
Plavis/FSM: an Environment to Integrate FSM-based
Testing Tools

Adenilso da Silva Simão1 , Ana Maria Ambrósio2 ,
Sandra C. P. F. Fabbri3 , Ana Silva Martins Serra do Amaral2 ,

Eliane Martins4 , José Carlos Maldonado1

1 {adenilso,jcmaldon}@icmc.usp.br

Departamento de Ciência da Computação e Estat́ıstica – Universidade de São Paulo

2ana@dss.inpe.br, anasil@lac.inpe.br
Engenharia e Tecnologia Espaciais – Instituto Nacional de Pesquisas Espaciais

3sfabbri@dc.ufscar.br

Departamento de Computação – Universidade Federal de São Carlos

4eliane@ic.unicamp.br

Instituto de Computação – Universidade de Campinas

Abstract. PLAVIS project aims at establishing the basis for a platform
(an integrated set of tools) to support the VV&T activities, providing
an environment that improves the validation and verification process
applied to space software systems. This paper introduces an environment,
named Plavis/FSM, which integrates the tools Condado, MGASet and
Proteum/FSM. These tools were developed in previous research projects by
different groups for supporting the generation of test cases from FSM-based
specification.

1. Introduction

Creating tests manually has several disadvantages, as pointed by different authors
(Bertolino et al., 2005; Robinson, 1999). First, tests come late in the development
cycle; when bugs are revealed, the cost of rework and additional retesting is high and
impacts the product release. Second, the increased complexity of software systems
nowadays implies an indefinite number of input combinations that result in distinct
system outputs, that a test analyst cannot achieve an adequate coverage of these
combinations by manual testing. Third, handcrafted tests are difficult to maintain
and reuse. Finally, the oracle, a mechanism used for test results analysis, is inaccurate.
The term model-based testing refers to test case derivation from a model representing
software behavior (Bertolino et al., 2005).

Model-based testing presents several advantages. Behavior models are constructed
early in the development cycle, which allows testing activities to start before the
coding phase. In this way, tests can be based on what the software should do, and
not on what the software do (Apfelbaum and Doyle, 1997).

In this context, the development of supporting tools is mandatory. However, the
effort of developing a supporting tool is fairly high. In the Academy, the aim of
producing a full-featured tool can hardly be afforded and must often be abandoned
in favor of more modest goals. In general, proof-of-concepts tools are developed.
Besides the cost of development, one of the main setbacks is the exploratory aspect
of a proof-of-concept tool. Sometimes, the kind of empirical insight provided by the
tool is what is necessary to make fine-tuning adjustments in the theory. In order
to foster the transfer of some new technology to industry, it is necessary to provide
evidences that the new technology brings substantial, significant benefits over the



current practices, if any. In this context, proof-of-concept tools are very important,
aiding the conduction of case studies and experiments.

PLAVIS (PLAVIS, 2005) (PLAtform for Software Validation & Integration on
Space Systems) is a joint cooperation project among Brazilian research institutes and
universities. There is also a cooperation with France supported by Capes-Cofecub.
The basis of this project is to establish a strong cooperation among universities and
research institutes and centers that possess the domain of the technology in research,
use and evaluation of best software engineering practices and state of the art VV&T
tools. The project aims at establishing the basis for a platform (an integrated set
of tools developed by different groups) to support the VV&T activities in order to
provide an environment to improve the validation and verification process applied
to space software systems. A prototype has been designed and implemented and it
consists of software testing tools that will enable to experiment and evaluate practical
case studies. Case studies have been focused on space applications from the National
Institute for Space Research (INPE).

The set of available tools provides an environment not only to carry out an
uniform, systematic and high-quality VV&T activities, but also to carry out empirical
studies to evaluate the cost and benefits of new technologies. In the current stage,
only the Finite State Machine (FSM)-based tools were integrated in PLAVIS, so this
version is named Plavis/FSM.

