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In this work the problem of orbital maintenance of a symmetrical constellation of satellites, with minimum fuel 
consumption, is studied using bi-impulsive maneuvers with time constraint. When all the satellites are considered it is 
almost impossible to determine the optimal maneuver strategy that minimizes the fuel consumption. Therefore, the goal 
of this work is to formulate and to study maneuver strategies that make possible to obtain solutions with small fuel 
consumption considering all the satellites in the constellation. The problem can be formulated as a multi-objective 
problem due to the nature of the station-keeping of a satellite constellation. Thus, the multi-objective problem was 
defined and a new multi-objective optimization method was applied. This method can consider n conflicting objectives 
simultaneously without reducing the problem to an optimization of only one objective, as occurs with most of the 
methods found in the literature. This method, called the Smallest Loss Criterion, was presented in Rocco et al. (2003). 
It was compared with other existent methods and it was verified that it may supply better results to the problem of the 
station-keeping of satellite constellations. In this work, some applications of the Smallest Loss Criterion, presented in 
Rocco et al. (2003) and Rocco et al. (2005), are reproduced considering now that the satellite positions are determined 
using GPS measures and that there are errors in the magnitude and direction of the impulses applied in the orbital 
maneuvers. So, these measures of the satellite positions contain uncertainties that are filtered by a Kalman filter. 
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1. Introduction 
 

In this work the problem of orbital maintenance of symmetrical constellations of satellites, with minimum fuel 
consumption, is studied using impulsive maneuvers with time constraint. To perform the station keeping of a 
constellation the problem of optimizing simultaneously the maneuvers for n satellites must be studied. When all the 
satellites are considered it is not simple to determine the optimal maneuver strategy that minimizes the fuel 
consumption with time constraint. The problem can be formulated as a multi-objective problem due to the nature of the 
station-keeping of a satellite constellation. Thus, the multi-objective problem applied to satellite constellations was 
defined and a new multi-objective optimization method was applied. This method can consider n conflicting objectives 
simultaneously without reducing the problem to an optimization of only one objective, as occurs with most of the 
methods found in the literature. This method, called The Smallest Loss Criterion, was presented in Rocco (2002), Rocco 
et al. (2003) and Rocco et al. (2005). In this work, some applications of the Smallest Loss Criterion, are reproduced 
considering now that the satellite positions are determined using GPS measures. These measures of the satellite 
positions contains uncertainties that are filtered by a Kalman filter. Another extension considered by this work is the 
introduction of errors in the magnitude and direction of the impulses applied in the orbital maneuvers. The uncertainty 
of the position and the maneuver errors turn the problem similar to the real case, so the application to real missions 
becomes more accurate. 

It was considered that the orbital maintenance of the satellites is made in an autonomous way, that is, the satellites 
can communicate with each other in order to obtain de position of each, and determine the best set of maneuver to be 
applied. Therefore, the problem is not to define which satellite will be maneuver, but how to simultaneously maneuver 



  

all the satellites. However the autonomous maneuver strategy, that was adopted, is not the main goal of this work. It 
was used as a form of eliminating the dependence of a control center and a ground tracking station. Thus, the effort was 
concentrated on the resolution of the multi-objective problem relative to the choice of the best set of maneuvers and not 
in problems of visibility and connection with the ground. 
 

2. The Multi-Objective Problem 
 

According to Cohon (1978), the static optimization of one objective problem can be defined in the following way: 

Maximize  ( )xZ   with relation of nRx   ∈    (1) 
Subject to     ( ) 0gi ≤x      mi ..., 2, ,1 =  
                     0≥x  
Given           ( )  Z ⋅ , ( )  ⋅ig              or 

Maximize  ( )xZ   with relation to nRx   ∈    (2) 
Subject to  dFx ∈  
Given        ( ) . Z , dF  

where dF  is the feasible area of the decision space, defined by: 

( ){ }0 ;..., 2, ,1 ,0g| i ≥=≤∈= xxRxF min
d    (3) 

The multi-objective problem can be defined by: 

Maximize ( ) ( ) ( ) ( )[ ]xxxxZ pZ ..., ,Z ,Z 21=    (4) 

