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Abstract 
 

A nonlinear identification approach based on 
Particle Swarm Optimization (PSO) and Takagi-
Sugeno (T-S) fuzzy model for describing dynamical 
behavior of a thermal-vacuum system is proposed in 
this paper. Identification of nonlinear systems is an 
important problem in engineering among what fuzzy 
models have received particular attention due to their 
potentialities to approximate nonlinear behavior. 
Meanwhile PSO is proposed as a method for 
optimizing the premise part of production rules, least 
mean squares technique is employed for consequent 
part of production rules of a T-S fuzzy model. 
Experimental application using a thermal-vacuum 
system, used for space environmental emulation and 
satellite qualification, is analyzed. Numerical results 
indicate that the PSO succeeded in constructing a T-S 
fuzzy model for nonlinear identification in this 
particular application. 
 
1. Introduction 
 

Nonlinear techniques using fuzzy modeling have 
received a great deal of attention and have been 
employed in many applications in system identification 
[1][2]. Takagi-Sugeno (T-S) fuzzy model, for instance, 
exhibits both high nonlinearity and simple structure 
[4][5]. The identification problem in T-S modeling 
consists of two major parts: structure identification and 
parameter identification. The structure identification is 
related to both the determination of the premise part 

and the consequent part of the production rules. It 
consists of determining the premise space partition and 
extracting the number of rules and determining the 
structure of the output elements (equations), 
respectively. Finally, the parameter-learning task 
consists of determining the system parameters, i.e., 
membership functions, so that a performance measure 
based on the output errors is minimized.  

This paper addresses the question of obtaining a 
fuzzy T-S model through Particle Swarm Optimization 
(PSO) by employing data supplied by real-world 
industrial engineering problem. The hybrid PSO and 
fuzzy approach are used in a synergetic manner with 
great success in the field of computational intelligence, 
as mentioned in [6]-[9]. The structure identification of 
the premise and the consequent part of production 
rules of T-S fuzzy system are separately carried out in 
this paper by distinct methods. The T-S fuzzy system 
design employs particle swarm optimization [10] for 
figuring out the premise part, meanwhile, least mean 
squares is used for the calculus of consequent part of 
production rules of a T-S fuzzy system for nonlinear 
identification.  

An experimental case study using a nonlinear 
thermal-vacuum system is analyzed by using the 
proposed design approach. Thermal-vacuum systems 
are employed mainly for emulating space 
environmental conditions and thus qualifying space 
systems, such as satellites, spacecrafts and so forth.  

Requirements for the space sector establish that the 
controlled variable must be the temperature on the 
specimen surface but the original controller was 



designed to use the temperature on the shroud (set of 
pipes). Experts and operators use their experience and 
reasoning for operating such a system and, thus, 
suppress such a problem. An alternative for avoiding 
human failures and transforming the system automatic 
is both to mimic the human reasoning and to 
incorporate feedback control techniques. A fuzzy 
control approach was designed in order to emulate the 
human behavior and thus being able to cope with this 
sort of nonlinear, time-delay system [11][12]. While 
succeeding in doing so, this fuzzy control approach 
was designed through interviews and by try-and-error 
approach in order to model the knowledge and 
expertise of these specialists and operators. 
Alternatively, the fuzzy control design may be 
established automatically if there is a model for the 
thermal-vacuum chamber.  

There are several optimization techniques for 
extracting fuzzy models by using data, such as 
artificial neural network (ANN), evolutionary genetic 
algorithm (GA), sequential quadratic program (SQP) 
and so on. This paper uses PSO for T-S fuzzy 
modeling in order to describe the dynamical behavior 
of the before mentioned thermal-vacuum system and 
so to explore the effectiveness of PSO in constructing 
a good T-S fuzzy model for nonlinear identification. 

 
2. Optimal Takagi-Sugeno Fuzzy Systems 
 
2.1. Takagi-Sugeno Fuzzy Systems 
 

The identification of a T-S fuzzy model involves 
two primary tasks: parameter tuning and structure 
optimization. The parameter tuning procedure deals 
with the estimation of a feasible set of parameters for a 
given structure. The structure optimization procedure 
aims to find the optimal structure of the local models, 
the relevant premise variables and a suitable partition 
of the premise space.  

