
Procedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

ANALYSIS OF NAVIGATIONAL ALGORITHMS FOR A REAL TIME
DIFFERENTIAL GPS SYSTEM

Leandro Baroni
National Institute for Space Research
Av. dos Astronautas, 1758 - CEP 12227-010
São José dos Campos - SP - Brazil
leandrobaroni@yahoo.com.br

Hélio Koiti Kuga
National Institute for Space Research
Av. dos Astronautas, 1758 - CEP 12227-010
São José dos Campos - SP - Brazil
hkk@dem.inpe.br

Abstract. The Global Positioning System (GPS) is a navigation system based on satellites that allows the user to determine
position and time with high precision. The GPS signal is subject to several error sources. The combined effects of these
errors at signal propagation cause degradation in the positioning accuracy. However, there are methods to improve the
positioning accuracy, like differential GPS (DGPS) and double difference positioning. This work proposes to compare
results and accuracies obtained through Kalman filter and least squares for two implementations: differential GPS and
double difference. These comparisons include data obtained from static and mobile receivers. These data were collected
by two real time Ashtech Z12 geodetic quality receivers.
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1. Introduction

In Global Positioning System (GPS), the pseudorange, which is the distance measurement between satellite and
receiver, plus signal propagation error effects, is frequently used for estimating position coordinates and clock bias.
Unfortunately, there are several errors in measurements which do not allow the GPS to reach the high precision
demanded by certain applications (Misra and Enge, 2001). Therefore, the precision to which signal propagation
errors are compensated for are extremely important (Parkinson and Spilker, 1996). There are several techniques for
treating these errors, like differential GPS (DGPS) and double difference positioning.

This work proposes to compare results obtained through Kalman filter and least squares for two implementations:
differential GPS and double difference. These algorithms were tested in two cases: (i) static, in which both receivers
are kept fixed; (ii) dynamic, in which the user receiver is mounted on an aircraft. Both data sets (static and dynamic)
were collected by two double frequency and geodetic quality Ashtech Z12 GPS receivers. These data were processed
through Kalman filter and least squares algorithms, and results were compared with landmarks, previously surveyed
by IBGE, and with the aircraft reference trajectory. Hence, these results allow to assess a position estimation method
and to verify the accuracies obtained with these techniques.

2. Mathematical Modelling

Pseudorange is a distance measurement between satellite, at signal departure epoch, and receiver antenna at signal
arrival epoch, obtained through signal time travel measuring, and it is affected by some error sources. The
mathematical model for pseudorange ρi

u between satellite i and receiver u has the form
(Parkinson and Spilker, 1996):

ρi
u = Di

u + c · (bu − Bi) + T i
u + Ii

u + εi
u (1)

where Di
u = |Ri − ru| is geometric distance, Ri is satellite position, ru is receiver antenna position, bu is receiver

clock bias, Bi is satellite clock bias, T i
u and Ii

u are tropospheric and ionospheric errors, εi
u represents other

unmodelled errors and c is light speed, 299792458 m/s. The positioning is made by linearization about the best
estimate available for Eq. (1), from which:

∆ρi
u =

[
−Xi−x̂u

ρ̂i
u

−Y i−ŷu

ρ̂i
u

−Zi−ẑu

ρ̂i
u

1
]
∆x + ∆εi

u (2)

The observable called single difference is formed taking the difference of pseudorange measurements between two
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receivers at a given epoch. Single difference for pseudorange measurement is given by (Misra and Enge, 2001):

ρi
ub = ρi

u − ρi
b = (Di

u − Di
b) + (bu − bb) + (T i

u − T i
b ) + (Ii

u − Ii
b) + (εi

u − εi
b)

= Di
ub + bub + T i

ub + Ii
ub + εi

ub
(3)

where (·)ub = (·)u − (·)b.
The satellite clock bias term Bi, which is common for both measurements, is cancelled. The tropospheric and

ionospheric terms are differences from corresponding errors at two receivers. The magnitude of these terms depends
mainly on separation distance between receivers (baseline). When this distance is small, the tropospheric and
ionospheric effects are almost the same and the residuals become negligible, in comparing with errors due to
multipath and receiver internal noise. Thus, for a short baseline, the single difference for code pseudorange is
simplified to:

ρi
ub = Di

ub + bub + εi
ub (4)

The relative receiver clock bias term bub is common to all single difference measurements at each epoch. This
term may be cancelled through double difference measurements, which are formed by subtracting two single
differences referred to two distinct satellites i and j:

ρij
ub = ρi

ub − ρj
ub (5)

which may be rewrited in:

ρij
ub = (Di

ub − Dj
ub) + (εi

ρ,ub − εj
ρ,ub) = Dij

ub + εij
ρ,ub (6)

In particular, ρij
ub may be formed by:

ρij
ub = (ρi

u − ρi
b) − (ρj

u − ρj
b) (7)

2.1 Positioning via DGPS on Position

Essentially this technique applies corrections directly in position coordinates. Two steps are required: first of all,
using the raw pseudorange measurements, each receiver (base and user) computes their positions by the same
algorithm, in this case, a conventional least squares method. Then the position correction on base receiver is applied
to the user receiver

The base receiver is placed at a known landmark, with coordinates rref =
[
xref yref zref

]T
given in WGS84

coordinates. The base position coordinates rb =
[
xb yb zb

]T
is computed by using the raw pseudorange

measurements, through the least squares method. Then the correction to the base position are inferred directly by
comparison:

δr = rref − rb (8)

Therefore the correction δr computed for the base receiver can be applied straightforwardly to the user receiver:

r̂u = ru + δr (9)

where r̂u is the differentially corrected position estimate of the user receiver, and ru is the position computed using
raw pseudorange measurements of the user receiver.

2.2 Positioning via DGPS on Pseudorange

The correction generated on base δρi is simply the difference between the calculated pseudorange with reference
coordinates ρ̂i

b and measured pseudorange ρi
b:

δρi = ρ̂i
b − ρi

b (10)

This correction is used for correcting the corresponding pseudorange measurement of the user.
The user receiver obeys a dynamic model, given by (Maybeck, 1979; Brown and Hwang, 1996):

ẋu = Fxu + Gωu (11)

where F is a matrix that relates state with its derivative, ωu is a modelling noise and G is an addition noise matrix.
ωu is assumed white noise.

The measurements model, at instant k, for this method can be obtained from linearization given by Eq. (2). By
performing a Taylor expansion about current state, the measurements residuals can be written as a linear function of
the estimated state error (Baroni et al., 2003):

∆ρi
u = Hk∆xu + ∆εu (12)

onde Hk =
[

∂Di
u

∂xu

]
x=x̂

.



Procedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

2.3 Positioning via Double Difference

This positioning method combines pseudorange measurements from both receivers for generating double
difference observables. The double difference observations are formed by choosing a master satellite M , generally by
the maximum elevation criteria, and then forming double difference measurements. This procedure guarantees a
linearly independent set of double differences (Saalfeld, 1999). Thus,

ρMi
ub = (ρM

u − ρM
b ) − (ρi

u − ρi
b), i = 1 . . .m, i 6= M (13)

where m is the number of visible satellites. This equation also may be written, according to Eq. (6), in function of
geometric distances:

ρMi
ub = (DM

u − DM
b ) − (Di

u − Di
b) + εMi

ub (14)

Considering that the baseline is much shorter than distances between receivers and satellites by orders of
magnitude, we can define the relation:

Di
ub = Di

u − Di
b = 1i

b · xub (15)

where 1i
b =

[
−Xi−xb

ρi
b

−Y i−yb

ρi
b

−Zi−zb

ρi
b

]
is the unity vector pointing from base to satellite i and xub represents

the baseline between receivers.
Using the described approximation, Eq. (14) becomes linear with respect to the baseline xub:

ρMi
ub = (1M

b − 1i
b)xub + εMi

ub (16)

This equation constitutes the measurement model to be considered for solving the problem. It should be remarked
that the double difference measurement covariance matrix has a non-diagonal form (Strang and Borre, 1997):

RDD = 2σ2
0

2 . . . 1
...