Subject to dFx ∈  

Therefore, in this case, the objective function, is a vector with dimension p . Thus, the multi-objective optimization 
consists of the minimization (or maximization) of a vector of objectives ( )xZ  that may be subject to constraints or 
bounds. This kind of problem is very common in a station keeping of satellite constellations because during the 
maneuvers many parameters must be optimized at the same time. In problems of unidimensional optimization (when we 
have one objective), the possible solutions ( dFx ∈ ) can be compared by means of the objective function, that is, given 
two solutions 1x  and 2x  we can compare ( )1xZ  with ( )2xZ  and determine the optimal solution so that dFx∈  doesn't 
exist such as ( ) ( )*xx ZZ > . In problems of multi-dimensional optimization (multi-objective problem), in general, it is not 
possible to compare all the possible solutions because the comparison on the basis of one objective can be contradicted 
with the comparison based on another objective. Namely, supposing that: 

( ) ( ) ( )[ ]1
2

1
1

1 Z ,Z xxxZ =    and   ( ) ( ) ( )[ ]2
2

2
1

2 Z ,Z xxxZ =    (5) 
1x  is better than 2x if and only if: 

( ) ( )2
1

1
1 ZZ xx >  and ( ) ( )2

2
1

2 ZZ xx ≥    or   ( ) ( )2
1

1
1 ZZ xx ≥  and ( ) ( )2

2
1

2 ZZ xx >    (6) 
If ( ) ( )2

1
1

1 ZZ xx >  and ( ) ( )2
2

1
2 ZZ xx <  we cannot conclude anything regarding 1x  and 2x . 

 

3. The Samallest Loss Criterion 
 

As previously shown in Rocco et al. (2003), there are several multi-objective optimization methods. The 
methodologies found in the literature generally start the problem with a multi-objective approach but end reducing the 
problem to the unidimensional case, by means of simplifications or influence factors. Or, when the approach was really 
multi-objective, the result found was a group of solutions candidates to the optimal solution, and in this case, for the 
choice of the optimal solution other external approaches to the problem should be used. In practical applications, it 
would be convenient to apply a methodology capable to find the solution that assists all the objectives. 

The Smallest Loss Criterion, presented in Rocco (2002) and Rocco et al. (2003), may be enunciated in the following 
way: In a problem with n conflicting objectives, where the intention is to optimize the n objectives simultaneously, 
privileging none of them, the solution should be the one which results in the smallest loss for each one of the objectives. 
Because there is no solution which optimizes simultaneously the n objectives individually. 

An attempt to reach this solution would be to find the barycenter of a normalized n-dimensional figure, where the 
vertexes are the optimal solution for each objective. Therefore, for problems with three objectives the solution would be 
in the center of a normalized triangle, for n objectives the solution would be in the center of a normalized n-dimensional 
figure. Figure 1 shows an example of this criterion applied to a problem with three conflicting objectives. In this 
example, S1, S2 and S3 are the optimal solutions for each one of the objectives, considered separately. B is the 
barycenter of the triangle formed by the segments 21SS , 32SS  and 13SS . By the barycenter definition, the distance 
from B to the vertexes of the triangle represented by the solutions S1, S2 and S3 is the same. So, if the barycenter B is 
adopted as a solution for the multi-objective problem, the segment BS 1  represents the loss in relation to objective 1, 
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and in the same way, the segments BS 2  and BS 3  represent the loss in relation to objectives 2 and 3 respectively. 
Thus, from Figure 1 it can be concluded that if the three objectives are equally considered, the best solution is that one 
which coincides with the barycenter of the triangle. 
 

4. The Satellite Position Measures 
 

In this work a constellation composed by three satellites with circular and equatorial nominal orbits is used. 
Therefore the orbital nominal elements of the satellites are given by: 
 

e  =        0.00000000 i  =        0.00000000 
l  =  7010.00000000 km ω  =        0.00000000 
a  =  7010.00000000 km Ω  =        0.00000000 

 

where e is the eccentricity, l  is the semi-latus rectum, ω  is the argument of perigee, a  is the semi-major axis, i  is the 
inclination and Ω  is the right ascension of the ascending node. 