The T-S models consist of linguistic IF-THEN rules 
that can be represented by the following general form: 
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The IF statements define the premise part while the 
THEN functions constitute the consequent part of the 
fuzzy system; T

mzzz ],...,[ 1= , i = 1,..,m, is the input 

vector of the premise p, and  are labels of fuzzy 

sets. The parameters 
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polynomial coefficients that form the consequent 
parameter set. Each linguistic label  is associated 
with a Gaussian membership function, 
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described by (2) where m ij and σ ij are, respectively, 
the mean value and the standard deviations of the 
Gaussian membership function: 
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The union of all these parameters formulates the set 
of premise parameters. The firing strength of rule R (j) 
represents its excitation level and it is given by: 
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The fuzzy sets pertaining to a rule form a fuzzy 
region (cluster) within the premise space, 

, with a membership distribution 
described by equation (3). Given the input vectors z 
and u
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where M denotes the number of rules and vj(z) is the 
normalized firing strength of R (j), which is defined as 
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The structure identification of T-S system is 
realized based on PSO for premise part optimization 
while the consequent part optimization is realized by 
batch least mean squares method [11].  
 
2.2. Particle Swarm Optimization (PSO) for  

Takagi-Sugeno (T-S) Fuzzy Modeling 
 

Particle Swarm Optimization (PSO) originally 
developed by Kennedy and Eberhart in 1995 is a 
population-based swarm algorithm [14][15]. Similarly 
to genetic algorithms [3], an evolutionary algorithm 



approach, PSO is an optimization tool based in a 
population where the position of each member/particle 
is a potential solution to an analyzed problem. Each 
particle in PSO has associated a randomized velocity 
that moves through the problem space. One advantage 
of PSO over genetic algorithms is that this method 
does not have operators, i.e., crossover and mutation. 
Moreover, PSO does not implement the survival of the 
fittest individuals; instead, it implements the 
simulation of social behavior. 

Each particle in PSO keeps track of its coordinates 
in the problem space, which are associated with the 
best solution (fitness) it has achieved so far. This value 
is called pbest. Another “best” value that is tracked by 
the global version of the particle swarm optimizer is 
the overall best value. Its location, called gbest, is 
obtained indeed by any particle in the population. The 
past best position and the entire best overall position of 
the group are employed to minimize (maximize) the 
solution 

The PSO concept consists of, at each time step, 
changing the velocity (acceleration) of each particle 
flying toward its pbest and gbest locations (global 
version of PSO). Acceleration is weighted by random 
terms, with separate random numbers being generated 
for acceleration toward pbest and gbest locations, 
respectively. The procedure ([16]-[18]) for 
implementing the global version of PSO is given by 
the following steps: 

(i) Initialize a population (array) of particles with 
random positions and velocities in the n 
dimensional problem space using uniform 
probability distribution function. 

(ii) For each particle, evaluate its fitness value. 
(iii) Compare each particle’s fitness with the particle’s 

pbest. If current value is better than pbest, then set 
pbest value equal to the current value and the pbest 
location equal to the current location in n-
dimensional space. 

(iv) Compare the fitness with the population’s overall 
previous best. If current value is better than gbest, 
then reset gbest to the current particle’s array 
index and value.  

(v) Change the velocity, vi, and position of the 
particle, xi, according to equations (6) and (7): 
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(vi) Return to step (ii) until a stop criterion is met, 
usually a sufficiently good fitness or a maximum 
number of iterations (generations). 

In this approach  stands for 

the position and 

[ ]Tiniii xxxx ,,, 21 L=

[ ]Tiniii vvvv ,,, 21 L=  for the velocity 

of the i-th particle, and  
represents the best previous position of the i-th particle 
(the position giving the best fitness value). The first 
part in equation (6) is the momentum part of the 
particle. The second part is the ‘cognition’ one, which 
represents the independent thinking of the particle 
itself. Equation (7) represents the position update, 
according to its previous position and speed, 
considering ∆t = 1. 

