-1.984	
2	114	17	55	114.74686	4.715	134280	518.21	-516.24	-41.11	-18.47	2.107	5.69	0.306	
3	114	17	56	114.7476	-9999.9	-9999.9	-9999.9	-9999.9	-9999.9	-9999.9	2.374	5.414	1.243	
4	114	17	57	114.74835	4.296	111230	522.38	-519.97	-37.8	-32.87	1.309	6.199	0.008	
5	114	17	58	114.74909	4.338	106240	510.14	-508.34	-39.16	-17.25	0.986	6.458	-0.929	
6	114	17	59	114.74983	4.199	118480	516.4	-514.54	-38.63	-20.56	1.337	6.422	-0.191	
7	114	18	0	114.75057	-9999.9	-9999.9	-9999.9	-9999.9	-9999.9	-9999.9	0.491	6.432	-1.245	
8	114	18	1	114.75131	4.402	113000	499.24	-497.61	-37.72	-14.26	-0.709	6.388	-1.556	
9	114	18	2	114.75205	4.009	104240	495.28	-494.04	-34.78	-4.2	-0.914	5.761	-3.092	· ·
10	114	18	4	114.75279	4.146	91550	497.53	-496.59	-30.58	0.02	-0.577	5.799	-3.087	-
11	114	18	5	114.75353	3.72	88496	502.87	-501.45	-37.24	-5.83	-0.492	6.259	-2.321	-
12	114	18	6	114.75427	4.022	91888	498.35	-496.67	-40.2	-6.84	-0.492	6.493	-2.079	-
13	114	18	7	114.75501	4.235	90384	498.26	-496.24	-43.44	-10.56	-0.586	6.42	-2.337	-
14	114	18	8	114.75575	3.927	99961	500.72	-499.29	-36.7	-9.31	-0.183	6.283	-2.456	-
15	114	18	9	114.75649	4.181	90723	494.82	-493.18	-39.4	-8.45	-1.01	6.091	-2.506	
16	114	18	10	114.75723	4.006	91365	485.11	-484.61	-21.55	-4.46	-2.832	4.684	-3.749	-
17	114	18	11	114.75798	3.922	95667	485.07	-484.55	-22.31	-3.14	-2.661	4.707	-3.945	-
18	114	18	12	114.75872	4.444	100640	476.41	-475.99	-19.32	-4.93	-3.49	4.075	-3.607	
19	114	18	13	114.75946	4.62	100770	480.36	-480	-18.06	-4.53	-3.3	4.235	-3.929	
20	114	18	14	114.7602	4.204	101630	481.93	-481.32	-24.12	-3.19	-2.724	4.397	-4.249	
21	114	18	15	114.76094	4.333	98383	490.74	-489.93	-28.17	-1.21	-1.688	4.702	-4.321	-
22	114	18	16	114.76168	4.227	88367	490.22	-489.8	-19.43	6.3	-1.18	3.942	-5.218	
23	114	18	17	114.76242	4.496	95548	493.6	-493.18	-19.52	5.67	-1.25	4.073	-5.051	
24	114	18	18	114.76316	4.067	89864	489.77	-489.29	-21.29	3.16	-1.112	4.757	-3.971	-
25	114	18	20	114.7639	4.326	100080	494.73	-493.32	-37.39	-1.3	-1.116	5.386	-3.628	<u> </u>
26	114	18	21	114.76464	4.293	108610	489.23	-488.24	-31.13	-1.1	-1.537	4.268	-4.517	-
27	114	18	22	114.76538	4.729	-9999.9	504.12	-503.05	-31.62	-8.53	-0.804	4.651	-4.404	<u> </u>
28	114	18	23	114.76612	4.253	97252	491.34	-490.56	-27.45	-3.83	-1.411	4.247	-4.804	<u> </u>
29	114	18	24	114.76686	4.4	96143	492.97	-492.49	-20.84	5.87	-1.062	3.636	-5.58	-
30	114	18	25	114.7676	4.821	96402	494.96	-494.57	-18.09	7.58	-0.635	3.253	-5.835	-
31	114	18	26	114.76835	4.231	96928	495.3	-495	-15.9	7.23	-0.346	2.921	-5.946	-
32	114	18	27	114.76909	4.301	89853	497.87	-497.6	-15.4	5.14	-1.077	3.873	-2.519	· ·
33	114	18	28	114.76983	4.399	103490	490.98	-9999.9	-9999.9	-9999.9	-3.127	5.12	-0.216	· · ·
34	114	18	29	114.77057	3.934	97452	482.59	-481.25	-32.55	-15.49	-3.037	5.214	-1.428	
35	114	18	30	114.77131	3.968	99530	479.61	-478.12	-31.13	-21.24	-3.255	5.036	-1.44	
36	114	18	31	114.77205	3.994	98511	477.2	-475.86	-30.31	-18.83	-3.679	4.783	-1.365	. •
•														
Y											D	ata1_B Dat	a1* NL	JM M
	م 🕬 البدن			tárica	1.000	W:1 0-:		ST CADITUU	7 4 dee Miere			SILCEPT	A	20.52

Coluna 17 - campo magnético interplanetário (nT) - B

FIGURA 3. 1 – Mostra a imagem da tela do Origin com os dados da espaçonave ACE segundo a relação acima mencionada. Em destaque em vermelho alguns exemplos de dados que serão eliminados, pois são considerados erros do equipamento

Observa-se nesta figura que alguns campos possuem números em comum, -9999.9, estes valores são errôneos e, portanto eliminados do arquivo de dados. Normalmente a falha de dados no ACE deve-se a saturação do sensor de plasma durante eventos muito intensos. Também podem ocorrer falhas durante operações de rotina/calibração dos sensores. Na

FIGURA 3.2 mostra-se uma imagem com os dados processados e assim sem os valores errados.

📓 Microcal Origin - UNTITLED - [Data1]														
🔛 File Edit View Plot Column Analysis Tools Format Window Help 📃 🗗 🗵														
	diajuli	hora	min	Diafrac(X)	Np(Y)	Tp(Y)	VSW(Y)	V×GSE(Y)	VyGSE(Y)	¥zGSE(Y)	BxGSE(Y)	ByGSE(Y)	BzGSE(Y)	B×G: ▲
1	114	17	54	114.74612	4.51	109780	488.2	-486.92	-34.82	-6.2	-2.112	5.595	-1.984	
2	114	17	55	114.74686	4.715	134280	518.21	-516.24	-41.11	-18.47	2.107	5.69	0.306	
3	114	17	56	114.7476		_					2.374	5.414	1.243	
4	114	17	57	114.74835	4.296	111230	522.38	-519.97	-37.8	-32.87	1.309	6.199	0.008	
5	114	17	58	114.74909	4.338	106240	510.14	-508.34	-39.16	-17.25	0.986	6.458	-0.929	
6	114	17	59	114.74983	4.199	118480	516.4	-514.54	-38.63	-20.56	1.337	6.422	-0.191	
7	114	18	0	114.75057	_	_					0.491	6.432	-1.245	
8	114	18	1	114.75131	4.402	113000	499.24	-497.61	-37.72	-14.26	-0.709	6.388	-1.556	-
9	114	18	2	114.75205	4.009	104240	495.28	-494.04	-34.78	-4.2	-0.914	5.761	-3.092	
10	114	18	4	114.75279	4.146	91550	497.53	-496.59	-30.58	0.02	-0.577	5.799	-3.087	
11	114	18	5	114.75353	3.72	88496	502.87	-501.45	-37.24	-5.83	-0.492	6.259	-2.321	-
12	114	18	6	114.75427	4.022	91888	498.35	-496.67	-40.2	-6.84	-0.492	6.493	-2.079	
13	114	18	7	114.75501	4.235	90384	498.26	-496.24	-43.44	-10.56	-0.586	6.42	-2.337	
14	114	18	8	114.75575	3.927	99961	500.72	-499.29	-36.7	-9.31	-0.183	6.283	-2.456	
15	114	18	9	114.75649	4.181	90723	494.82	-493.18	-39.4	-8.45	-1.01	6.091	-2.506	
16	114	18	10	114.75723	4.006	91365	485.11	-484.61	-21.55	-4.46	-2.832	4.684	-3.749	-
17	114	18	11	114.75798	3.922	95667	485.07	-484.55	-22.31	-3.14	-2.661	4.707	-3.945	-
18	114	18	12	114.75872	4.444	100640	476.41	-475.99	-19.32	-4.93	-3.49	4.075	-3.607	
19	114	18	13	114.75946	4.62	100770	480.36	-480	-18.06	-4.53	-3.3	4.235	-3.929	
20	114	18	14	114.7602	4.204	101630	481.93	-481.32	-24.12	-3.19	-2.724	4.397	-4.249	· ·
21	114	18	15	114.76094	4.333	98383	490.74	-489.93	-28.17	-1.21	-1.688	4.702	-4.321	-
22	114	18	16	114.76168	4.227	88367	490.22	-489.8	-19.43	6.3	-1.18	3.942	-5.218	
23	114	18	17	114.76242	4.496	95548	493.6	-493.18	-19.52	5.67	-1.25	4.073	-5.051	
24	114	18	18	114.76316	4.067	89864	489.77	-489.29	-21.29	3.16	-1.112	4.757	-3.971	-
25	114	18	20	114.7639	4.326	100080	494.73	-493.32	-37.39	-1.3	-1.116	5.386	-3.628	
26	114	18	21	114.76464	4.293	108610	489.23	-488.24	-31.13	-1.1	-1.537	4.268	-4.517	-
27	114	18	22	114.76538	4.729	—	504.12	-503.05	-31.62	-8.53	-0.804	4.651	-4.404	-
28	114	18	23	114.76612	4.253	97252	491.34	-490.56	-27.45	-3.83	-1.411	4.247	-4.804	· ·
29	114	18	24	114.76686	4.4	96143	492.97	-492.49	-20.84	5.87	-1.062	3.636	-5.58	
30	114	18	25	114.7676	4.821	96402	494.96	-494.57	-18.09	7.58	-0.635	3.253	-5.835	
31	114	18	26	114.76835	4.231	96928	495.3	-495	-15.9	7.23	-0.346	2.921	-5.946	-
32	114	18	27	114.76909	4.301	89853	497.87	-497.6	-15.4	5.14	-1.077	3.873	-2.519	-
33	114	18	28	114.76983	4.399	103490	490.98				-3.127	5.12	-0.216	-
34	114	18	29	114.77057	3.934	97452	482.59	-481.25	-32.55	-15.49	-3.037	5.214	-1.428	
35	114	18	30	114.77131	3.968	99530	479.61	-478.12	-31.13	-21.24	-3.255	5.036	-1.44	-
36	114	18	31	114.77205	3.994	98511	477.2	-475.86	-30.31	-18.83	-3.679	4.783	-1.365	• •
•														•
Y											D	ata1_B Dat	a1* NL	M
🛃 Ini	ciar 🛛 📆 🍓) 🖾 🚾 🚬	📃 🔍 rela	atórios		Microcal Ori	gin - UNT	CAPÍTULO	D 4.doc - Micro	s		24 S 🔁	🏷 🦂 🚭 👄	20:53