It was considered that to assist the specifications of the mission, the satellites should be positioned in such a way 
that the difference among the true longitudes of the satellites ( 1θ , 2θ  and 3θ ) should be equal to 120 P

o
P. With the actual 

true longitudes, the position constraints 1δθ , 2δθ , 3δθ  and δθ  which represent the position error of the satellites, can 
be calculated, as shown in Figure 2. 
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                    Fig. 1 – The Smallest Loss Criterion. 
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       Fig. 2 – Nominal position of the satellites.
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But in this work, it was considered that the position of the satellites ( 1θ , 2θ  and 3θ ) was obtained using a GPS 
constellation (Global Positioning System). Thus, the measures were corrupted by an error caused by the uncertainties, 
modeled by an aleatory error of average zero (Oliveira et al. 2005). Beyond this, to consider the propulsion errors, in 
magnitude and in direction to the impulses during the orbital maneuvers, the magnitude of these errors was amplified. 
Therefore, the measures must be filtered by a Kalman filter. 
 

4.1. The Kalman Filter 
 

The Kalman filter can be considered the solution for the linear-quadratic-gaussian problem, which is the problem of 
instantaneous state estimation of a dynamic linear system disturbed by a gaussian white noise. The filter is an estimator 
with characteristic of real time, that may incorporate a dynamic noise in the model of the dynamics. For that reason, it is 
said that this filter is the optimal solution of minimum variance (Maybeck, 1979). 

The Kalman filter is generally used for linear dynamics, therefore it can be also used in non-linear dynamics, as it 
may be seen in Grawal and Andrews (1993) and Maybeck (1979), by the use of the extended Kalman filter. The filter 



  

consists of two stages: propagation or prediction (time-update); and actualization or correction (measurement-update). 
In the propagation phase, the state x  and the covariance P are propagated, from the instant 1−kt to kt . The discrete 

linear model is given by the following equation. 
kkkkkk ωΓxφx += ++ ,11   (14) 

where x  is the state to be estimated, φ is the state transition matrix, Γ  is a matrix which relates the dynamic noise to 
the state, and ω  is the vector of dynamic noise modeled by a white noise defined by: 

( )kk Qω ,0N=   (15) 
The formal equations for the propagation stage are the following ones: 

11, ˆ −−= kkkk xφx   (16) 
t
kkk

t
kkkkkk ΓQΓφPφP += −−− 1,11,

ˆ   (17) 

where kx  and kP  are the state and the covariance propagated to the instant k. 
The actualization phase is used to correct the state and the covariance in the instant k, considering the measures ky  

using the observation model given by: 
kkkk vxHy +=   (18) 

where H  is the matrix, which relates the state to the measures, and v  is the noise vector of measures modeled by a 
white noise defined by: 

( )kk Rv ,0N=   (19) 
The measures in the instant k, supplies information to correct the state and the covariance. This phase, simply 

incorporates this information to the estimates. The equations are the same of the Kalman form. 
( )k

t
kkk

t
kkk RHPHHPK +=   (20) 

( ) kkkk PHKIP −=ˆ   (21) 
( )kkkkkk xHyKxx −+=ˆ   (22) 

where kK is the Kalman gain, and kx̂  and kP̂  are the state and the covariance updated to the instant k. The updating 
phase corrects the state and the covariance for the instant kt  using the measured ky . 
 

5. Determination of the Maneuvers to be Apllied 
 

The orbital maneuver method used in this work was implemented by Rocco (1997). It was based in the equations 
presented by Eckel and Vinh (1984). The method provides the transfer orbit with minimum fuel and fixed time transfer. 

Considering only one satellite and that the maneuver is bi-impulsive, the total velocity increment is: 
( )xF∆∆ 21 =+= vvV   (23) 

If we consider the case of minimum fuel and fixed time we have the constraint relation: 
00 =−ΤΤ   (24) 

and the performance index is: 
( )0ΤΤkVJ −+=   (25) 

Eckel and Vinh (1984) showed that the solution of the problem depends on three variables: the semi-latus rectum p  
of the transfer orbit and the true anomalies 1α  and 2α  that define the position of the impulses in the initial and final 
orbits. Therefore, the necessary conditions can be defined such as: 

0=+
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22
=+
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∂
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∂ ΤkV   (26) 

The constraints of the satellite dynamic equations were shown in Rocco (2000a and 2000b).  
The set of two equations are obtained by eliminating the Lagrange’s multiplier k  from Eq. (26): 
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The two final optimal conditions are obtained evaluating the partial derivatives in these equations and doing some 
simplifications, as shown in Rocco et al. (1999, 2000a and 2000b). Thus, a system of equations composed by the two 
final optimal conditions (Eq. 27) and the time constraint equation (Eq. 24) must be solved to obtain the transfer orbit 
that performs the maneuver spending a minimum fuel consumption but with a specific time. 