[ ]Tiniii pppp ,,, 21 L=

The inertia weight w represents the degree of the 
momentum of the particles. The use of variable w, 
inertia weight as proposed by Shi and Eberhart [19], is 
responsible for dynamically adjust the velocity of the 
particles. This parameter is accountable for balancing 
between local and global search, consequently, 
needing less or more iterations for the algorithm to 
converge. A small value of inertia weight implies in a 
local search; a high one leads to a global search, yet 
with a high computational cost. However, linear 
decreasing inertia function may also be used if it is 
interested in reduce the influence of past velocities 
during the optimization process. 

The index g represents the index of the best particle 
among all the particles in the group. Variables ud() and 
Ud() are two random functions in the range [0, 1]. 
Positive constants c1 and c2 are denominated, 
respectively, cognitive and social components. These 
are the acceleration constants, responsible for varying 
the particle speed towards pbest and gbest. Commonly 
used values for them are set equal 2. The velocity of 
the i-th particles on each dimension is clamped to a 
maximum velocity Vmax. If the sum of accelerations 
would cause the velocity on that dimension to exceed 
Vmax, which is a parameter specified by the user, then 
the velocity on that dimension is limited to Vmax. The 
parameter, Vmax, is used to determine the resolution 
with which the regions around the current solutions are 
searched. If Vmax is too high, the PSO facilitates global 
search, and particles might fly past good solutions; if is 
too small, the PSO facilitates local search, and 
particles may not explore sufficiently beyond locally 
good regions. Experience says that Vmax might be set to 
20% of the dynamic range of the variable on each 
dimension. 

 
3. Thermal-vacuum System Identification 
 
3.1. Problem Statement 
 

A thermal-vacuum system employed to reproduce 
expected space post-launch environments conditions 



for qualifying space systems consists of a chamber, a 
set of tubes (shroud) – from where heat and cold are 
transmitted through radiation –, and other auxiliary 
devices (Figure 1). The operation of the thermal 
shroud is achieved by means of a re-circulating, dense, 
and gaseous nitrogen (GN2) system. Resistance type 
heaters provide heat as required. Cooling the 
circulating gas stream is accomplished by spraying 
liquid nitrogen (LN2) into the circuit [20].  

This system is not only nonlinear [21] but presents 
time-delay, is time-varying, and works in diverse 
operational conditions defined by various levels of 
temperature (set points) used during the test. For 
illustrate these characteristics, a dynamical response 
for a passive load is shown in Figure 2. Continuous and 
dashed lines represent input and output data, 
respectively. It is possible to notice, for instance, the 
chamber-load set presents as many heating and cooling 
rates as the operational conditions.  

In a previous work, a fuzzy controller was designed 
to work as a supervisory-control mechanism in helping 
specialists to operate the thermal-vacuum chamber. 
Results and the suggested FRGS control approach are 
available in [11]-[13]. An alternative to improve the 
fuzzy controller performance is to find out a fuzzy 
model for representing the thermal dynamical behavior 
and thus to use it to tune the fuzzy control system. 
Here, PSO and fuzzy approaches work in a 
complementary and synergistic manner by using 
experimental data. 
 
3.2. Identification of T-S PSO-Fuzzy model  
 

The first part of data shown in Figure 2 was 
employed to elicit the fuzzy model through PSO. The 
first 800 initial data samples were discharged because 
they have constant values and would interfere in the 
identification process. The remaining data were used to 
validate the results.  
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Figure 1 – Thermal-vacuum chamber. 
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Figure 2 – Thermal response: passive load. 
 

Although, PSO allows to extract the number of 
rules and to determine the premise and consequent 
elements, here this method is applied to obtain 
membership functions and thus to determine the 
premise space partition. In so doing, it uses a 
predefined number of rules and membership functions 
arbitrarily chosen for each input. Setting up this 
parameter as 3, PSO needs to deal with a vector whose 
elements are 9 centers and 3 spreads of a Gaussian 
membership function. Two parameters deeply related 
to the success of PSO are the amount and the initial 
position of particles. One of advantage of this 
technique is that the initial population of particles is 
randomly generated through an uniform distribution. 
The sufficient number of particles for this application 
was setup as 5. The main parameters of PSO approach 
are shown in Table 1.  

