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ABSTRACT: The Brazilian government annually assesses the extent of de-
forestation in the Legal Amazon for a variety of scientific and policy applica-
tions. Currently, the assessment requires the processing and storing of large
volumes of Landsat satellite data. The potential for efficient, accurate, and less
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data-intensive assessment of annual deforestation using data from NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolu-
tion is evaluated. Landsat-derived deforestation estimates are compared to
MODIS-derived estimates for six Landsat scenes with five change-detection
algorithms and a variety of input data—Surface Reflectance (MOD09), Veg-
etation Indices (MOD13), fraction images derived from a linear mixing model,
Vegetation Cover Conversion (MOD44A), and percent tree cover from the
Vegetation Continuous Fields (MOD44B) product. Several algorithms gener-
ated consistently low commission errors (positive predictive value near 90%)
and identified more than 80% of deforestation polygons larger than 3 ha. All
methods accurately identified polygons larger than 20 ha. However, no method
consistently detected a high percent of Landsat-derived deforestation area
across all six scenes. Field validation in central Mato Grosso confirmed that all
MODIS-derived deforestation clusters larger than three 250-m pixels were true
deforestation. Application of this field-validated method to the state of Mato
Grosso for 2001–04 highlighted a change in deforestation dynamics; the num-
ber of large clusters (>10 MODIS pixels) that were detected doubled, from 750
between August 2001 and August 2002 to over 1500 between August 2003 and
August 2004. These analyses demonstrate that MODIS data are appropriate for
rapid identification of the location of deforestation areas and trends in defor-
estation dynamics with greatly reduced storage and processing requirements
compared to Landsat-derived assessments. However, the MODIS-based analy-
ses evaluated in this study are not a replacement for high-resolution analyses
that estimate the total area of deforestation and identify small clearings.

KEYWORDS: Deforestation; Amazon; MODIS; Remote sensing; Brazil

1. Introduction

Deforestation in the humid Tropics is a conspicuous change in land use with
myriad impacts on global carbon (e.g., Houghton et al. 2000) and climate
(e.g., Salati and Nobre 1991; Werth and Avissar 2002). Deforestation rates in
tropical Africa, Southeast Asia, and South America have remained constant
or increased over the past two decades (DeFries et al. 2002), elevating the need
for frequent and accurate assessment of forest loss. In Brazil, the continued ex-
pansion of cattle ranching and mechanized agriculture are important drivers of
consistently high rates of forest clearing in the Legal Amazon (Laurence et al.
2004).

Annual estimates of deforestation in the Brazilian Amazon, derived from high-
resolution satellite data, require the processing and storing of large quantities of
data. The Instituto Nacional de Pesquisas Espaciais (INPE) analyzes more than
220 Landsat Thematic Mapper (TM) scenes each year to provide annual high-
resolution mapping of deforestation as part of the Estimativa do Desflorestamento
da Amazônia (PRODES; or Program for the Estimation of Deforestation in the
Brazilian Amazon). Recent changes in PRODES methodology have reduced the
time that is necessary to analyze this high volume of satellite data (e.g., Shima-
bukuro et al. 1999), but basinwide estimates still require many months time and
thousands of person hours to complete (information available online at http://
www.obt.inpe.br/prodesdigital/metodologia.html). Other tropical deforestation es-
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timates with Landsat or similar high-resolution data have been conducted annually
for smaller regions (e.g., Sader et al. 2001; Roberts et al. 2002) or supra-annually
for large regions because of high data costs and the processing effort (e.g., Skole
and Tucker 1993). Analyses of high-resolution data, such as Landsat for tropical
forest regions, also suffer from persistent cloud cover and infrequent repeat cov-
erage (Asner 2001). Few regional high-resolution data products have been for-
mally validated in the field.