FIGURA 3. 2 - Mostra os dados processados, ou seja, sem os valores considerados erros

Feito isso começamos a elaboração dos gráficos, neste mesmo software. Posteriormente para agilizar a elaboração dos gráficos, foi desenvolvido um programa para ler o arquivo de dados e eliminar os dados errados. O Programa desenvolvido para "limpeza" dos dados encontra-se no anexo 1, bem como o programa para a elaboração dos gráficos.

Feito os gráficos, é possível somente com a observação dos mesmos classificá-los em choques Frontais, Rápidos ou Lentos; Reversos, Rápidos ou Lentos, de acordo com a variação dos parâmetros. Segundo Echer et al, os perfis de cada choque seguem como na FIGURA 3.3.

FIGURA 3. 3 - Diagrama ilustrando os perfis de quatro tipos diferentes de choques: Frontais Rápidos, Frontais Lentos, Reversos Rápidos e Reversos Lentos, com a respectiva variação nos parâmetros de plasma e campo magnéticointerplanetário.

FONTE: Adaptado de Echer et al, 2003.

Na análise das variações de parâmetros utilizamos o seguinte método:

Primeiramente observamos onde se encontra a variação súbita dos parâmetros. Então dividimos os gráfico em 3 janelas distintas de 10 minutos cada, o intervalo de turbulência na chegada do choque (S), outra antes da chegada do fluxo (U) e uma última depois do fluxo (D). Como pode ser observado na FIGURA 3.4.

FIGURA 3. 4 - Mostra a divisão do gráfico em 3 janelas, as linhas representam as regiões upstream (U), Choque (S) e downstream (D). Este método foi utilizado para o cálculo da variação dos parâmetros.

FONTE: Echer et al, 2003.

A partir disto fizemos um cálculo do valor médio de cada parâmetro e determinamos as variações dos parâmetros de plasma e campo magnético, e seus respectivos erros de desvio padrão da média,

$$\sigma = \int_{-\sqrt{n-1}}^{+} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
Equação 3.1

Onde n é o número de dados utilizados no caso 10, X é o valor da variável e \overline{X} é a média aritmética entre os valores utilizados.

No cálculo da incerteza ortogonalidade do choque utilizamos a seguinte equação:

$$\sigma_{rx} = -r_{x} * \left(\frac{\sigma_{xu}}{xu} + \frac{\sigma_{xd}}{xd} \right)$$
Equação 3.2

onde r_x é a razão entre duas grandezas, Np ou B, xu e xd, são os valores de uma grandezas, respectivamente antes e depois do choque, $\sigma_{xu} e \sigma_{xd}$ são os erros dos valores médios, respectivamente antes e depois do choque. Posteriormente calculamos a intensidade de cada evento com as equações de Rankine-Hugoniot, previamente citadas.

CAPÍTULO 4

RESULTADO E ANÁLISE

4.1 Atividade do bolsista

Durante o período de execução da bolsa, na área de ondas de choque no meio interplanetário, o bolsista desenvolveu no Centro Regional Sul de Pesquisas Espaciais – CRSPE/INPE – MCT, em parceria com o laboratório de Ciências Espaciais de Santa Maria – LCESM – UFSM, as seguintes atividades:

- O bolsista está fazendo leituras em artigos, revistas e livros, indicados pelo orientador, para familiarização com a fenomenologia relacionada;
- Fez a aquisição e compreensão dos dados, de plasma e campo magnético da Sonda ACE via da Internet;
- Com os dados adquiridos foi necessário o desenvolvimento de programa computacional para a redução dos dados e geração dos gráficos, o programa encontra-se no apêndice A e B;
- Com os gráficos gerados segundo a metodologia previamente explicada, fez-se a determinação dos perfis de cada choque;
- Participou do Simpósio Nacional de Ensino de Física SNEF, CEFET Rio de Janeiro, RJ; adquirindo técnicas de aprimoramento, para melhor fazer-se entender quando em exposição didáticas;
- Permaneceu durante uma semana, de 29/01/2005 a 06/02/2005, no INPE em São José dos Campos, SP onde pode interagir com doutores especialistas na área de Geofísica Espacial, participando inclusive de um seminário com o Dr. Kamide do Japão;

 Participou da conferência Chapman sobre Feixes Corotantes do Vento Solar e Tempestades Recorrentes da AGU, Manaus, fevereiro de 2005, e apresentou o trabalho, DETERMANATION OF CIRS RELATED SHOCK
 PARAMETERS - <u>V. F. Andrioli</u>; J.F. Savian; E. Echer; N.J. Schuch.- Onde pode ter contato com pesquisadores do mundo interiro, sendo de fundamental importância em sua vida futura contribuindo com conhecimento e experiência. No anexo A, encontra-se o resumo e certificado;

- Participou do XVI Salão de Iniciação Científica da UFRGS, outubro 2004, onde apresentou o trabalho, UTILIZANDO A REDE INTERNACIONAL DE DETECTORES DE MUONS NA PREVISÃO DA TEMPESTADE GEOMAGNÉTICA DO DIA 20 DE NOVEMBRO DE 2003 <u>Vânia F.</u> Andrioli, Jairo F. Savian, Marcos R. Signori, Marlos R. Da Silva, Alisson Dal Lago, Luis Eduardo A. Vieira, Ezequiel Echer, Walter D. Gonzalez, Nelson J. Schuch. No anexo B, encontra-se o resumo e certificado;
- Participou do I Simpósio Brasileiro de Geofísica em São Paulo, SP, onde apresentou o trabalho PREVISÃO DE TEMPESTADES GEOMAGNÉTICAS INTENSAS ATRAVÉS DA OBSERVAÇÃO DE RAIOS CÓSMICOS E DE COMPONENTES DO MEIO INTERPLANETÁRIO - Jairo Francisco Savian, Marlos Rockenbach da Silva, <u>Vânia Fátima Andriol</u>i, Marcos Roberto Signori, Alisson Dal Lago, Ezequiel Echer, Luis Eduardo Antunes Vieira, Kazuoki Munakata, Walter Demétrio Gonzalez Alarcon, Nelson Jorge Schuch. Em anexo, encontra-se o resumo e certificado;
- Participou da Jornada Acadêmica Integrada JAI, onde apresentou o trabalho UTILIZANDO O TELESCÓPIO PROTÓTIPO DE SÃO MARTINHO DA SERRA NO ESTUDO DO CLIMA ESPACIAL - <u>VÂNIA</u> <u>FÁTIMA ANDRIOLI</u>, NELSON J. SCHUCH, JAIRO FRANCISCO SAVIAN,