The estimate PSO-Fuzzy model output, ( )kŷ , used 
for computing the minimum square error (8) when 
compared with the actual output,  was computed 
by using one-step ahead forecasting. 

( )ky

( ) ( )∑ =
−N

1k
ˆmin kyky

θ
 (8)

Among a population of potential solution to a 
problem, every particle has a fitness value for 
expressing appropriate optimization result. The 
function representing this quality measure employs the 
position of the particle, x, that is calculate after each 
iteration. In this paper, the fitness criteria chosen for 
evaluate the relationship between the real output and 
the estimate output during the optimization process 
was the maximization of Pearson multiple correlation 
coefficient. 



Table 1 - Parameters for PSO application 
Parameter Selection 

Number of particles 5 
Number of iterations, N 30 
Learning rate  c1 = c2 = 2.05 
Inertia weight Linear decreasing (0.729 to 0.4) 
Optimization function Maximization of Pearson 

Multiple correlation coefficient  
 

This coefficient gives the rate between the 
variability of two measures (variables) in which one is 
described by the variability of the other. The closer the 
Pearson coefficient is of unit, the more appropriate is 
the model. Suitable correlation factors considered for 
practical control applications are bigger than 0.9 and 
lower (or equal to) than 1.0 [22].  

Distinct results were obtained during the 
optimization process according to the number of 
iterations employed. The fitness factor through time 
determined when this factor was set to 30 is shown in 
Figure 3. This optimization process was carried out several 
times and the best fitness value when using 30 iterations 
was 0.99835 as it is presented in Table 2. It is also 
possible to notice that the error rate between the fitness 
value for training and validation is 5,3%. Two 
dynamical responses simulating the thermal-vacuum 
chamber when using T-S fuzzy models are shown in 
Figure 4. These models were obtained through Particle 
Swarm Optimization by using different sample rates of 
data. Continuous and dashed lines represents measured 
and simulated outputs. The experimental results had 
shown that the hybrid T-S fuzzy system and PSO 
approaches presented successful results due precision 
in predicting nonlinear dynamics.  

 
Table 2 – PSO-Fuzzy fitness values  

 
“n” 

 
Fitness (max) 

Fitness 
value 

(training) 

Fitness 
Value 

(validation) 

Error 
Rate [%] 

01 0.000000 0.000000 0.000000 NaN 
02 0.831480 0.831480 0.000000 100 
… … … … … 
06 0.831480 0.831480 0.000000 100 
07 0.942170 0.942170 0.000000 100 
08 0.979684 0.979684 0.681561 30.4305 
… … … … … 
20 0.979684 0.979684 0.681561 30.4305 
21 0.985617 0.985617 0.906519 8.0252 
… … … … … 
23 0.985617 0.985617 0.906519 8.0252 
24 0.993551 0.993551 0.886662 10.7583 
… … … … … 
29 0.993551 0.993551 0.886662 10.7583 
30 0.998350 0.998350 0.944749 5.3690 
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Figure 3 – Fitness estimation and validation 

 
4. Conclusion and Future Research 
 

In this work is presented a hyperspace search 
mechanism known as particle swarm optimization, 
PSO, to find out a T-S fuzzy model for a thermal-
vacuum system.  

This approach presents several advantages, such as, 
initial population of particles is randomly generated 
through uniform distribution, there are no operators 
such as crossover and mutation in genetic algorithm, 
simple rules describe complex behavior, and there are 
simple code and low computational cost.  

The elicited fuzzy model with only three 
membership functions determining the premise space 
partition demonstrated its effectiveness in emulating 
the time response for the thermal-vacuum system. 
Future work must be carried out to verify the influence 
of other parameters in obtaining the model. For 
example, the number of membership functions may be 
increased, and since there is large amount of data other 
step ahead forecasting modes may be exploited.  

Since this paper accomplished its goal of checking 
the use of hybrid mechanisms for modeling a real-
world industrial engineering problem, future work also 
includes a comparative approach with other learning 
mechanisms and/or optimization methods for 
generating T-S fuzzy models as well as with classical 
methods of identification through the use of statistical 
analysis. 
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Figure 4 - Responses obtained through 

resulting T-S model.  
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