Coarse spatial resolution satellite data (>1 km) have also been used for regional
assessments of deforestation. Data from the National Oceanic and Atmospheric
Administration’s Advanced Very High Resolution Radiometer (AVHRR) have
been used to estimate deforestation in the Brazilian Amazon (e.g., Nelson and
Holben 1986; Nelson et al. 1987; Shimabukuro et al. 1994) and central Africa
(Malingreau et al. 1995) at 1-km resolution, and decadal forest cover loss globally
at 8-km resolution (Hansen and DeFries 2004). Other forest cover mapping efforts
with coarse-resolution data have used the Japanese Earth Resources Satellite
(JERS-1) synthetic aperture radar (Siqueira et al. 2003) and the System Pour
l’Observation de la Terre (SPOT) vegetation instrument (e.g., Stibig et al. 2001).
Coarse spatial resolution makes these estimates more difficult to use where small-
and medium-sized clearings constitute an important fraction of new clearings or
when frequent analyses are needed. Also, sensor characteristics such as variable
instrument calibration and poor geolocation render these techniques less useful for
the routine monitoring of deforestation. Hess et al. (Hess et al. 2002) present a new
method for field validation of JERS-1 land-cover data products using digital
videography; few other coarse-resolution data products have been formally field
validated.

A new generation of moderate-resolution sensors with more frequent coverage
of the Brazilian Amazon presents a new opportunity for frequent and efficient
assessment of deforestation. The Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments aboard the Terra (morning) and Aqua (afternoon) platforms
provide consistent daily coverage of the entire globe at 250–1-km resolution with
36 bands of spectral information (Justice et al. 2002). MODIS instruments acquire
images of the Brazilian Amazon up to 4 times per day, with a swath width of
approximately 2300 km. Raw data are geometrically and radiometrically cor-
rected, processed into products such as surface reflectance and vegetation indices,
and distributed at no cost via the Land Processes Distributed Active Archive
Center (Justice et al. 2002).

MODIS land-cover products provide several types of input data for monitoring
deforestation. Daily and 8-day composite Surface Reflectance (MOD09) and 16-
day composite Surface Reflectance and Vegetation Indices (MOD13) products are
distributed in near–real time, facilitating more frequent analyses of deforestation.
Quarterly or annual products, such as Vegetation Cover Conversion (VCC;
MOD44A) and Vegetation Continuous Fields (VCF: MOD44B) products, provide
periodic estimates of deforestation and forest cover, respectively. Fixed analysis
periods for VCC and VCF global products provide routine estimates of defores-
tation, although infrequent product production may limit the ability to discern
temporal information regarding forest clearing. In addition, algorithms that are
optimized for global products often do not capture regionally specific variations in
the timing and nature of forest clearing. Two additional features of the standard
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MODIS data products facilitate rapid analysis of forest cover. First, MODIS land-
cover products include a quality assurance (QA) layer that evaluates the quality of
input data for each pixel and specifically flags clouds, water, high aerosols, and
missing data (Huete et al. 1999). Second, daily imagery and data products are
composited at 8-, 16-, and 32-day intervals to minimize the impacts of persistent
cloud cover and aerosols.

Several recent studies have explored the possibility of mapping land cover and
land-cover change in the Brazilian Amazon with MODIS data. Decision-tree clas-
sification of 250-m MODIS data in Pará produced accurate classes of forest and
nonforest in comparison to Landsat TM training data (Wessels et al. 2004). Prin-
cipal sources of classification error were a result of haze or thin clouds and mixed
pixels at class boundaries (Wessels et al. 2004). Braswell et al. (Braswell et al.
2003) also found that both the moderate-resolution MODIS and Multiangle Im-
aging Spectroradiometer (MISR) were able to accurately separate forest and non-
forest classes, and, at 1.1-m resolution, subpixel classification using spectral un-
mixing was important for the proper characterization of nondominant classes such
as deforestation. Spectral unmixing of higher-resolution MODIS data (250–500 m)
proved useful for classifying land cover (Anderson et al. 2005b) and identifying
recent deforestation in daily and composited land-cover products in comparison to
Landsat TM classifications (Anderson et al. 2005a). These studies suggest that
forest and nonforest discrimination is possible with moderate-resolution data, but
accurate classification of forest/nonforest edges requires subpixel classification
methods.