MARCOS ROBERTO SIGNORI, MARLOS ROCKENBACH DA SILVA, ALISSON DAL LAGO. No anexo C, encontra-se o resumo e certificado;

- Uma análise das porcentagens de cada perfil de choque feita com o total de eventos ocorridos no período de 2002-2003 é apresentada no artigo escrito e submetido ao 9° Congresso Internacional da Sociedade Brasileira de Geofísica(Salvador, Setembro, 2005), UM ESTUDO SOBRE AS ONDAS DE CHOQUE NO MEIO INTERPLANETÁRIO V.F. Andrioli; J.F. Savian; E. Echer; N.J. Schuch; (esperando o aceite). Foram analisados 83 choques deste período, deste total, 27 ocorreram no ano 2003 e 56 no ano 2002. Em anexo, encontra-se o artigo;
- Submeteu o trabalho A COMPARATIVE STADY OF SHOCK PARAMETER VARIATION ACROSS TRANSIENTS AND COROTATING SHOCK – <u>V.F. Andrioli</u>, J.F. Savian; E. Echer; N.J. Shuch - à Reunião Científica da IAGA 2005 (Toulose, Franca, 2005), o trabalho já foi aceito, porém os resultados serão discutidos e apresentados no próximo relatório. No anexo D, encontra-se o resumo, e o aceite no anexo E.

4.2 Perspectivas Futuras

No intuito de dar continuidade ao projeto o bolsista tem as seguintes perspectivas futuras:

- O bolsista pretende continuar a análise dos eventos selecionados neste projeto e apresentará os resultados dos mesmos em eventos científicos;
- Da mesma forma, almeja participar do 8º Encontro Brasileiro de Física dos Plasmas (Niterói, Novembro, 2005);

- O bolsista pretende continuar a análise de ondas de choque no meio interplanetário em várias distâncias, no sistema solar, utilizando outras sondas como Helios1, Helios2, Pionner Venus, Pioneer10, Pioneer11, Voyager1, Voyager2, Ulysses, ISEE-3, ACE, WIND, IMP-8.
- O bolsista pretende desenvolver programas para leitura dos dados, geração de gráficos e análise dos mesmos.
- O bolsista almeja selecionar em torno de 3 casos de choques observados em várias distâncias heliocêntricas para análise detalhada.
- O bolsista aspira aprofundar-se no estudo da física de choques não colisionais, devendo o bolsista entender os processos físicos responsáveis pela formação e dissipação das ondas de choque.

4.3 Redução e análise dos dados

Durante o decorrer deste projeto o bolsista vem se dedicando no estudo e análise dos dados de:

- Densidade de plasma Np (cm⁻³), medida do número de prótons H⁺ presentes em cada centímetro cúbico do plasma;
- *Temperatura* Tp (K), medida da temperatura do vento solar em Kelvin;
- Velocidade VSW (Km/s); medida da velocidade média do vento solar, em quilômetros por segundo;
- *Campo magnético interplanetário* B (nT), medida da intensidade do módulo do campo magnético interplanetário em nano, 10⁻⁹, Testa.

Estas medidas são fornecidas pela sonda ACE, da NASA. O estudo é realizado no intuído de analisar as variações destes parâmetros e identificar eventos de ondas de choque no período de máximo do ciclo solar 2000-2001. Em virtude da realização do trabalho

apresentado na Conferência Chapman, Manaus, 2005, sobre a ocorrência de choques relacionados com CIR's, o período de dados analisados foi estendido desde 1998 até 2003.

Foram construídos os gráficos com os dados do ACE, para todos os choques que ocorreram entre 2002-2003, e o número total de choques ocorridos neste período é de 83 eventos.A identificação dos choques é feita da seguinte forma:

- Observa-se nos gráficos desses dados, aumentos ou decréscimos súbitos nos valores de cada parâmetro acima mencionado, nota-se descontinuidades abruptas. A FIGURA 4.1 mostra um exemplo de uma descontinuidade observada na variação dos parâmetros de plasma e de campo magnético, do dia 09 de Novembro de 2002, a linha vermelha identifica o salto nestes parâmetros e a esta característica é identificada como a chegada da onda de choque.

FIGURA 4. 1– Representação da chegada de um choque, indicada pela linha pontilhada em vermelho. No gráfico de cima para baixo B (nT), módulo da intensidade do campo magnético interplanetário, Np (cm⁻³), densidade de plasma, Tp (K) temperatura do vento solar e VSW (Km/s) velocidade do vento solar

Uma vez identificado a presença do choque, cada um pode ser classificado de acordo com os perfis de choque, apresentado por Echer et al 2003, através da análise das variações de parâmetros e classificam-se em:

 \checkmark Frontais Rápidos, quando ocorrem saltos abruptos positivos em todos os parâmetros;

 \checkmark Frontais Lentos, quando ocorrem saltos abruptos positivos em todos os parâmetros exceto no campo magnético interplanetário;

 \checkmark Reversos Rápidos; quando ocorrem saltos abruptos negativos, em todos os parâmetros exceto na velocidade do vento solar;

 \checkmark Reversos Lentos; quando ocorrem saltos abruptos negativos, nos parâmetros de densidade e temperatura e positivos na velocidade do vento solar e campo magnético;

Assim, observando e analisando o exemplo da FIGURA 4.1, podemos classificá-lo em Choque Frontal Rápido. Devido ao acréscimo súbito em todos os parâmetros, Np, Tp, VSW e B. é dito Frontal devido ao modo de propagação ser para fora do Sol em relação ao Sol, e Rápido, pois a velocidade da onda magnetosônica relativa ao vento solar é maior o modo rápido da onda magnetosônica.

FIGURA 4. 2 - Choque Frontal lento observado no dia 19 de janeiro de 2002. Dados do campo magnético total e plasma do ACE

Observa-se na FIGURA 4.2 um exemplo de Choque Frontal Lento. Podemos observar o amento súbito nos parâmetros de Np, Tp e VSW e no mesmo instante um decréscimo súbito no B. Os espaços em branco representam a ausência de dados devido às falhas dos sensores da sonda ACE, previamente comentada no Capítulo 3 deste mesmo relatório.

Do mesmo modo, segue abaixo na FIGURA 4.3, um gráfico representando um choque Reverso Rápido. Com a linha pontilhada em vermelho identificando a chegada da onda de choque, e devido a variação dos parâmetros de Np, Tp e B com salto abrupto negativo, e VSW ser com salto positivo. É Reverso, pois a onda magnetosônica está se propagando para o Sol com relação ao mesmo, e Rápido, pois a velocidade de propagação da onda magnetosônica relativa ao vento solar é maior que o modo rápido da onda magnetosônica.

FIGURA 4. 3 - Choque Reverso Rápido indicado pela linha pontilhada. Observado no dia 14 de maio de 2001. Dados do campo magnético total e plasma do ACE

Quando a onda magnetosônica está se propagando para o Sol em relação à ele e a velocidade relativa ao vento solar é maior que o modo lento da onda magnetosônica o choque é do tipo Reverso Lento e suas características podem ser observadas na FIGURA 4.4, assim também observamos que a há uma descontinuidade no gráfico dos parâmetros de plasma, com um decréscimo súbito nos parâmetros de Np e Tp e com acréscimo súbito no B e VSW.

FIGURA 4. 4 - Choque Reverso Lento, observado no dia 03 de Março de 2002. Dados de campo magnético total e plasma do ACE

Nem sempre é trivial a classificação dos choques ou até mesmo sua identificação, pois trabalhamos com dados de somente uma espaçonave o que dificulta-nos a detectar choques ou qualquer outra estrutura IP por possuírem uma grande extensão espacial. Uma nuvem magnética tem tamanho de 0.2-0.3 UA e a frente de choque é mais extensa que as nuvens magnéticas. Outro fator que dificulta a identificação é a ocorrência de dois eventos

próximos, pois pode deixar o meio perturbado dificultando a análise e a percepção do Choque. Embora soubéssemos do acontecimento do choque em determinadas datas analisadas, fundamentado na lista de choques e distúrbios ocorridos no meio interplanetário, fornecida pela missão ACE no sitio <<u>http://www-ssg.sr.unh.edu/mag/ace/ACElists/obs_list.html#2002></u>, com base nos instrumentos MAG e SWEPAM, nem sempre conseguíamos determinar o tipo de choque presente no evento. Alguns exemplos que não conseguimos identificar seguem no Apêndice C.