. . .
...

1 . . . 2

 (17)

where σ2
0 is pseudorange measurement error variance. It is recommended that RDD be diagonal for sequential

processing by Kalman filter. This diagonalization process is called whitening. The whitening process is described in
Bierman, 1977 and Baroni and Kuga, 2004.

3. Static Tests

In this test both receivers remain static, at positions precisely known, for verifying the quality of proposed
algorithm. The data were collected by two Ashtech Z12 receivers, in a campaign of about one hour, and 1 Hz of
sampling rate. The base receiver was placed on a reference landmark with coordinates 23◦ 12’ 40.40928” S,
45◦ 51’ 38.38152” W and 612.0274 m, measured by IBGE. The graph in Fig. 1 shows the GDOP, PDOP, TDOP and
number of visible GPS satellites during the observation campaign. The results were analyzed through comparing
position error related to baseline of 5.20 m between receivers.

Figure 1. GDOP, PDOP, TDOP and number of visible satellites during experiment.
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3.1 DGPS on Position

Firstly, for each receiver, position and clock bias are obtained for both receivers independently from measured
data. So, base receiver computes the differential correction by comparison between calculated and known position.
Then, this correction is added to user position. Baseline is obtained from user corrected position and base reference
position.

Figure 2 shows the user position error related to 5.20 m baseline. The error remains most of time less than 3 m,
however with some ripples reaching 7 m, due to high GDOP. This result is within level of accuracy expected for this
DGPS technique (Parkinson and Spilker, 1996). This experiment shows a mean error of 0.53 m and standard
deviation of 1.34 m.

3.2 DGPS on Pseudorange

The position is obtained by a Kalman filter in this method. The state to be considered for this experiment xu is
composed by position coordinates ru =

[
xu yu zu

]T
, clock bias bu and drift du, with ḃu = du. So,

xu =
[
ru bu du

]T
(18)

Therefore, the dynamical model is given by:

ẋu =

03×3 03×2

0 1
02×3 0 0

xu + Gωu (19)

whose transition matrix is:

Φk,k−1 =

I3×3 03×2

1 δt
02×3 0 1

 (20)

The measurements model for use in the filter is given by Eq. (2). The pseudorange is measured with variance
σ2

0 = (3 m)2, so the R and Q matrix for this filter are given, in S.I. units, by:

R =

32 . . . 0
...

. . .
...

0 . . . 32

 and Q =
[
0.0092 · I3×3 03×1

01×3 0.92

]
(21)

The graph of Fig. 3 shows the position error for this method, together with estimation error of ±1-σ, given by the
trace of the covariance matrix. A good estimate for user initial position is the base position, which gives an initial
error of 4 m. After the filter convergence, the estimated curve remains with mean error of 0.11 m and standard
deviation of 0.29 m. This method has better precision than DGPS on position, because of smoothing characteristics of
Kalman filter, due to the adopted dynamical model.

Figure 2. DGPS on position error. Figure 3. DGPS on pseudorange error.

3.3 Double Difference

The state vector xub for double difference positioning consists only of the baseline offset coordinates, such that:

xub =
[
δx δy δz

]T
(22)



Procedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

The dynamic model is given by:

ẋub = 0 + Gωr (23)

because the receivers are static. So, transition matrix is reduced to the identity matrix. The observation matrix H is
given by Eq. (16).

The graphs of Fig. 4 show the positioning solution related to the 5.20 m baseline, together with the ±1-σ
estimation error for Kalman filter and least squares solution. The precision in both methods is similar, except by the
fact of least squares solution is done point-to-point, that is, the solution is obtained for each instant and without
dynamic model. The Kalman filter solution is recursive, obtained through the previous epochs improvement using
current epoch measurements. This generates more stable results than point-to-point solution.

(a) (b)

Figure 4. Double difference error using (a) Kalman filter and (b) least squares.