There are many potential methods for using MODIS data to monitor defores-
tation and identify priority locations for examination with high-resolution data.
The applicability of different methods depends on many factors, including the
required frequency of the result, how easy it is to implement in terms of data
handling and computational resources, whether human interpretation is possible
or whether the process needs to be completely automated, and accuracy require-
ments. The most appropriate method also depends on the specific needs for
different applications—how important is it to minimize false positives (commis-
sion error) compared with false negatives (omission error)? Is total deforestation
area required, or is it adequate to identify locations where deforestation has oc-
curred? Is it necessary to detect clearings of all sizes or only large deforestation
events?

The goal of this study was to develop, test, and validate simple and efficient
methods for the annual or more frequent monitoring of deforestation in the Bra-
zilian Amazon as a basis for prioritizing high-resolution analyses and character-
izing recent deforestation dynamics. We compared five change-detection algo-
rithms using input data from four MODIS land-cover products to evaluate annual
deforestation detection in the Brazilian Amazon with moderate-resolution data.
MODIS classification results were compared to 2002 PRODES deforestation de-
tections to quantify omission and commission and to evaluate the potential for
MODIS to identify new clearings of various sizes and total deforestation area.
Based on results from six Landsat test scenes, we selected one method for field
validation in central Mato Grosso. Finally, we applied the field-validated method
to the entire state of Mato Grosso to characterize deforestation dynamics between
2001 and 2004.
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2. Methods
2.1. Study area

We chose six Landsat scenes from the 2001 and 2002 PRODES analyses to
develop and test deforestation detection methods using MODIS data (Figure 1).
Test scenes were chosen based on 1) cloud-free Landsat coverage in both 2001 and
2002 PRODES analyses; 2) substantial amounts of new deforestation between
2001 and 2002; 3) regional coverage within the arc of deforestation, representing
latitudinal, land-use history, and ecological gradients; and 4) a range of clearing
sizes within the scene (Table 1). The forest perimeter–area ratio is also reported for
each scene in Table 1 as an estimate of forest fragmentation.

2.2. Data
2.2.1. Landsat-derived deforestation estimates for test scenes

The PRODES classification separates clouds, nonforest, previous deforestation,
new deforestation, and forest classes based on shade, soil, and vegetation end-
member proportions from a linear spectral mixing model of Landsat TM data (see

Figure 1. Location of Landsat test scenes and field validation area within the Bra-
zilian Amazon. Percent of tree cover values from the 2001 VCF product
show the extent of forest cover in the region. Map subsets show 2002 INPE
PRODES classifications for each test scene over 2001 VCF percent of tree
cover. Test scenes are presented in counterclockwise order, beginning in
the northeast with scene 223/66 and followed by 227/65 in the north,
232/67 in the west, and the cluster of scenes 226/67, 226/68, and 225/69
in central Mato Grosso.
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information online at http://www.obt.inpe.br/prodesdigital/metodologia.html). The
PRODES methodology involves both automated deforestation detection and con-
firmation by trained image interpreters (as above, please see online at http://
www.obt.inpe.br/prodesdigital/metodologia.html). In our test scene analysis, for-
est and deforestation classes from PRODES Digital data were used as “truth”
without validation from higher-resolution imagery or field visits. Validation meth-
ods are under development, but formal validation statistics are not available for the
PRODES data that are used in this study. Areas classified as clouds, nonforest, or
previous deforestation in PRODES were excluded from all test scene analyses.
Digital PRODES data are distributed at no charge from the INPE Web site (http://
www.obt.inpe.br/prodes/).

2.2.2. MODIS data preparation

We compared data from four MODIS land-cover products for deforestation de-
tection. Daily Surface Reflectance (MOD09) and 16-day composite Vegetation
Indices (MOD13, includes both surface reflectance and vegetation indices) prod-
ucts are distributed in near–real time. Frequent production and compositing to
reduce cloud cover are two advantages of these data products for deforestation
monitoring. MOD09 data were acquired for the same dates as the Landsat scenes
that are used in PRODES analyses. MOD13 data were chosen for the subsequent
16-day period to avoid omission errors based on compositing rules (Anderson et
al. 2005a). We also evaluated preliminary data from the Vegetation Continuous
Fields (MOD44B) and Vegetation Cover Conversion (MOD44A) global products.
These products are produced on a quarterly or annual basis to assess changes in
forest cover. Preliminary MOD44A and MOD44B data products were acquired
from MODIS research teams at the University of Maryland, College Park, for 2001
and 2002 by subsetting global products for each test scene (M. Hansen and M.
Carroll 2004, personal communication).