Specifically, the Plavis/FSM integrates Proteum/FSM (Fabbri et al., 1999),
Condado (Martins et al., 1999) and MGASet (Candolo et al., 2001). These three
tools support distinct approaches and were developed independently by different
researchers along different periods. With the integration of these tools, we expect
to be able to conduct experiments that compare their ability in revealing faults and
that aid the definition of a strategy to synergistically use the strength of each.

The paper is organized as follows. In Section 2, we describe Plavis/FSM and
the tools that is already integrated in it. We briefly describe the tools integrated
in Plavis/FSM, namely, Proteum/FSM (Section 2.1), MGASet (Section 2.2) and
Condado (Section 2.3). Finally, in Section 3 we make some concluding remarks and
point to future directions in this research.

2. Plavis/FSM

A main goal of PLAVIS project is the comparison of state-of-art methods and their
gradual transfer to industry environment. Several problems rise from the need of
comparing different methods. The comparison should be supported by a tool, whose
main task is to integrate the results of the existing tools for the underlying methods.
However, the integration of the tools poses other problems.

Although the underlying tools work on FSM-based specifications (models), slight
variations of the underlying models do exist. Moreover, distinct model properties are
required by the tools. So, if the models upon which the tools work are not the same,
the results can be inconsistent.

Another important point is the data format the tool requires as input. This
problem is due to the independent development of each tool. The developers
attempted to design an input format that is most appropriate to their own tool.
The lack of a standard format makes each developer choose the format that best fits
his/her goals. Moreover, the results of the tools can also vary a lot. This problem
is also due to differences in the underlying model and in the data format. The
problem with the distinct input format can be solved in a quite straightforward way,
by designing converters to and from a particular format.



2.1. Proteum/FSM

Although Mutation Testing is primarily aimed at assessing the quality of an existing
test set T , it can also be used to enhance the capabilities of testing by expanding
T with tests targeted at undetected mutations. A key issue in mutation testing is
the identification of a fault model, which states which faults should be detected.
Fault-based testing can be designed according to the classes of faults a generic model
encompasses.

Proteum/FSM is one component of a family of tools (Maldonado et al., 2000)
for supporting the application of Mutation Testing in several contexts, such as
program testing (Delamaro et al., 2001) and specification testing (Fabbri et al., 1994).
All the Proteum Family tools support the minimal set of operations that must be
provided by any mutation based testing tool, such as, test case handling (execution,
inclusion/exclusion and disabling/enabling), mutant handling (creation, selection,
execution, and analysis) and adequacy analysis (mutation score and reports).

Proteum/FSM was developed as Web-based application. Therefore, it can be used
remotely and in a wider range of environments. It implements the mutant operators
defined by Fabbri et al. (1994) using the MuDeL language (Simão and Maldonado,
2002) and used the mudelgen system for actually generating the mutants.

2.2. MGASet

MGASet (Candolo et al., 2001) is a tool for generation of test cases for FSM. It was
designed in order to incorporate several distinct algorithms for generating test cases,
as well as functionalities for editing and simulating FSM. Some useful properties of
the FSM can also be verified, such as, completeness, determinism and minimality.

MGASet is primarily intended to be a tool for experiment with new method of
test case generation. Currently, however, it has implemented only W method. In
the forthcoming steps in the research, we will study and embody other generation
method, such Wp, UIO, and DS (Fujiwara et al., 1991).

MGASet was developed in Java. It can be run either though a GUI or by
command-line invocations.

2.3. Condado

Condado tool (Martins, 1999) was developed in the context of ATIFS project (ATIFS,
2005) for automatically generating specification-based test cases. It accepts a FSM
or a Extended Finite State Machine (EFSM) as input and generates tests considering
both aspects: control and data. The control part addresses the valid sequences of
interactions, while the data part addresses values of interactions parameters.

For the data part, the domain testing technique has been integrated. The domain
testing technique avoids the state-explosion problem. This problem means that the
number of different states of the system is too large to be represented; it can occur
if the specification is expanded for all possible values of interaction parameters and
state variable values. For the control part, the algorithm for test case generation is
based on depth-first search.

