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Abstract.  The objective of this work is the estimation of an optimal Rendezvous maneuver between keplerian orbits 
with a Kalman filter, using the dynamic equations of “Formation Flying”. To occur an encounter between two space 
vehicles it is necessary that the instant of its arrivals and the place (point) be the same for both the two Bodies involved 
in the maneuver. The reference measurements are obtained from the routine of Gooding to solve the Problem of 
Lambert, representing a bi-impulsive transfer between the orbits (Prado, 1993). 
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1. Introduction 

 
The description of the dynamics of the relative motion between two bodies, in arbitrary elliptic orbits, can be seen in 

many references in the literature (Carter et. al., 1987). Tschauner-Hempel developed a group of equations to describe 
the relative motion of a spacecraft (M3) going around a primary M1, in an arbitrary elliptic orbit, with a fixed coordinate 
system in the primary M2.    

A priori, the only hypothesis done in the formulation of the problem is that the distance between the bodies M2 and 
M3 is small compared with the distances between the reference point (M2) and the body M1 (center of gravity). The 
methodology of trajectory estimation used a numeric implementation of the Kalman filter together with the analysis of 
the results.  
 
2.  Dynamics of the Relative Motion 
 

M1 and M2, are the two primaries with mass (1 - µ) and µ, respectively. M2 is in a circular orbit around M1. The 
space vehicle M3 leaves M2 from a point P (t = ψ0). It follows a trajectory around M1 and meets again with M2 in a point              
Q (t = ψf), where ψ0, ψf ∈[0,2π]. The values of ψ0 and ψf are not necessarily symmetrical [4, 5]. The problem will be 
modeled using the dynamics of two bodies, i. é., µ= 0 will be considered, implying in the reduction of the three bodies 
problem to the two bodies problem. Kepler equations can be used in the development of the solutions. It is assumed that 
the three bodies involved are mass points and do not suffer external disturbances (figure 1). 
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Figure 1. Relative Distance 
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2.1. Mathematical equations 
 
The Tschauner-Hempel equations, that describe the relative motion, in the relative orbit coordinate system, in the 

torques of and external forces are (Carter et al., 1987): 
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Where  is the angular velocity of the reference orbit, that is the orbit of the primary Mw 2 around M1. 
 

2.2. Kalman Filter 
 

The Kalman Filter discovered by Rudolf E Kalman in 1960, consists of an optimal recursive algorithm, used to 
estimate states of a dynamic system, based on the measurements of the reliability of the data observed, starting from a 
covariance uncertainty matrix, and processing of each new measurement available.  

Starting from a well-known initial state, this algorithm combines the available data, adds the previous knowledge of 
the system and of its measurement devices, to process and produce an estimate of the desired variables, so the error is 
reduced along the time. 

The Kalman Filter uses a control process feedback, i. e., it is considered the state of the process in a given instant, 
and then they are obtained the feedback, under the form of noisy measurements. Combining the measurements, a priori, 
the knowledge of the system dynamics, statistics of the noise of the system dynamic and the errors of measurements, 
besides information of the initial condition it produces an estimate of the state, in such way that the statistical error is 
minimized. 

 
2.3.  Problem Model 
 
a) The unit of distance is the distance between M1 and M2; 
b) The angular velocity (ω) of the motion of M1 and M2 is assumed to be unitary; 

c) The mass of the smaller primary (M2) is given by 
21
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=µ ,  (where m1 and m2 are the real masses of M1 and 

M2, respectively) and the mass of M2 is (1-µ), to make the total mass of the system unitary; 
d) The gravitational constant is one; 
e) Runge-Kutta of 4th order, fixed step to solve the dynamical equations; 
f) Utilization of software MATLAB 6.5 to code a Kalman filter to estimate the rendezvous point, given the 

measurements. The function LQE of Matlab 6.5 was used, that is a Kalman filter for continuous systems in the 
time; 

g) It is noticed that all the units were normalized (see a, b, c, d). 
 

Given a dynamical system: 
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with a white unbiased gaussian process and a gaussian noiseω ν in the measurements, both of zero mean and 
covariances given by: 
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where Q and R are the corresponding power spectral density. 
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The function LQE feeds back the Kalman Gain (Kf) and the associated solutions of the Riccati differential equation 
(equation 4), as in figure 2 and 3: 
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 Figure 2. Plant - Kalman Filter 
 
 
Applying the dynamical equations of the relative motion and assuming that the orbital motion is planar: 
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Then, reducing the system of differential equations for first order: 
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In the matrix form it is given explicitly by: 
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Substituting the values for the problem: 
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Follows the initial conditions of reference trajectory: ψo = -1 rad,  ψf = 1,2 rad, e = 0,001 (eccentricity of M3 orbit). 
The used dynamic noise and measurement noise covariance matrices were: 
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After solving the Ricatti equation through MATLAB, it was obtained the steady state invariant covariance matrix P 

and Kalman gain Kf's, with the following regime values: 
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2.4.  Results and Simulations 

 
The results below are based on simulated real data and shows the measurement residues of the Kalman filter in the 

radial and axial components. These results show a preliminary attempt to use the Kalman filter to estimate in real time a 
relative orbital motion in a rendezvous problem. 
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Figure 7. Errors of Position Y (X3) and Velocity Vy (X4)
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As future works it could be researched the use of other filtering schemes to obtain enhanced response times, when 
the rendezvous time is critical. 
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