Daily MOD09 data were used as algorithm inputs and to derive additional input
products. Red and near-infrared (NIR) reflectance bands and the derived normal-
ized difference vegetation index [NDVI; calculated as (Red − NIR)/(Red + NIR)]
at 250-m resolution were evaluated in this study. Blue and middle-infrared (MIR)
reflectance bands, resampled from 500- to 250-m resolution, were also evaluated
for their potential to identify new deforestation. Following the technique proposed
by Shimabukuro and Smith (Shimabukuro and Smith 1995), blue, red, NIR, and
MIR bands at 250-m resolution were used in a linear spectral mixing model to
estimate the subpixel fraction of soil, vegetation, and shade (Anderson et al.
2005a). Nonideal quality data were excluded from analyses based on information
contained in the quality control band.

Six data layers from the MOD13 16-day composite product were evaluated in
our analysis—NDVI; enhanced vegetation index (EVI); and blue, red, NIR, and
MIR reflectances. Nonideal data were identified using the first two bits of the
image QA layer and were excluded from the analysis.

Subsets for the test areas were extracted from preliminary MOD44B (VCF) and
MOD44A (VCC) global products. VCF percent tree-cover data were resized from
500- to 250-m resolution for this analysis using nearest-neighbor resampling. The
VCF algorithm uses metrics from 1 yr (March–February) to assign fractional tree-
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cover values (Hansen et al. 2003). MODIS data from March 2001 to February
2002 were used to create the 2001 VCF product; inputs from March 2002 to
February 2003 form the basis of the preliminary 2002 VCF product. The VCC
algorithm was run quarterly at 250-m resolution and was summed for the period
from July 2001 to September 2002, where persistent drops in tree cover for two or
more of the six time periods per quarter were classified as change (Zhan et al.
2002; Carroll et al. 2004).

2.3. Change detection algorithms

We evaluated five change detection algorithms to identify new deforestation using
a variety of input MODIS datasets (Table 2). All deforestation classifications were
restricted to the PRODES-based forest mask area. The five algorithms evaluated
in this study were as follows.

1) Two-date image differencing: The difference in the reflectance, vegetation
index, or other input data values between images from 2002 and 2001 was
classified using mean plus 0.5, 1, or 2 standard deviations of the mean
difference. Values that exceeded this threshold were classified as defor-
estation.

2) Single-date image threshold: The 2001 forest mask pixels were classified
using a single 2002 reflectance, vegetation index, or other data layer into
forest and deforestation classes based on a threshold derived from deci-
sion-tree analysis (Venables and Ripley 1994), using deforestation and
forest training data from one scene (Landsat path/row: 226/67). Decision-
tree-based thresholds were then applied to all six test scenes. Table 2 lists
the data layers that are included in the decision-tree classifier. Data layers
were chosen for the test scene analysis based on the low misclassification
of training data in the first split of the decision tree.

3) Combined single-date threshold results: A consensus classification
method is used where deforestation pixels from two single-date threshold

Table 2. Change detection algorithms and input datasets for test scene method
comparison. Results are not shown for input datasets in italics.

Algorithm
Threshold

determination Input datasets

Two-date image difference Mean + std dev of
mean difference

MOD09: red, NDVI, soil fraction, shade
fraction, vegetation fraction, blue, NIR,
MIR; MOD13: red, NDVI, EVI, blue, NIR,
MIR; MOD44b: percent tree cover

Single-date image threshold Decision-tree analysis MOD09: NDVI, soil fraction, red, shade
fraction, vegetation fraction, NIR; MOD13:
red, NDVI, NIR; MOD44b: percent of tree
cover

VCC persistent change Decision-tree analysis MOD44a: VCC
Combined single-date threshold

results
Decision-tree analysis MOD09: red + soil fraction, red + NDVI;

MOD13: red + NDVI
NDVI threshold (2002 NDVI < 0.8)

and difference
Mean + std dev of

mean difference
MOD09: NDVI; MOD13: NDVI
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results agreed. Combinations were selected from the second split of the
decision-tree classifier that best reduced the misclassification of training
data.