It may be assumed that in the initial instant the orbital elements of the satellites are given by (angles in radians): 

USatellite 1: 
1a  = 7000.000000000 1Ω  =        0.00000000 1u  =        0.00000000 

1e  =        0.00000000 1ω  =        0.00000000 1f  =        0.00000000 

1i  =        0.00000000 1M  =        0.00000000 1θ  =        0.00000000 
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USatellite 2: 
2a  =  7002.00000000 2Ω  =        0.00000000 2u  =        2.09439510 

2e  =        0.00000000 2ω  =        0.00000000 2f  =        2. 09439510 

2i  =        0.00000000 2M  =        2.09439510 2θ  =        2. 09439510 
USatellite 3: 

3a  =  7005.00000000 3Ω  =        0.00000000 3u  =        4.18879020 

3e  =        0.00000000 3ω  =        0.00000000 3f  =        4.18879020 

3i  =        0.00000000 3M  =        4.18879020 3θ  =        4.18879020 

where M  is the mean anomaly, u  is the eccentric anomaly, f  it is the true anomaly and θ  is the true longitude. 

Nine maneuvers were calculated for each satellite varying the semi-major axis of the final orbit, increasing a few 
kilometers above the nominal altitude. Each maneuver has different values of time spent and velocity increment and 
generates different value of position constraint (Eq. 13).  

USatellite 1:U  Maneuver 1:  == nominalfinal aa 7010.00 km 

a =  7006.23867081 e =  0.01326311 ω =  3.26866839 v∆ =  0. 19987923 t =  100.00000000 

Maneuver 2:  == nominalfinal aa  0001.1  7010.701 km 

a =  7006.63796680 e =  0. 01351801 ω =  2.42997588 v∆ =  0.20369289 t =  105.00000000 

Maneuver 3:  == nominalfinal aa  0002.1  7011.402 km 

a =  7007.44799235 e =  0.01575290 ω =  4.90124628 v∆ =  0.23740951 t =   96.00000000 

Maneuver 4:  == nominalfinal aa  0003.1  7012.103 km 

a =  7007.55340389 e =  0.01459562 ω =  2.20184554 v∆ =  0.21989383 t =  110.00000000 

Maneuver 5:  == nominalfinal aa  0004.1  7012.804 km 

a =  7008.02403816 e =  0.01516596 ω =  1.32249657 v∆ =  0.22846977 t =  112.00000000 

Maneuver 6:  == nominalfinal aa  0005.1  7013.505 km 

a =  3836.77670075 e =  0.01739282 ω =  0.29288430 v∆ =  0.26206514 t =  103.00000000 

Maneuver 7:  == nominalfinal aa  0006.1  7014.206 km 

a =  7010.12115853 e =  0.02070642 ω =  4.35673109 v∆ =  0.31206379 t =   91.00000000 

Maneuver 8:  == nominalfinal aa  0007.1  7014.907 km 

a =  7009.54050148 e =  0.01719814 ω =  3.30253352 v∆ =  0.25904536 t =  115.00000000 

Maneuver 9:  == nominalfinal aa  0008.1  7015.608 km 

a =  7010.17329534 e =  0.01832564 ω =  4.28868863 v∆ =  0.27603504 t =  113.00000000 

USatellite 2:U  Maneuver 1:  == nominalfinal aa 7010.00 km 

a =  7009.89878708 e =  0.02357146 ω =  2.66210297 v∆ =  0.35551209 t =   45.00000000 

Maneuver 2:  == nominalfinal aa  0001.1  7010.701 km 

a =  7010.08756172 e = 0.02307433 ω =  0.40841488 v∆ =  0.34798748 t =   50.00000000 

Maneuver 3:  == nominalfinal aa  0002.1  7011.402 km 

a =  7013.51891464 e =  0.03116608 ω =  5.97325255 v∆ =  0.47005461 t =   40.00000000 