Condado was developed in Prolog. Its input is furnished as a Prolog fact base.
The FSM model may be given in a protocol specifications language or graphically via
the MME tool (ATIFS, 2005). Its output is a set of test cases written in a text file.

2.4. Plavis/FSM: Architecture

The integration promoted by Plavis/FSM is based on data. The platform converts
its internal representation of the FSM to and from each of the particular data format
of the integrated tools. The platform prepares the data in the suitable way and invokes
the respective tool, which runs in a controlled environment. Then, the platform



collects the results the tool puts in a particular file and converts them to its internal
format. During the preparation of the data, the FSM is adequately transformed in
order to fulfill the requirements of the tool. The common internal representation
allows us to compare the test case generated by the tools, as well as to assess the
adequacy of these test cases with respect to the Mutation Testing.

Plavis/FSM architecture is scratched in Figure 1. Plavis/FSM was designed
and developed as a Web application and is available for remote usage. The platform
implements a password-based access control1. Our primary motivation was to allow
that the platform be used in a wider range of environments. The kernel of the platform
is the test case manager module (TCM). It not only coordinates the communication
with the other module, but also processes the user inputs and deliveries his/her the
output. This module embodies the main functionalities of the whole platform.

Test Case
Adequacy
Adapter

Test Case
Manager

Plavis/FSM Database

Proteum/FSM

Condado

MGASet

Test Case
Generation

Adapter
W

ra
pp

er
W

ra
pp

er
W

ra
pp

er

Web server

Figure 1: Plavis/FSM Architecture.

Whenever it is necessary to interact with one of the integrated tools, the TCM
delegates the task to either of the adapters. There are two kinds of adapters. One
adapter interacts with tools for test case generation (TCGA) and the other interacts
with tools for test case adequacy analysis (TCAA). In order to make the adapters
more reusable, it only provides a public interface the tools can interact with. However,
in the case where the tool is legacy code and can not be easily modified to use either
the adapters, a wrapper can be provided. That is the situation with the tools we have
integrated so far. The wrapper as also responsible for fulfilling the requirements of
input and for converting the data in and out the legacy tools. Moreover, the wrapper
must get rid of any user interface.

To integrate another tool to platform, it is necessary to provide a suitable wrapper
for the tool. Provided that the wrapper can convert the input and output of the tool
to the format the adapters accepts, the integration could be carried out easily.

In Figure 2 is shown one of the Plavis/FSM Web pages. In this page, a
summary of the session is shown on the left, including the score mutation provided by
Proteum/FSM and the number of test cases generated by either tool. On the top, it is
displayed the available options, allowing to include/remove test cases, include/remove
mutants and access reports of the execution.

2.5. Plavis/FSM: Operational Aspects

The usage of Plavis/FSM imposes a workflow that is inspired in the way the tools
of Proteum family work (Delamaro et al., 2001). In this way, the platform has some

1The tool can be accessed by the address: http://143.107.183.159/~plavisFSM/main.php.
For a trial, the interested reader can request a guest account in the Register link.



Figure 2: Plavis/FSM Mutant Viewer Page.

feature to allow the collaborative work among a set of testers. First of all, a project
should be created, in which the FSM is selected, and some high-level configurations
are made. In particular, the set of mutant operators that will be applied are chosen.
Then, several sessions can be created within a given project. For instance, a set of
sessions can be run with test cases generated by different methods.

It allows three ways of test case inclusion, either interactively or by the generation
tools. (i) In the interactive inclusion, the user of the tool can choose which event
should occur in the currently displayed state. (ii) To use the generation tools, the
user can choose which tool to use (currently, either Condado or MGASet), and how
many test cases he/she wants to include. (iii) Alternatively, a set of test cases can
be furnished by submitting a appropriately formatted file. After having included a
set of test cases, the user can require the mutant score of the test cases. In this case,
Proteum/FSM is invoked with these test cases and the score is updated in the page.
Plavis/FSM also allows to view the mutants, select the live ones and mark them
as equivalent, if necessary.

The set of test cases can be exported. A XML configuration file, that should be
provided by the user, defines the format of the test cases. In this way, the test cases
can be converted in a format suitable for other testing tools.