4) VCC: Decision-tree classification of percent tree cover at 16-day intervals
was grouped into five classes of tree cover: 0%–20%, 20%–40%, 40%–
60%, 60%–80%, and 80%–100% tree cover. Persistent two-group changes
in forest cover [i.e., from group 5 (80%–100%) to group 3 (40%–60%)]
are summed quarterly into the VCC product (Carroll et al. 2004).

5) NDVI difference with NDVI threshold: This is similar to the two-date
image differencing method, but the NDVI difference was only calculated
for areas where the 2002 NDVI < 0.8 to reduce the analysis area and
minimize false detections that are a result of seasonal variations in forest
phenology. The 2002 NDVI threshold acts as a second forest mask in this
method. Values that exceeded the mean difference plus 0.5, 1, or 2 stan-
dard deviations of the mean difference were classified as deforestation.

Image differences and single 2002 image thresholds were run separately for
MOD09 and MOD13 data to evaluate the difference between daily and composite
imagery. A total of 32 input data and change detection algorithm combinations
were evaluated for deforestation detection accuracy, but results are only presented
for 12 methods. These 12 methods were selected on the basis of performance and
to present results for each detection algorithm and input data source.

2.4. Test scene analysis

Comparison of results from the change detection algorithms to PRODES Digital
deforestation maps was conducted for each input dataset and each of the six test
scenes. The comparison was done only for cloud-free pixels by excluding cloudy
areas in 2001 or 2002 PRODES classifications and MODIS QA data. Analyses
based on MOD09 or MOD13 data were conducted separately using their respec-
tive QA layers; VCC and VCF data analyses were conducted using only the
PRODES cloud masks, because it was not feasible to assemble QA layers from all
of the dates used in the generation of these products. Next, one edge pixel was
subtracted from the cloud-free 250-m forest/deforestation dataset to minimize false
detections based on variations in MODIS resolution as a result of view angle and
product gridding. Finally, forest and deforestation layers were separated to evalu-
ate commission and omission, respectively. The result was a cloud-free compari-
son of MODIS results with the forest and deforested classes from PRODES, where
clouds, forest/nonforest edge pixels, water, previous deforestation, and other non-
forest areas were excluded from the analysis. Individual polygons were compared
to classification results using zonal statistics, permitting an analysis of deforesta-
tion detection by polygon size.

We assessed accuracy for each method and each test scene with respect to
PRODES deforestation detections. Commission errors are summarized as a posi-
tive predictive value (PPV). PPV is the percent of true positives, calculated as true
positive detections/total positive detections. Larger PPV values indicate smaller
commission errors. MODIS deforestation detections were also compared to the
area of deforestation in PRODES. Finally, the detection of individual deforestation
polygons, defined as any MODIS detection within the polygon perimeter, were
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assessed by polygon size to evaluate each method’s accuracy in identifying new
small, medium, and large clearings. Size classes were based on PRODES poly-
gons—0–3, 3–10, 10–20, and > 20 ha—and detection percentages are reported as
the percent of available polygons, noting that many smaller polygons were masked
during the removal of clouds and forest edge pixels from the analysis.

2.5. Field validation

Based on performance in the test scene analysis (section 2.4.), the single-date
threshold method with MOD13 red reflectance was chosen for validation with
field observations in central Mato Grosso in July 2004 (Figure 1). Ground-based
teams of observers assessed per-pixel and per-cluster accuracy in the following
manner.

Using a vector layer of roads in Mato Grosso to stratify the MODIS classifi-
cation, all forest and deforestation pixels that intersected a road were selected and
numbered. Roads, sample pixels, near-coincident Landsat TM and MODIS imag-
ery, and MODIS deforestation classification results were loaded into a geographic
information system (GIS) and were compared with real-time GPS coordinates in
the field. During the field campaign, 345 forest and 111 deforestation pixels were
visited for a total of 456 observations. Pixels with any amount of observed defor-
estation were classified as deforested. Per-pixel accuracy was established using
traditional error matrix techniques (Congalton 1991).