Com a classificação feita, utilizamos as equações de Rankini-Hugoniot, demonstradas no Capítulo 2, para calcular a velocidade do choque e a intensidade do mesmo. Na Tabela 4.1 mostramos alguns exemplos. Onde Δ Np, Δ Tp, Δ VSW e Δ B são as variações dos parâmetros, ou seja, o valor do lado *downstream* menos o valor do lado *upstream*. E Us é o valor da velocidade do choque. Tabela 4.1- Exemplo do cálculo da variação de parâmetros para cada tipo de choque onde, os subscritos, u e d, representam respectivamente upstream e downstream. Us representa a velocidade do choque medidas por uma única espaçonave, e r B e r Np representam as razões entre os valores downstream e upstream da intensidade do campo magnético e da densidade respectivamente.

Exemplos de cálculo de parâmetros									
	Choque Reverso	Choque Reverso	Choque Frontal	Choque Frontal					
	Rápido	Lento	Rápido	Lento					
	06/02/2002 02:03 UT	03/03/2002 22:00 UT	23/04/2002 04:15 UT	14/10/2003 16:22 UT					
Npu (/cm³)	8,6 ⁺ _0,64	41 ⁺ ₋ 1,62	5,76 ⁺ _0,52	15,52 ⁺ _0,56					
Npd (/cm³)	5,5 ⁺ _0,67	20 ⁺ _1,21	15,25 ⁺ _2,02	21,04 ⁺ _1,52					
∆Np (\cm³)	-3,1	-21,6	9,50	5,52					
Tpu (K)	310522	35985,1	85864,83	90116,86					
Tpd (K)	248,342	26248,3	439258,89	212890,00					
ΔТр (К)	-62,180	-9,737	353394,06	122773,14					
VSWu (Km/s)	624,8	353,1	430,11	481,89					
VSWd (km/s)	650,9	367,9	599,78	516,66					
ΔVSW (Km/s)	26,1	14,8	169,67	34,76					
Bu (nT)	14,5 ⁺ _0,33	10,1 ⁺ _0,35	7,42 ⁺ _0,11	15,64 ⁺ _0,18					
Bd (nT)	8,8 ⁺ _0,18	15,1 ⁺ _0,17	16,80 ⁺ _2,84	8,53 ⁺ _2,02					
ΔB (nT)	-5,7	5,1	9,38	-7,10					
Us (Km/s)	578,5	115,8	702,61	614,41					
r B	0,61 ⁺ _0,03	1,51 ⁺ _0,07	2,26 ⁺ _0,42	0,55 ⁺ _0,14					
R Np	0,64 ⁺ _0,12	0,48 ⁺ _0,05	2,64 _ 0,58	1,36 ⁺ _0,15					
		Vetores em coorder	nadas GSE						
Vu (Km/s)	[-615.9; 95.1; -32.5]	[-346.9; -56.5; -33.1]	[-428.51; -9.59; 34.26]	[-477.97; -59.30; -15.40]					
Vd (km/s)	[-648.1; 55.5; 1.9]	[-364.2; -45.2; -25.2]	[-597.23; 30.41; 5.15]	[-514.90; -38.63; 1.60]					
Bu (nT)	[-9.9; 9.2; 3.7]	[6.4; -4.1; 6.2]	[-1.56; 4.14; -5.56]	[-10.53; 8.38; 7.86]					
Bd (nT)	[-60.4; 50.9; -0.9]	[-7.9; 12.5; -1.6]	[-0.05; 9.06; 6.27]	[-1.02; 3.77; -3.30]					

Além da classificação dos choques foram desenvolvidos trabalhos de análise percentual da ocorrência de cada tipo de choque no período de declínio do Ciclo Solar, 2002 – 2003. Seguem os gráficos dos resultados.

FIGURA 4. 5 - Gráfico das percentagens de tipo de choques ocorridos no período de declínio do ciclo solar, 2002 – 2003.

No período de 2002-2003 foram analisados um total de 83 choques registrados neste período, deste total, 56, ocorreram no ano 2002 e 27, no ano 2003. Maiores detalhes a respeito de variação de parâmetros e determinação de intensidade dos choques encontramse no artigo anexado no final do relatório.

Os resultados da análise de choques relacionados com CIRS encontram-se no anexo no final do relatório.

Elaborou-se um catálogo com os choques ocorridos em 2000; 2001; 2002 e 2003. Os choques ocorridos em 2002 e 2003 foram analisados e comentados, os demais apenas listados. Este catálogo encontra-se no Apêndice E.

FIGURA 4. 6 – Diagrama mostrando os totais de eventos de choques ocorridos em cada ano correspondente. Os valores acima de cada coluna correspondem à quantidade de eventos identificados naquele ano.

Fez-se uma estatística do total de eventos de choque ocorridos no intervalo de dados analisados de 1998 – 2003, sendo que o período correspondente ao máximo do ciclo de manchas solares, 2000–2001. Podemos perceber através da FIGURA 4.6 o aumento e a diminuição da ocorrência de eventos com o conforme o ciclo solar da FIGURA 2.4, com a diminuição das manchas solares, nota-se uma diminuição também de eventos de ondas de choque.Isso ocorre basicamente devido a maior taxa de CMES variando com o ciclo solar, conforme trabalho de Webb et al. (1994).

CAPÍTULO 5

CONCLUSÕES E TRABALHOS FUTUROS

O estudo da origem, propagação e identificação das ondas magnetosônicas no meio interplanetário é de interesse da comunidade científica preocupada, quase sempre, na Geoefetividade das mesmas, pois é da natureza do ser humano proteger-se e no intuito de evitar catástrofes, surge a necessidade da pesquisa. O estudo das variações dos parâmetros de plasma e campo magnético em várias escalas de tempo faz-se necessária, uma vez que pode atuar como ferramenta para futuras previsões do clima espacial.

Durante o período de vigência da Bolsa PIBIC/INPE – CNPq/MCT, 2004-2005, fez-se estudos a respeito da propagação de ondas magnetosônicas no meio interplanetário e através da análise das medidas de parâmetros de plasma, densidade (Np), temperatura (Tp), velocidade do vento solar (VSW), e campo magnético interplanetário (B) determinou-se a ocorrência de ondas de choque no vento solar, calculou-se a variação dos parâmetros, intensidade e tipos de choques durante o intervalo de 1998 a 2003.

Notou-se que a maioria dos choques identificados foram do tipo Frontal Rápido, acredita-se que isto deve-se a maior ocorrência de ejeções coronais de massa. Esta hipótese foi estudada e segundo Schwenn, 2000, estas distribuições ocorrem, pois as ejeções interplanetárias são o principal indutor de choques próximo à órbita da Terra durante o máximo solar. Estas ejeções devem possuir velocidades suficientemente altas em relação ao vento solar, capazes de causar ondas de choque.

Percebeu-se, uma proporcionalidade entre o ciclo das manchas solares e o total de eventos de choque registrados pela sonda ACE. Isto nos leva a acreditar que o ciclo das manchar solares está realmente ligado aos eventos de choque e conforme apresentado por Webb et al. (1994).

É importante mencionar que o bolsista participou de vários eventos científicos e/ou apresentando trabalhos.

Como continuidade do Projeto será dado mais detalhes ao catálogo de choques elaborado, como cálculo dos parâmetros do período de máximo solar, 2000-2001, o qual será apresentado no SICINPE2005.

Pretende-se continuar os estudos das ondas magnetohigrodinâmicas em várias distâncias do sistema solar e aprofundar-se no estudo da física de choques não colisionais, devendo o bolsista entender os processos físicos responsáveis pela formação e dissipação das ondas de choque.

REFERÊNCIAS

- Bravo, S., Mendoza, B., Pérez-Enríquez, R., Coronal holes as sources of large-scale solar wind disturbances and geomagnetic perturbations, Journal of Geophysical Research, v. 96, n. A4, 5387-5396, 1991.
- Colburn, D.S., and C.P. Sonett, Discontinuities in the solar wind, Space Sci. Rev., 9, 467, 1966.
- Echer, E. and Gonzalez, W. D., Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence, Geophysical Research Letters, 31, L09808, doi:10.1029/2003GL019199, 2004.
- Echer, E., Gonzalez, W. D., Vieira, L. E. A., Dal Lago, A., Guarnieri, F. L., Prestes, A., Gonzalez, A. L. C. and Schuch, N. J. Interplanetary Shock Parameters during Solar Activity Maximum (2000) and Minimum (1995-1996), Brazilian Journal of Physics, 33, 115-122, 2003
- Eddy, J. A., The Maunder minimum, Science, v. 19, n.4245,1189-1202, 1976.
- Gonzalez, W. D., B. T. Tsurutani, and A. L. Cla de Gonzalez, Space Science Reviews 88, 529, 1999.
- Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T. Vasyliunas, V. M., What is a geomagnetic storm?, Journal of Geophysical Research, 99, 5771-5792, 1994.
- Gosling, J. T., Bame, S. J., McComas, D. J. e Phillips, J. L., Coronal mass ejections and large geomagnetic storms, Geophysical Research Letters, v. 17, n.7, 901-904, 1990.
- Hewish, A. Bravo, S., The sources of large-scale heliospheric disturbances, Solar Physics, v. 106, n. 1, 185-200, 1986.
- Hewish, A., and S. Bravo, The sources of large-scale heliospheric disturbances. *Solar Phys.*, 106, 185, 1986.