3. Concluding Remarks

In this paper we introduced Plavis/FSM, a integrated platform for supporting the
validation of FSM-based systems. The platform combines previous effort dedicated
to the development of tools in academic researches. In this vein, it provides a unified
mechanism to employ the tools and compare their results.

During the integration, we had to solve two distinct problems. First, we had
to choose a model each tool can deal with. Although this seems to be a simple
problem, it is hindered by the slightly different definition of FSM. Actually, the main
problems are the properties that each tool demands the FSM to have in order to
be applicable. For instance, W method requires that the FSM be a Mealy machine
which is completely specified, minimal and that every state is reachable from the
initial state. On the other hand, Switch-cover method does not require that the



FSM be completely specified. In this version of Plavis/FSM only the control part of
Condado is available.

Forthcoming steps of this work, includes to incorporate other generation methods,
such as Wp method (Fujiwara et al., 1991). The greater the number of methods
integrated in Plavis/FSM, the wider the comparison results and the better the
insights on how to complementarily use them. Additionally, the definition and
conduction of experiments will provide evidences of the benefits of employing them.
Currently, Plavis/FSM is already been used in the context of graduate and
undergraduate case studies. New case studies with real applications are also planned.

References

Apfelbaum, L. and Doyle, J. (1997). Model based testing. In Software Quality Week
Conference.

ATIFS (2005). Ambiente de teste com injeção de falhas por software. Online in:
http://www.inpe.br/atifs, last access: 26/04/2005.

Bertolino, A., Marchetti, E., and Muccini, H. (2005). Introducing a reasonably
complete and coherent approach for model-based testing. Electronic Notes of
Theoretical Computer Science, (16):85–97.

Candolo, M. A. P., Simão, A. S., and Maldonado, J. C. (2001). MGASet — uma
ferramenta para apoiar o teste e validação de especificações baseadas em máquinas
de estado finito. In Anais do XV Simpósio Brasileiro de Engenharia de Software,
pages 386–391, Rio de Janeiro, RJ.

Delamaro, M. E., Maldonado, J. C., and Mathur, A. P. (2001). Interface mutation:
An approach for integration testing. IEEE Transactions on Software Engineering,
27(3):228–247.

Fabbri, S. C. P. F., Maldonado, J. C., Delamaro, M. E., and Masiero, P. C. (1999).
Proteum/FSM: A tool to support finite state machine validation based on mutation
testing. In XIX SCCC - International Conference of the Chilean Computer Science
Society, pages 96–104, Talca, Chile.

Fabbri, S. C. P. F., Maldonado, J. C., Masiero, P. C., and Delamaro, M. E. (1994).
Mutation analysis testing for finite state machines. In Fifth International Sym-
posium on Software Reliability Engineering, pages 220–229, Monterey, California,
USA.

Fujiwara, S., Bochmann, G. V., Khendek, F., Amalou, M., and Ghedamsi, A.
(1991). Test selection based on finite state models. IEEE Transactions on Software
Engineering, 17(6):591–603.

Maldonado, J. C., Delamaro, M. E., Fabbri, S. C. P. F., Simão, A. S., Sugeta, T.,
Vincenzi, A. M. R., and Masiero, P. . C. (2000). Proteum: A family of tools to
support specification and program testing based on mutation. In Mutation 2000,
pages 146–149, San Jose, California.

Martins, E., M., S. B. S. A., and Ambrosio (1999). Condata: a tool for automating
specification-based test case generation for communication systems. Software
Quality Journal, 8(4):303–319.

PLAVIS (2005). Plavis - platform for software validation & integration on space
systems. Online in: http://www.labes.icmc.usp.br/plavis/index.html, last
access: 29/04/2005.

Robinson, H. (1999). Graph theory techniques in model-based testing. In Proceedings
of the 16th Conference on Testing Computer Software.

Simão, A. S. and Maldonado, J. C. (2002). MuDeL: A language and a system for
describing and generating mutants. Journal of the Brazilian Computer Society,
8(1):73–86.