4. Dynamic Tests

The positioning algorithms described in previous sections were applied to flight data from a mobile user and a
fixed base. These data were collected by a receiver installed on an aircraft and a fixed receiver. The base position
coordinate are given by 23◦ 13’ 42.9859” S, 45◦ 51’ 23.4615” W and 686.227 m. The GDOP, PDOP and TDOP and
number of visible satellites along the time are shown on graphs of Fig. 5.

(a) (b)

Figure 5. (a) GDOP, PDOP and TDOP and (b) Number of visible satellites during experiment

4.1 DGPS on Position

The solution of this method consists only of the aircraft position. The graphs of Fig. 6 show the error components
on directions east, north and vertical. The horizontal errors have the same precision (about 0.2 m), while vertical error
is less precise (0.7 m), and biased about 2 m.

One can notice that this positioning method has a precise solution, but the accuracy is not so good, because the
horizontal error is not distributed about zero. The result of this method has precision of about 0.25 m, using all
visible satellites. For comparison, Martínez et al., 2000 obtains solution in two dimension with a similar method, but
using only three satellites, chosen by DOP criteria. His solution has a precision of about 5 m.
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(a) (b) (c)

Figure 6. DGPS on position: error components (a) east, (b) north and (c) vertical.

4.2 DGPS on Pseudorange

The model used for describing the aircraft trajectory consists on estimating position, velocity and clock terms.
The state vector to be considered consists of 8 elements:

x =
[
ru vu bu du

]T
(24)

where ru =
[
xu yu zu

]T
are user position coordinates, vu =

[
ẋu ẏu żu

]T
are velocity coordinates and

(bu, du) are clock bias and drift, respectively. Thus, the aircraft dynamics is represented by the following state
equation:

ẋ =


03×3 I3×3 03×2

03×3 03×3 03×2

0 1
02×3 02×3 0 0

x + G
[
ωr

ωb

]
(25)

where G =
[
03×3 I3×3 0 0
01×3 01×3 0 1

]T

.

Hence, state transition matrix assumes the form:

Φk,k−1 =


I3×3 δt · I3×3 03×2

03×3 I3×3 03×2

1 δt
02×3 02×3 0 1

 (26)

where δt is time interval between measurements.
The Hk matrix, described in Eq. (12), is given by:

Hk =
[
−Xi−x̂u

ρ̂i
u

−Y i−ŷu

ρ̂i
u

−Zi−ẑu

ρ̂i
u

0 0 0 1 0
]

(27)

The filter was initialized with base position and null velocity. The pseudorange was measured with variance
σ2

0 = (3 m)2. The Q matrix was tuned as:

Q =
[
qr · I3×3 03×1

01×3 qb

]
(28)

with qr = 0.82 m2/s5 and qb = 0.12 m2/s5.
The graphs of Fig. 7 show the position errors, in terms of east, north and vertical components, using this method.

These errors have peaks, of about 6 m for east component and 10 m for north component. These peaks occur at
moment that aircraft changes its trajectory. This fact shows the dynamic model is not precise enough to follow fast
changes in aircraft trajectory. The standard deviations of horizontal errors (east and north) are bigger than ones of
vertical error due to mentioned peaks. The vertical error does not have such peaks, probably because the vertical
component does not have severe variations like horizontal components.
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(a) (b) (c)

Figure 7. DGPS on pseudorange: error components (a) east, (b) north and (c) vertical.

4.3 Double Difference Positioning

The implementation of this method by Kalman filter assumes as state to be estimated the baseline (δx, δy, δz)
and its variation ( ˙δx, δ̇y, δ̇z), so

xub =
[
δx δy δz ˙δx δ̇y δ̇z

]T
(29)

The equation which describes the aircraft dynamic, considering the state given, is written by:

ẋub =
[
03×3 I3×3

03×3 03×3

]
xub + Gωr (30)

where ωr is the noise on (δ̈x, δ̈y, δ̈z), with power spectral density Q and G =
[
0 0 0 1 1 1

]T
is the noise

addition matrix. Thus, the state transition matrix is given by:

Φk,k−1 =
[
I3×3 δt · I3×3

03×3 I3×3

]
(31)

The matrix which relates the state vector and double difference measurements is given by:

H =
[
1M

b − 1i
b 0 0 0

]
(32)

where 1i
b is the line of sight between receiver b and satellite i 6= M and M indicates the master satellite.