- **Kirchhoff**, Volker W. J. H., Introdução à Geofísica Espacial. São Paulo: Nova Stella, Editora da Universidade de São Paulo: FAPESP, 1991.
- **Kivelson,** M. G. e Russell, C. T. Introduction to Space Physics. Cambridge: University Press, 1995, 91p.
- Leighton, R.B, Astrophysic Journal, 156, 1 (1969).
- Nishida, A. Geomagnetic Diagnosis of the Magnetosphere, Physics and Chemistry in Space 9, Springer Verlag, 256p., 1978.
- Parker, E. N., Interplanetary Dynamic Process, John Wiley and Sons, New York, EUA, 1963.
- Richardson, I. G., Cane, H. V., Signatures of shock drivers in the solar wind and their dependence on the solar source location, Journal of Geophysical Research, v. 98, n. A9, 15295-15304, 1993.
- Schove, D.J., Sunspot Cycles, Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania (1983).
- Schwenn, R., Space Science Reviews 44, 139, 1986
- Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D., Ormes, J. F., Snow. F., The Advanced Composition Explorer, Space Science Reviews, v. 86, n.1, 1-22, 1998.

Stuiver, M. e P.D. Quay, Science, 207, 11 (1980).

Webb, D. F. and R. A. Howard, Journal of Geophysical Re-search. 99, 4201, 1994.

APÊNDICE A

PROGRAMA DESENVOLVIDO PARA REDUÇÃO DOS DADOS DE EVENTOS INTERPLANETÁRIOS

s = load('D:\Users\Vania\dados\ace2002.DAT'); %abre o arquivo de dados cont = size(s(:,1)); %calcula o tamanho da primeira coluna dos dados, mas retorna o n° de linha e de colunas % soma somente o número de linhas cont = cont(1);tempo = s(:,4); %coluna do tempo Np = s(:,5);%coluna da densidade ii = find(Np == -9999.900);Np(ii) = nan;%coluna da velocidade Vp = s(:,7);ii = find(Vp == -9999.90);Vp(ii) = nan;%coluna da velocidade componente "X" Vx = s(:,8);ii = find(Vx == -9999.90); Vx(ii) = nan;%coluna da velocidade componente "y" Vy = s(:,9);ii = find(Vy == -9999.90);Vy(ii) = nan;%coluna da velocidade componente "z" Vz = s(:,10);ii = find(Vz == -9999.90);Vz(ii) = nan;BxGSE = s(:,11);%coluna do campo magnético componente "xGSE" ii = find(BxGSE== -9999.90); BxGSE(ii) = nan; ByGSE = s(:,12);%coluna do campo magnético componente "yGSE" ii = find(ByGSE == -9999.90); ByGSE(ii) = nan;BzGSE = s(:,13);%coluna do campo magnético componente "zGSE" ii = find(BzGSE == -9999.90); BzGSE(ii) = nan;

APÊNDICE B

PROGRAMA PARA ELABORAR OS GRÁFICOS UTILIZANDO OS DADOS PREVIAMENTE REDUZIDOS

s = load('D:\Users\Vania\dados\ace2000d.dat'); % abre o arquivo de dados cont= size(s(:,1)); % calcula o tamanho da primeira coluna dos % dados, mas retorna o n° de linha e de colunas t = s(:,1);% t é a variável correspondente a coluna do dia frac "tempo" Np = s(:,2);% densidade entre parênteses esta indicada qual a coluna correspondente Vp = s(:,3);%velocidade entre parênteses esta indicada qual a coluna correspondente Tp = s(:,4);%temperatura entre parênteses esta indicada qual a coluna correspondente B = s(:,5); %campo magnetico entre parenteses esta indicada qual a coluna correspondente figure(1) %inicio da elaboração dos gráficos ndim=4; nn=1;%limites das escalas Tp_limit = 2e5; %limite p/ a temperatura %limite p/ a velocidade $Vp_limit = 450;$ Np_limit = 10;%limite p/ densidade $B_{limit} = 10;$ %limite p/ o campo magnetico is = 1;xmin = 17;%limites p/ a escala do "X" xmax = 18;mci = 1;mcf = 1;sh1=1; sh2 = 1;subplot(ndim,1,nn), plot(t,Tp, 'Color', [0 0 0]); ylabel('T p(k)'); axis([xmin xmax 0 Tp_limit]); line([t(is) t(is)], [0 Tp_limit], 'linestyle', '-', 'Color', [0 0 0]); line([t(mci) t(mci)], [0 Tp_limit], 'linestyle', ':', 'Color', [0 0 0]); line([t(mcf) t(mcf)], [0 Tp_limit], 'linestyle', ':', 'Color', [0 0 0]);

nn=nn+1;

subplot(ndim,1,nn), plot(t,Vp, 'Color', [0 0 0]); axis([xmin xmax 300 Vp_limit]); line([t(is) t(is)], [0 Vp_limit],'linestyle','-', 'Color', [0 0 0]); line([t(mci) t(mci)], [0 Vp_limit],'linestyle',':', 'Color', [0 0 0]); line([t(mcf) t(mcf)], [0 Vp_limit],'linestyle',':', 'Color', [0 0 0]); ylabel('V_p (km/s)'); set(gca,'XTickLabel',"); nn=nn+1;

subplot(ndim,1,nn), plot(t,Np, 'Color', [0 0 0]); axis([xmin xmax 0 Np_limit]); line([t(is) t(is)], [0 Np_limit],'linestyle','-', 'Color', [0 0 0]); line([t(mci) t(mci)], [0 Np_limit],'linestyle',':', 'Color', [0 0 0]); line([t(mcf) t(mcf)], [0 Np_limit],'linestyle',':', 'Color', [0 0 0]); ylabel('N_p (cm^3)'); set(gca,'XTickLabel',"); nn=nn+1;

```
subplot(ndim,1,nn), plot(t,B, 'Color', [0 0 0]);
axis([xmin xmax 0 B_limit]);
line([t(is) t(is)], [0 B_limit],'linestyle','-', 'Color', [0 0 0]);
line([t(mci) t(mci)], [0 B_limit],'linestyle',':', 'Color', [0 0 0]);
line([t(mcf) t(mcf)], [0 B_limit],'linestyle',':', 'Color', [0 0 0]);
ylabel('B (nT)');
xlabel('Dia 17 de Janeiro de 2000');
%set(gca,'XTickLabel',");
nn=nn+1;
```

APÊNDICE C

EXEMPLOS DE EVENTOS DE ONDAS DE CHOQUE NOS QUAIS NÃO FOI POSSÍVEL DETERMINAR EXPLICITAMENTE A FACE DO CHOQUE.

FIGURA A 1 - Choque observado em 26 de Fevereiro de 2003, dados de campo magnético total e plasma do ACE.

FIGURA A 2 - Choque observado em 22 de Outubro de 2001, dados de campo magnético total e plasma do ACE.

FIGURA A 3 -Choque observado em 17 de janeiro de 2000, campo magnético total e plasma, ACE.

FIGURA A 4 - Choque observado em 06 de Junho de 2001, dados de campo magnético total e plasma do ACE.

FIGURA A 5 - Choque observado em 10 de Outubro de 1999, dados de campo magnético total e plasma do ACE

APÊNDICE D

EXEMPLOS DE GRÁFICOS ANALISADOS

FIGURA A 6 -Choque Reverso Rápido, observado em 25 de Maio de 1999, dados de campo magnético total e plasma do ACE

Tabela A1 – Cálculo de variação de parâmetros para o choque do dia 25 de Maio de 1999.