Maneuver 4:  == nominalfinal aa  0003.1  7012.103 km 

a =  7012.09184248 e =  0.02679366 ω =  5.40831462 v∆ =  0.40405904 t =   50.00000000 

Maneuver 5:  == nominalfinal aa  0004.1  7012.804 km 

a =  7014.21291716 e =  0.03114449 ω =  1.00151843 v∆ =  0.46967916 t =   46.00000000 

Maneuver 6:  == nominalfinal aa  0005.1  7013.505 km 

a =  7014.84750776 e =  0.03178445 ω =  2.36898083 v∆ =  0.47930837 t =   48.00000000 

Maneuver 7:  == nominalfinal aa  0006.1  7014.206 km 

a =  7018.53624118 e =  0.03853833 ω =  5.85432126 v∆ =  0.58117626 t =   42.00000000 

Maneuver 8:  == nominalfinal aa  0007.1  7014.907 km 

a =  7017.77136611 e =  0.03641804 ω =  3.58576902 v∆ =  0.54916088 t =   47.00000000 



  

Maneuver 9:  == nominalfinal aa  0008.1  7015.608 km 

a =  7019.61949065 e =  0.03923146 ω =  1.26072063 v∆ =  0.59157668 t =   46.00000000 

USatellite 3: U  Maneuver 1:  == nominalfinal aa 7010.00 km 

a =  7008.73401092 e =  0.01326067 ω =  4.77507241 v∆ =  0.35551209 t =   50.00000000 

Maneuver 2:  == nominalfinal aa  0001.1  7010.701 km 

a =  7009.30604746 e =  0.01440036 ω =  1.04053440 v∆ =  0.21714484 t =   52.00000000 

Maneuver 3:  == nominalfinal aa  0002.1  7011.402 km 

a =  7010.39664945 e =  0.01768713 ω =  2.88363429 v∆ =  0.26671294 t =   48.00000000 

Maneuver 4:  == nominalfinal aa  0003.1  7012.103 km 

a =  7010.61115869 e =  0.01712727 ω =  4.99224585 v∆ =  0.25824379 t =   55.00000000 

Maneuver 5:  == nominalfinal aa  0004.1  7012.804 km 

a =  7010.63003574 e =  0.01568271 ω =  2.62158502 v∆ =  0.23642274 t =   66.00000000 

Maneuver 6:  == nominalfinal aa  0005.1  7013.505 km 

a =  7012.19041979 e =  0.02045313 ω =  2.45798715 v∆ =  0.30837499 t =   55.15000000 

Maneuver 7:  == nominalfinal aa  0006.1  7014.206 km 

a =  7014.76064778 e =  0.02710172 ω =  0.67385816 v∆ =  0.40865145 t =   45.05000000 

Maneuver 8:  == nominalfinal aa  0007.1  7014.907 km 

a =  7013.62236513 e =  0.02285244 ω =  1.63272865 v∆ =  0.34452264 t =   57.50000000 

Maneuver 9:  == nominalfinal aa  0008.1  7015.608 km 

a =  7014.66121992 e =  0.02490301 ω =  1.53540684 v∆ =  0.37543220 t =   56.50000000 
 

When all satellites of the constellation are considered, there are 729 combination of maneuvers. The position 
constraint of each combination must be calculated considering the maneuvers of all satellites. However, each maneuver 
of each combination spends a certain time. Thus, the satellite orbits must be propagated so that the position of each 
satellite, after all of them have been maneuvered, can be determined. In the orbit propagation, the effect of atmospheric 
drag and the Earth gravity potential perturbation were considered, using equations 28 to 33 (Rocco, 1999). 
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where:    nJ   = harmonic coefficients; 
   DC  = atmospheric drag coefficient; 

ρ   = atmosphere density at that altitude; 
A   = effective cross-section area. 