The least squares solution was obtained by batch measurement processing at each epoch, by the equations:

P = (HT WH)−1

∆xub,k = PHT W∆zDD
(33)

where W is a weighting matrix, given by W = R−1
DD, ∆zDD = zDD − ẑDD is the double difference residual and

∆xub,k is the baseline increment. The value of estimated baseline x̂ub, at instant k, is calculated by:

x̂ub,k = xub,k−1 + ∆xub,k (34)

The initial values for state vector x̂ub are 0 m for baseline and 0 m/s for baseline variation, while its covariance
P̂ub is a diagonal matrix, where the values corresponding to baseline are (100 m)2 and corresponding to baseline
variation are (10 m/s)2. The measurements noise covariance matrix RDD is, according to Eq. (17):

RDD = 18

2 . . . 1
...

. . .
...

1 . . . 2

 (m)2 (35)

The filter was tuned with the value of Q = 1.12 · I3×3 m2/s5, constant during the whole experiment period.
The graphs of Fig. 8 show aircraft position errors for east-north-vertical coordinates using Kalman filter. The east

and north components mean remain about zero, but the standard deviation are 3.3 m and 4.1 m respectively. These
errors also present peaks due to system dynamic model.

The graphs of Fig. 9 show position errors using least squares method. This method reached accuracy practically
the same of DGPS on position method.
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(a) (b) (c)

Figure 8. Double difference: error using Kalman filter, in components (a) east, (b) north and (c) vertical.

(a) (b) (c)

Figure 9. Double difference: error using least squares, in components (a) east, (b) north and (c) vertical.

5. Conclusion

For a static case, the DGPS on position method, using least squares, reached an accuracy of 0.53±1.34 m (1 σ).
The DGPS on pseudorange method, using Kalman filter, reached an accuracy of 0.11±0.29 m (1 σ) and it is
smoother than previous method, due to filter recursive characteristics. The accuracies obtained for double difference
positioning were 0.27±0.14 m (1 σ) for Kalman filter and 0.69±1.37 m (1 σ) for least squares. The Kalman filter
presented better accuracies than least squares in the mean error and standard deviation.

The cited algorithms were applied on aircraft navigation data. The modelled dynamics for all methods that uses
Kalman filtering presented enough accuracy to describe aircraft position with errors of about 5 m. In high maneuvers
situations (changes in direction or altitude), it occurred peaks of 10 m, compared to a reference trajectory. In general,
the error for DGPS on pseudorange method, which used Kalman filter as estimator, was -0.308±2.313 m for east
direction, 0.541±2.905 m for north direction and -2.058±1.374 m for vertical (1 σ). For double difference, the
accuracies were -0.029±3.300 m, -0.225±4.153 m and -3.794±1.896 m for east, north and vertical errors respectively
(1 σ).

On the other hand, the accuracies obtained with least squares methods. Where the position is calculated
point-to-point, and the dynamic modelling is not necessary were better than Kalman filtering. This fact reinforces
local observability characteristics. In this case, the user depends only on the sampling rate offered by receiver, here
2 Hz. However, the dynamics must be considered in cases of interpolation between sample intervals. The DGPS on
position method had accuracies of -0.429±0.265 m for east error, 0.615±0.293 m for north error and -2.080±0.782 m
for vertical error (1 σ), while in double difference, the errors were -0.430±0.268 m, 0.614±0.293 m and
-2.088±0.797 m for east, north and vertical components, respectively. An analysis in a rectilinear part of aircraft
trajectory shows that the mentioned peaks are due to curve maneuver on horizontal plane. In this part it can be
shown that accuracies obtained by Kalman filter are comparable to those obtained by least squares processing.
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