Data 06/02/2002	Upstream	Downstream	Variações
Np (\cm³)	5.22	2.41	-2.82
Тр (К)	261304.44	152473.00	-108831.44
Vsw (km/s)	503.20	573.64	70.44
VxGSE (km/s)	-500.54	-572.85	-72.31
VyGSE (km/s)	48.93	20.62	-28.32
VzGSE (km/s)	14.48	-21.15	-35.63
BxGSE (nT)	5.17	4.15	-1.02
ByGSE (nT)	-2.45	-0.73	1.72
BzGSE (nT)	-6.30	-1.09	5.21
BxGSM (nT)	5.17	4.15	-1.02
ByGSM (nT)	-2.42	-0.73	1.69
BzGSM (nT)	-6.31	-1.09	5.22
B (nT)	8.69	4.43	-4.26
Us (NdVd-NuVu)/(Nd-Nu) (km/s)		443.00	

FIGURA A 7 - Choque Frontal Rápido, observado em 26 de Novembro de 2002, dados de campo magnético total e plasma do ACE.

Data 26/11/2002	Upstream	Downstream	Variações
Np (\cm³)	9.89	20.32	10.43
Тр (К)	68476.44	286970.00	218493.56
Vsw (km/s)	384.67	549.55	164.88
VxGSE (km/s)	-382.61	-543.50	-160.89
VyGSE (km/s)	-30.25	-74.11	-43.86
VzGSE (km/s)	19.58	24.01	4.43
BxGSE (nT)	-6.79	-13.30	-6.51
ByGSE (nT)	6.94	21.51	14.57
BzGSE (nT)	-3.71	-10.35	-6.64
BxGSM (nT)	-6.79	-13.30	-6.51
ByGSM (nT)	6.89	21.46	14.57
BzGSM (nT)	-3.79	-10.45	-6.66
B (nT)	10.57	28.27	17.71
Us (NdVd-NuVu)/(Nd-Nu) (km/s)		705.87	

Tabela A2 – Cálculo da variação de parâmetros do choque ocorrido no dia 26 de Novembro de 2002

FIGURA A 8 - Choque Reverso Rápido, observado em 06 de Fevereiro de 2002, dados de campo magnético total e plasma do ACE.

Data 06/02/2002	Upstream	Downstream	Variações
Np (\cm³)	8.27	5.39	-2.88
Тр (К)	310916.67	246197.00	-64719.67
Vsw (km/s)	624.94	649.88	24.94
VxGSE (km/s)	-615.44	-646.80	-31.37
VyGSE (km/s)	96.17	57.81	-38.35
VzGSE (km/s)	-47.35	14.37	61.71
BxGSE (nT)	-9.03	-6.21	2.81
ByGSE (nT)	8.89	5.14	-3.75
BzGSE (nT)	6.18	-1.08	-7.26
BxGSM (nT)	-9.03	-6.21	2.81
ByGSM (nT)	5.29	5.11	-0.18
BzGSM (nT)	9.44	1.22	-8.23
B (nT)	14.66	8.82	-5.83
Us (NdVd-NuVu)/(Nd-Nu) (km/s)		578.22	

Tabela A3 – Calculo da variação de parâmetros do choque ocorrido em 06 de Fevereiro de 2002

FIGURA A 9 - Choque Frontal Rápido, observado em 23 de Maio de 2002, dados de campo magnético total e plasma do ACE.

<u> </u>	1		
Data 23/05/2002	Upstream	Downstream	Variações
Np (\cm³)	12.02	22.25	10.23
Vsw (km/s)	426.10	586.47	137487.80
Тр (К)	67364.20	204852.00	160.38
VxGSE (km/s)	-423.70	-569.03	-145.33
VyGSE (km/s)	-12.15	-31.44	-19.28
VzGSE (km/s)	-42.33	-137.40	-95.08
BxGSE (nT)	-2.53	-5.75	-3.22
ByGSE (nT)	12.55	30.95	18.40
BzGSE (nT)	6.82	12.59	5.78
BxGSM (nT)	-2.53	-5.75	-3.22
ByGSM (nT)	12.47	30.85	18.38
BzGSM (nT)	6.97	12.86	5.89
B (nT)	14.63	34.41	19.79
Us (NdVd-NuVu)/(Nd-Nu) (km/s)		774.84	

Tabela A4 – Cálculo da variação de parâmetros do choque observado em 23 de Maio de 2002

APÊNDICE E

CATÁLOGO DOS CHOQUES OCORRIDOS EM 2000 A 2003:

LISTA	LISTA DE CHOQUES			
	= I ARIOS OCC - RIODO DE 20	00 OKKIDOS		
DATA	DIA JULIANO	HORARIO		
11/1/2000	11	13:40 UT		
17/1/2000	17	17:20 UT		
22/1/2000	22	00:23 UT		
27/1/2000	27	14:00 UT		
5/2/2000	36	14:50 UT		
11/2/2000	42	02:10 UT		
11/2/2000	42	23:15 UT		
14/2/2000	45	06:56 UT		
20/2/2000	51	20:45 UT		
22/2/2000	53	11:43 UT		
24/2/2000	55	14:08 UT		
22/3/2000	82	17:57 UT		
6/4/2000	97	02:55 UT		
6/4/2000	97	16:04 UT		
17/4/2000	108	09:40 UT		
24/4/2000	115	08:52 UT		
2/5/2000	123	10:45 UT		
8/5/2000	129	06:01 UT		
17/5/2000	138	21:39 UT		
30/5/2000	151	01:20 UT		
3/6/2000	155	07:03 UT		
4/6/2000	156	14:23 UT		
6/6/2000	158	03:00 UT		
8/6/2000	160	08:41 UT		
15/6/2000	167	11:31UT		
23/6/2000	175	12:27 UT		
10/7/2000	192	05:57 UT		
11/7/2000	193	01:50 UT		
11/7/2000	193	11:23 UT		
13/7/2000	195	09:18 UT		
14/7/2000	196	15:00 UT		
15/7/2000	197	14:15 UT		

Tabela A5 – Lis	sta dos C	Choques de	2000
-----------------	-----------	------------	------

17/7/2000	201	14:48 UT
25/7/2000	207	13:22 UT
26/7/2000	208	17:55 UT
28/7/2000	210	05:43 UT
28/7/2000	210	9:10 UT
31/7/2000	213	18:16 UT
10/8/2000	223	04:07 UT
11/8/2000	224	18:10 UT
14/8/2000	227	21:36 UT
6/9/2000	250	16:13 UT
15/9/2000	259	03:59 UT
17/9/2000	261	16:57 UT
30/9/2000	274	10:38 UT
30/9/2000	274	16:06 UT
30/9/2000	274	21:24UT
3/10/2000	277	00:008 UT
4/10/2000	278	13:36 UT
5/10/2000	279	02:41 UT
12/10/2000	286	21:45 UT
28/10/2000	302	05:41 UT
28/10/2000	302	09:08 UT
31/10/2000	305	16:30 UT
2/11/2000	307	04:05 UT
2/11/2000	307	18:21 UT
2/11/2000	307	23:47 UT
4/11/2000	309	01:34 UT
6/11/2000	311	09:15 UT
8/11/2000	313	13:20 UT
11/11/2000	316	04:01 UT
19/11/2000	324	01:43 UT
26/11/2000	331	05:00 UT
26/11/2000	331	11:24 UT
28/11/2000	333	04:57 UT
29/11/2000	334	05:23 UT
3/12/2000	338	03:21 UT
14/12/2000	349	06:37 UT

Tabela A6	- Lista dos choques de 2001	
140014110		

LISTA DE CHOQUES			
INTE	ERPLANETAR	IOS	
OCORRI	JOS NO PERI 2001	ODO DE	
DATA		HOBABIO	
5/1/2001	5	18:00 UT	
9/1/2001	9	04·42 UT	
10/1/2001	10	15:20 UT	
13/1/2001	13	01:40 UT	
17/1/2001	17	15:31 UT	
23/1/2001	23	10:06 UT	
31/1/2001	31	07:22 UT	
12/2/2001	43	20:45 UT	
20/1/2001	51	00:54 UT	
3/3/2001	62	10:40 UT	
5/3/2001	64	21:35 UT	
19/3/2001	78	10:23 UT	
22/3/2001	81	12:42 UT	
27/3/2001	86	01:10 UT	
27/3/2001	86	17:15 UT	
30/3/2001	89	21:40 UT	
31/3/2001	90	00:23 UT	
31/3/2001	90	22:56 UT	
2/4/2001	92	23:51 UT	
4/4/2001	94	14:22 UT	
7/4/2001	97	16:59 UT	
8/4/2001	98	10:32 UT	
8/4/2001	98	13:14 UT	
11/4/2001	101	15:28 UT	
13/4/2001	103	07:06 UT	
18/4/2001	108	00:05 UT	
21/4/2001	111	15:08 UT	
28/4/2001	118	04:31 UT	
6/5/2001	126	07:06 UT	
7/5/2001	127	15:50 UT	
12/5/2001	132	09:20 UT	
14/5/2001	134	02:06 UT	
18/5/2001	138	00:50 UT	
18/5/2001	138	09:17 UT	
27/5/2001	147	14:18 UT	