 

The time spent and the velocity increment of each combination were obtained, respectively, by the sum of the times 
and the velocity of each maneuver in the combination. The multi-objective approach was applied after the calculation of 
the time spent, the velocity increment and the position constraint of each combination. The Smallest Loss Criterion 
(Rocco et al., 2003) was utilized to find the best combination of maneuvers. The non-dominated solution (Pareto non-
inferiority, Pareto, 1909) are the combination shown in Tab. 1. These solutions are the extreme solutions (solutions that 
present the minimum value of time, velocity or position constraint). Other non-dominated solutions could be obtained, 
but this work is a discrete study, so the Pareto frontier is not known. To determine the entire Pareto frontier it would be 
necessary to solve the constrained equations (objective functions) for a large number of inputs. This becomes 
impracticable when these equations are of difficult solution, because the numerical methods utilized to solve the 
equations can not easily obtain the solution, and depending of the initial values the method may not converge. Thus, in 
this case, only the extreme solutions can be defined as non-dominated. 



  

Table 1. Non-dominated solutions. 
 
Maneuvers Combination 

Sat. 1 - Maneuver7 
Sat. 2 - Maneuver3 
Sat. 3 - Maneuver7 

Sat. 1 - Maneuver 1 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 1 

Sat. 1 - Maneuver 3 
Sat. 2 - Maneuver 7 
Sat. 3 - Maneuver 4 

Time (s)      176.05000000      200.00000000      193.00000000 
Velocity Increment (km/s)          1.19076985          0.74783655          1.07682956 
Position Constraint (rad)          1.17056204          3.32572560          0.14963693 

 

The barycenter, obtained considering normalized measures, is shown in Tab. 2. 

Table 2. Barycenter 
 Normalized Not Normalized 

Time 0.82113997   189.68333333 (s) 
Velocity Increment 0.76594647       1.00514532 (km/s) 
Position Constraint 0.43977775       1.54864152 (rad) 

 

From the Smallest Loss Criterion, the best solution seems to be that one where the parameters are the closest to the 
barycenter. Calculating the distances between the barycenter and the points that represent each combination of 
maneuvers the best combination may be obtained. The first nine better combinations are shown in Table 3. The nine 
worse combinations are shown in Table 4. 

Table 3. Better combinations. 
 

Maneuvers Combination 
Sat. 1 - Maneuver 7 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 7 

Sat. 1 - Maneuver 3 
Sat. 2 - Maneuver 8 
Sat. 3 - Maneuver 3 

Sat. 1 - Maneuver 7 
Sat. 2 - Maneuver 5 
Sat. 3 - Maneuver 4 

Distance (normalized measures) 
1st 

0.05460029 
2nd 

0.06459413 
3rd 

0.08509774 
 

Maneuvers Combination 
Sat. 1 - Maneuver 7 
Sat. 2 - Maneuver 9 
Sat. 3 - Maneuver 4 

Sat. 1 - Maneuver 2 
Sat. 2 - Maneuver 9 
Sat. 3 - Maneuver 3 

Sat. 1 - Maneuver 6 
Sat. 2 - Maneuver 8 
Sat. 3 - Maneuver 3 

Distance (normalized measures) 
4th 

0.09158683 
5th 

0.09716632 
6th 

0.09837753 
 

Maneuvers Combination 
Sat. 1 - Maneuver 5 
Sat. 2 - Maneuver 3 
Sat. 3 - Maneuver 7 

Sat. 1 - Maneuver 6 
Sat. 2 - Maneuver 7 
Sat. 3 - Maneuver 2 

Sat. 1 - Maneuver 7 
Sat. 2 -Maneuver 5 
Sat. 3 - Maneuver 7 

Distance (normalized measures) 
7th 

0.09908425 
8th 

0.09996529 
9th 

0.10024376 
 

Table 4. Worse combinations. 
 

Maneuvers Combination 
Sat. 1 - Maneuver 2 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 4 

Sat. 1 - Maneuver 4 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 4 

Sat. 1 - Maneuver 4 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 1 

Distance (normalized measures) 
729th 

0.61313767 
728th 

0.58074133 
727th 

0.57700448 
 

Maneuvers Combination 
Sat. 1 - Maneuver 2 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 1 

Sat. 1 - Maneuver 2 
Sat. 2 - Maneuver 5 
Sat. 3 - Maneuver 4 

Sat. 1 - Maneuver 1 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 1 

Distance (normalized measures) 
726th 

0.57632537 
725th 

0.57582367 
724th 

0.57251976 
 

Maneuvers Combination 
Sat. 1 - Maneuver 9 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 1 

Sat. 1 - Maneuver 4 
Sat. 2 - Maneuver 5 
Sat. 3 - Maneuver 4 

Sat. 1 - Maneuver 4 
Sat. 2 - Maneuver 5 
Sat. 3 - Maneuver 1 

Distance (normalized measures) 
723rd 

0.56487069 
722nd 

0.54326794 
721st 

0.54138989 
 

It can be concluded analyzing Table 3 that combination 727 is the best combination of maneuvers to be applied. 
And, analyzing Table 4 it can be concluded that combination 224 is the worst. The parameters of the best and the worst 
combinations are shown in Table 5. 