2/6/2001	153	11:48 UT
6/6/2001	157	10:21 UT
7/6/2001	158	08:52 UT
18/6/2001	169	01:54 UT
2/8/2001	214	08:55 UT
2/8/2001	214	14:06 UT
3/8/2001	215	06:25 UT
5/8/2001	217	11:55 UT
12/8/2001	224	10:50 UT
17/8/2001	229	10:16 UT
27/8/2001	239	19:19 UT
1/9/2001	244	00:46 UT
1/9/2001	244	01:08 UT
14/9/2001	257	01:19 UT
14/9/2001	257	21:00 UT
25/9/2001	268	20:05 UT
29/9/2001	272	09:06 UT
30/9/2001	273	09:05 UT
30/9/2001	273	18:46 UT
8/10/2001	281	12:21 UT
11/10/2001	284	16:20 UT
21/10/2001	294	16:12 UT
22/10/2001	295	00:13 UT
25/10/2001	298	08:01 UT
28/10/2001	301	02:42 UT
28/10/2001	301	19:26 UT
31/10/2001	304	18:54 UT
5/11/2001	309	01:55 UT
6/11/2001	310	01:25 UT
6/11/2001	310	19:10 UT
9/11/2001	313	04:03 UT
15/11/2001	319	13:54 UT
19/11/2001	323	17:35 UT
24/11/2001	328	05:45 UT
24/11/2001	328	08:00 UT
24/11/2001	328	09:00 UT
30/11/2001	334	17:28 UT
23/12/2001	357	22:00 UT
29/12/2001	363	04:47 UT
30/12/2001	364	19:32 UT

LISTA DE CHOQUES		
INTERPL		
7/1/2002		11:26
10/1/2002	10	11.20
10/1/2002	10	15.44
20/1/2002	20	15:35
51/1/2002	31	20.40
3/2/2002	30	10.14
17/2/2002	48	02:09
28/2/2002		04.03
12/3/2002	71	17:26
10/3/2002	74	18:27
18/3/2002	//	12:36
20/3/2002	/9	13:05
22/3/2002	81	03:23
23/3/2002	82	10:53
29/3/2002	88	21:41
17/4/2002	107	10:21
19/4/2002	109	08:02
19/4/2002	109	20:50
23/4/2002	113	04:15
10/5/2002	130	10:30
11/5/2002	131	09:25
18/5/2002	138	19:19
20/5/2002	140	03:00
21/5/2002	141	21:00
23/5/2002	143	10:15
30/5/2002	150	01:32
8/6/2002	159	10:29
1/7/2002	182	10:16
17/7/2002	198	15:26
19/7/2002	200	09:32
19/7/2002	200	14:50
22/7/2002	203	04:51
25/7/2002	206	12:59
29/7/2002	210	12:40
1/8/2002	213	04:24
1/8/2002	213	22:19
2/8/2002	214	23:33
18/8/2002	230	18:10
21/82002	233	17:17
26/8/2002	238	10:41

Tabela A7 - Lista dos choques 2002

4/9/2002	247	17:54
7/9/2002	250	16:10
23/9/2002	266	15:55
30/9/2002	273	07:21
2/10/2002	275	10:01
2/10/2002	275	22:14
9/11/2002	313	00:28
9/11/2002	313	17:54
11/11/2002	315	11:52
13/11/2002	317	04:05
13/11/2002	317	04:51
16/11/2002	320	23:05
20/11/2002	324	10:19
26/11/2002	330	21:10
15/12/2002	349	00:43
15/12/2002	349	01:00
19/12/2002	353	18:52
24/12/2002	358	13:15

LISTA DE CHOQUES INTERPLANETÁRIOS OCORRIDOS NO PERIODO DE 2003							
DATA	DIA JULIANO	HORARIO					
27/2/2003	58						
17/3/2003	76						
20/3/2003	79	04:16					
29/3/2003	88						
29/3/2003	88						
10/4/2003	100	07:00					
28/4/2003	118	18:30					
5/5/2003	125						
9/5/2003	129	12:40					
29/5/2003	149	11:55					
29/5/2003	149	18:45					
30/5/2003	150	16:00					
18/6/2003	169	14:40					
20/6/2003	171						
6/7/2003	187	12:25					
12/7/2003	193	08:45 10:50					
14/7/2003	195						
27/7/2003	208	04:40					
17/8/2003	229	13:45 16:23					
14/10/2003	287						
24/10/2003	297	14:48					
26/10/2003	299	08:09					
26/10/2003	299	18:27					
28/10/2003	301	01:31					
29/10/2003	302						
30/10/2003	303						
4/11/2003	308	05:54					
6/11/2003	310	19:15					
8/11/2003	312	15:07					
15/11/2003	319	05:14					
20/11/2003	324	07:23					
7/12/2003	341	23:50					
27/12/2003	361	09:05					

Tabela A8 – Lista dos choques 2003

ANEXO A

TRABALHO APRESENTADO NA "MANAUS CHAPMAN CONFERENCE ON COROTATING SOLAR WIND STREAMS AND RECURRENT GEOMAGNETIC ACTIVITY", MANAUS, AM, BRAZIL, 6-12 DE FEVEREIRO,2005.

Determination of CIR related shock parameters

[*<u>V. F. Andrioli</u>*] (LACESM/CT-Universidade Federal de Santa Maria–UFSM/ME, CRSPE-INPE-MCT; ph. +55-55-220-8021; fax.+55-55-220-8007; e-mail: vania@lacesm.ufsm.br); (J. F. Savian; (LACESM/CT-Universidade Federal de Santa Maria–UFSM/ME, CRSPE-INPE-MCT; ph. +55-55-220-8021; fax.+55-55-220-8007; e-mail: savia@lacesm.ufsm.br); E. Echer (Instituto Nacional de Pesquisas Espaciais – INPE-MCT; ph. 55-12-3945-6797; fax. +55-12-3945-6810; e-mail: echer@dge.inpe.br); N. J. Schuch (Centro Regional Sul de Pesquisas Espaciais – CRSPE/INPE-MCT; ph. 55-55-220-8007; e-mail: njscuch@lacesm.ufsm.br)

Abstract

During the descending and minimum solar cycle phase, polar coronal holes extend from the polar regions down to the solar equator. The high-speed streams emitted by coronal holes can interact with the ambient, slow solar wind streams and form corotating interaction regions (CIR). These CIRs are usually well developed only beyond 1.5 astronomical units, when a pair of reverse and fast forward shocks can form and delimit the stream interface. The stream interface is the region when the ambient solar wind is compressed by the high speed stream and as a result both magnetic field strength and density are enhanced. At the Earth's orbit, 1 astronomical unit, one does not usually observe CIR related fast forward shocks, but reverse shocks are estimated to be present in 20% of the cases. In this work, we study the CIRs events of solar cycle 23 maximum and descending phases (2001-2004) to identify which is the percentage of CIRs with interplanetary shocks at Earth's orbit. For the CIRs events with shocks, the interplanetary shock parameters (Mach number, magnetic field and density compression rations and shock speed) are computed. A few examples are shown that illustrate the presence of the CIR-reverse shock and also the possible presence of a pair of fast and reverse shocks.

ANEXO B

TRABALHO APRESENTADO NA JORNADA ACADÊMICA INTEGRADA – JAI -2004

UTILIZANDO O TELESCÓPIO PROTÓTIPO DE SÃO MARTINHO DA SERRA NO ESTUDO DO CLIMA ESPACIAL¹

<u>Vânia Fátima Andrioli</u>², Nelson J. Schuch³, Jairo Francisco Savian⁴, Marcos Roberto Signori⁵, Marlos Rockenbach da Silva⁶, Alisson dal Lago⁷