Table 5. Best and worst combination. 
  

Maneuvers Combination 

Best Combination 
Sat. 1 - Maneuver7 
Sat. 2 – Maneuver2 
Sat. 3 - Maneuver7 

Worst Combination 
Sat. 1 - Maneuver 2 
Sat. 2 - Maneuver 2 
Sat. 3 - Maneuver 4 Differences 

Time (s)      186.05000000      210.00000000  26.95000000   12.87 % 
Velocity Increment (km/s)          1.06870272          0.80992416   -0.25877856  -31.95 % 
Position Constraint (rad)          1.41792099          3.52141868    2.10349769 148.35 % 



 

6. Conclusion 
 

In this work, which is an extension of the work developed by Rocco (2002), the problem of orbital station keeping 
of satellite constellations was studied as a problem of multi-objective optimization. The multi-objectives methodologies 
found in the literature (Cohon, 1978), generally start the problem with an multi-objective approach but ended reducing 
the problem to the mono-objective case, this is done by means of simplifications or influence factors, or, when the 
approach was really multi-objective, the result found was a group of solutions candidates to the optimal solution, in this 
case, for the choice of the optimal solution we should use other external approaches to the problem. The best 
methodology found in the literature, that is based on Pareto (1909), presents this deficiency, as shown in Rocco et al. 
(2003). Therefore, it seems that doesn't exist in the revised literature any method really capable to accomplish the multi-
objective optimization, considering all the objectives of the problem equally. Thus, a methodology that at least 
considers equally all the objectives was used. This methodology is based on what it was called Smallest Loss Criterion. 
It was considered in the example presented in this work three objectives, but the Smallest Loss Criterion allows to 
consider so many objectives as necessary. The constellation considered here was composed by  = 3 satellites. 
However, the multi-objective optimization method and the developed software for the control of the constellation allow 
to consider more than 3 satellites easily. The concept for the problem for  = 3 is identical to the problem for  > 3, 
but in this case, we would have a larger computer effort. 

n

n n

In Table 5 it can be seen that the best combination of maneuvers, determined by the software, may be considered 
superior than the worst combination because the time spent and the position constraint are better for the combination 
727. The velocity increment of the combination 224 is smaller than the velocity increment of the combination 727. 
However, the position constraint of combination 224 is 148.35 % bigger than the position constraint of the other 
combination. Therefore, an increase in the velocity may be compensate by a great decrease in the position constraint. If 
in the calculation of the maneuvers the semi-major axis were varying alternately to a few kilometers above and a few 
kilometers below the nominal altitude, perhaps it would be possible to obtain better results in all three objectives, as 
occurred in Rocco et al. (2005) ) where the application of the multi-objective approach turned possible to obtain great 
improvement in all objectives. Even so, the result obtained in this work is very similar to the result obtained by Rocco et 
al. (2005), but now it was considered all the possible combination of the maneuvers and the uncertainties in the 
measures, generated by the propulsion errors and measure errors. As it was expected, due to this uncertainties, the 
results wasn't so good as the results obtained when the position of the satellites are precisely determined. But the 
uncertainties turned the problem more real. The fact of that all combination of maneuvers were considered, contributed 
significantly in the search of the best set of maneuvers to be applied in the constellation. However, it increase drastically 
the computer effort. Calculating nine maneuvers for each satellite, considering a constellation with three satellite, there 
are 729 combination of maneuvers to analyze. If twenty maneuvers were calculated there would be 8000 combinations 
considering three satellite, 160000 combinations for four satellites and 3200000 for five. So it was decided to calculate 
only nine maneuvers for each one of the three satellites, but the methodology defined in this work could be adopted 
without modifications for any number of satellites or quantities of maneuvers calculated.  
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