O Estudo do Clima Espacial está em uma posição similar à Meteorologia no início do século XX devido ao especial interesse físico nas tempestades espaciais e de seu impacto social e econômico em significantes sistemas tecnológicos como indústria de satélites, companhias aéreas, indústria de petróleo e minerais, indústria de energia elétrica, telecomunicações, usuários e provedores de sistemas de posicionamento, dentre outros. O estudo das relações Terra – Sol é feito com o auxilio de equipamentos especiais como Satélites, Detectores de Raios Cósmicos como Detectores de Muons e de Nêutrons. Neste trabalho foram utilizados os dados do Telescópio Protótipo Multidirecional de Muons, instalado no Observatório Espacial do Sul – OES/CRSPE/INPE-MCT, no Município de São Martinho da Serra-RS, Brasil, ele faz parte da Rede Internacional de Detectores de Muons composta pelos Detectores instalados nas cidades de Nagoya (Japão), Hobart (Austrália) e o Telescópio Protótipo de São Martinho da Serra (Brasil). Estes detectam partículas, muons, oriundas de Raios Cósmicos de alta energia~50GeV, os quais chegam na Terra de forma isotrópica. Quando há uma intensa atividade solar, ocorrem ejeções coronais de massa, "flares", principais responsáveis pela ocorrência de Tempestades Geomagnéticas. Estas estruturas movimentam-se no meio interplanetário através do Vento Solar, em altas velocidades, arrastando o Campo Magnético Interplanetário e causando uma onda de choque que ao se aproximar da Terra obstrui a passagem dos Raios Cósmicos, causando um decréscimo na contagem dos muons, "decréscimos de Forbush". Com o estudo e análise desses decréscimos é possível prever a chegada das estruturas solares com grande antecedência, de 8 à 12 horas antes do início da Tempestade Geomagnética.. No dia 20 de Novembro de 2003, com a utilização do Telescópio Protótipo do Observatório Espacial do Sul, mesmo não abrangendo grande área de detecção, foi possível ser observado um súbito decréscimo na contagem dos muons causado pela onda de choque de uma Ejeção Coronal de Massa oriunda da intensa atividade solar do dia 18 de Novembro de 2003, aproximadamente às 21:00 UT mais ou menos 9hs antes do início da Tempestade Geomagnética. Estes resultados são encorajadores enfatizando a importância da Rede Internacional de Detectores de Muons para o Estudo e Previsão do Clima Espacial em benefício para as Atividades Espaciais da Humanidade.

- 1 Trabalho desenvolvido no LACESM/CT/UFSM e no OES/CRSPE/INPE MCT.
- 2 Apresentador: Acadêmica do Curso de Física, LACESM/UFSM
- 3 Orientador: Coordenador da Ação de implantação do CRSPE/INPE UFSM.
- 4 Co-Autor: Acadêmico do Curso de Física, LACESM/UFSM
- 5 Co-Autor: Acadêmico do Curso de Engenharia Elétrica, LACESM/UFSM
- 6 Co-Autor: Colaborador do Grupo Magnetosfera-Heliosfera, MAGHEL/INPE/MCT
- 7- Co-Autor: Colaborador do Grupo Magnetosfera-Heliosfera, MAGHEL/INPE/MCT

XIX Jornada Acadêmica Integrada, UFSM, 19, 20 e 21 de outubro de 2004

ANEXO C

TRABALHO APRESENTADO NO XVI SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS, PORTO ALEGRE, OUTUBRO DE 2004.

UTILIZANDO A REDE INTERNACIONAL DE DETECTORES MULTIDIRECIONAIS DE MUONS NA PREVISÃO DA TEMPESTADE GEOMÁGNÉTICA DO DIA 20 DE NOVEMBRO DE 2003

<u>Vânia F. Andrioli</u>^{1,3}, Jairo F. Savian^{1,3}, Marcos R. Signori^{1,3}, Marlos R. Da Silva^{1,3}, Alisson Dal Lago², Luis Eduardo A. Vieira², Ezequiel Echer², Walter D. Gonzalez², Nelson J. Schuch³

¹Universidade Federal de Santa Maria – UFSM, LACESM/CT/UFSM Av. Roraima – Bairro Camobi – Caixa Postal 5021 – 97110-970 – Santa Maria - RS – Brasil vania@lacesm.ufsm.br, njschuch@lacesm.ufsm.br
²Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos – SP
³Centro Regional Sul de Pesquisas Espaciais – CRSPE/INPE, Santa Maria – RS

A Rede Internacional de Detectores Multidirecionais de Muons é composta pelos Sistemas de Detectores instalados em Nagoya (Japão), Hobart (Austrália) e o Telescópio Protótipo Martinho da Serra, localizado no Observatório Espacial do Sul de São OES/CRSPE/INPE-MCT, no Município de São Martinho da Serra-RS, Brasil. Estes Sistemas detectam partículas, muons, oriundas de Raios Cósmicos de alta energia, ~50GeV, de várias direções do Espaço. As estruturas solares capazes de causar Tempestades Geomagnéticas viajam através do Vento Solar a altas velocidades arrastando o Campo Magnético Interplanetário e causando perturbação no Meio Interplanetário. Essa perturbação ao passar pela Terra, obstrui a passagem dos Raios Cósmicos causando um decréscimo na contagem dos muons, "decréscimo de Forbush". Um decréscimo na contagem dos muons também é observado durante o transito das estruturas solares através da heliosfera interna até sua chegada em 1 UA (Unidades Astronomica). Apesar do decréscimo não ser tão intenso quanto o "decréscimo de Forbush", estudando e analisando estes decréscimos é possível prever com uma antecedência de 8 a 12 horas antes do início de uma Tempestade Geomagnética. Examinamos neste trabalho o decréscimo na contagem de munos observado pelo Telescópio Protótipo do Observatório Espacial do Sul, no dia 20 de Novembro de 2003. Este súbito decréscimo na contagem dos muons foi causado pela perturbação ocorrida devido à onda de choque de uma Ejeção Coronal de Massa - CME do tipo "halo", observado as 18:48 UT pelo instrumento LASCO, a bordo do satélite SOHO. A CME foi procedente da intensa atividade solar do dia 18 de Novembro de 2003. O decréscimo estudado foi observado pelo Sistema de Detecção do Observatório Espacial do Sul aproximadamente às 21:00 UT, quase 9hs antes do início da Tempestade Geomagnética. O objetivo deste trabalho é mostrar a importância da Rede Internacional de Detectores Multidirecionais de Muons, na previsão das Tempestades Geomagnéticas, no intuito de aumentar a vida útil de significantes sistemas tecnológicos e em benefício para as Atividades Espaciais.

ANEXO D

SUBMETIDO À IAGA 2005 CONFERENCE COM RESPECTIVO ACEITE DO "COSIS MANAGER"

A COMPARATIVE STUDY OF SHOCK PARAMETER VARIATIONS ACROSS TRANSIENT AND COROTATING SHOCKS

V. F. Andrioli (1,3), J. Savian (1,3), E. Echer (2,4), N. J. Schuch (3)

1) LACESM/CT - Universidade Federal de Santa Maria - UFSM/ME,

2) Instituto Nacional de Pesquisas Espaciais – INPE – MCT (permanent), Sao Jose Campos, SP, Brazil.

3) Centro Regional Sul de Pesquisas Espaciais – CRSPE/INPE – MCT

4) Max Planck Institut fur Sonnesystemforschung (temporary), Katlenburg-Lindau, Germany.

vaniandrioli@yahoo.com.br/ Fax: +55 - 55 220 8007

In this work we study the variations in the plasma and magnetic field parameters across transient, ICME-driven shocks (fast forward), and corotating shocks (mainly fast reverse), associated with CIRs. The period analysed is the decline phase of the solar cycle 23 (2002-2003). Solar wind data were obtained through internet from the ACE - Advanced Composition Explorer database (http://www.srl.caltech.edu/ACE/ASC/level2/index.html). We plot and analyze solar wind data and classify every shock according to its propagation direction (forward or reverse) and MHD wave mode (fast or slow). Associated solar wind structures were also determined (ICMEs or CIRs). The jump of plasma and magnetic field across these shocks was then calculated and distributions obtained for each interplanetary shock type. These distributions are compared in this work.

Aceite do trabalho para a Iaga Conference:

De:	manager@cosis.net				
Assunto:	Abstract Confirmation				
Para:	vaniandrioli@yahoo.com.br				
Data:	Wed, 20 Apr 2005 00:35:43 +0200 (CEST)				
	Parte superior do formulário				
		managar@aaaia	http://br f014 moi		

			manager@cosis.	http://br.f314.mai			
Parte inferior do formulário							

Dear Vania Fatima Andrioli,

We are happy to inform you that your abstract IAGA2005-A-00470 entitled "A comparative study of shock parameter variations across Transient and Corotating Shocks" by "V.F. Andrioli, V.F.A; J. Savian, J. S; E. Echer, E.E; N. J. Schuch, N.J.S" has been accepted for presentation at the Meeting / Conference: "IAGA 2005 Conference". Further details regarding the schedule of your presentation will be sent to you after the meeting programme has been finalized. Please, follow all details concerning the meeting and inform your co-authors about the acceptance of your abstract. Acceptance of your contribution carries with it the OBLIGATION for you or, at least, for one of your co-authors to actually present it at the meeting. If you or your co-authors feel that you may not be able to meet this obligation, we would appreciate receiving a notice from you in due time. Looking forward to seeing you at the meeting. Kind regards, Your COSIS Manager manager@cosis.net _____ _____ _____ COSIS.net - Copernicus Online Service + Information System http://www.cosis.net ------_____