Deforestation clusters were defined as contiguous 250-m MODIS deforestation
pixels. To characterize detection accuracy based on cluster size, we observed
clusters ranging from single (6.25 ha) to 408 (2550 ha) pixels. For each cluster,
GPS points were taken along the roaded edges of the clearing and, when possible,
at other points along the perimeter. These measurements and observations were
compared with near-coincident Landsat TM images in the field. Clusters that
contained new deforestation anywhere within the cluster perimeter were classified
as deforested. A total of 120 MODIS deforestation clusters were observed in the
field.

2.6. Mato Grosso deforestation detections 2001–04

We applied the single-date threshold method using MOD13 red reflectance for the
state of Mato Grosso to examine deforestation dynamics between 2001 and 2004.
A cloud-free, statewide forest mask was created from 2001 PRODES data. Annual
deforestation for 2001–02, 2002–03, and 2003–04 was analyzed using MOD13 red
reflectance data from August of each year (composite period: Julian days 209–
224). The initial forest mask was updated to exclude each year’s deforestation
increment. Based on results from the field validation study, single-pixel defores-
tation clusters were removed from classification results.

3. Results
3.1. Method comparison in test scenes

A variety of techniques accurately identified new deforestation in the six test
scenes. Table 3 presents PPV for 10 of 32 individual methods applied to each test
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scene. Variability in the degree of forest fragmentation and distribution of defor-
estation polygon sizes in each scene impacted detection accuracies (Table 1).
In the four scenes with less fragmentation and low forest perimeter–area ratios
(225/69, 226/67, 226/68, and 227/65), PPV was consistently high among all of the
techniques and was highest for single-date methods. More fragmented forest cover
in scenes 223/66 and 232/67 resulted in more false positives in most methods. In
these scenes, image-difference methods had higher PPV than single-date ap-
proaches. No one method produced the highest PPV across all test scenes.

The percent of PRODES deforestation area that was detected was consistently
low for all scenes and was highly variable between scenes for each method (Table
4). The percent of actual deforestation area detected was highest for scenes domi-
nated by large clearings. For example, scenes 226/68 and 225/69 showed a higher
percent total area detected for high PPV values. More fragmented forest cover in
scenes 223/66 and 232/67 created a clearer trade-off between PPV and the percent
of total deforestation area detected. No method detected a consistently high percent
of total deforestation area across all of the scenes.

Across all six test scenes, polygon detection (any MODIS detection within the

Table 3. PPV (true positives/total postives) expressed as a percent for each tech-
nique across all six test scenes.

Technique Threshold 232/67 227/65 226/68 226/67 225/69 223/66

MOD09
Red difference � + 2 std dev 56.8 68.6 83.9 82.4 77.1 90.4
NDVI difference � + 2 std dev 59.4 69.5 88.2 78.3 82.0 91.6
Red + soil fraction 0.43, 20% 63.1 95.6 88.4 73.9 94.2 51.6
Soil fraction 20% 81.1 89.4 76.9 82.1 89.8 38.5
2002 NDVI 0.76 59.6 85.9 78.4 58.7 67.3 35.7

MOD13
Red difference � + 2 std dev 64.4 67.0 87.8 77.7 76.5 89.9
NDVI difference � + 2 std dev 72.4 73.9 93.3 78.8 78.5 90.9
NDVI filtered � − 1/2 std dev 72.4 97.9 97.3 68.9 75.6 32.2
2002 red 0.54 74.4 100.0 98.3 84.8 92.1 84.1
2002 NDVI 0.76 73.0 97.4 94.0 69.5 70.0 42.8

Table 4. Percent of total 2002 PRODES Digital deforestation area detected in each
test scene for each technique expressed as a percent.

Technique Threshold 232/67 227/65 226/68 226/67 225/69 223/66

MOD09
Red difference � + 2 std dev 36.8 64.4 65.8 27.1 69.1 42.0
NDVI difference � + 2 std dev 36.6 64.3 65.8 51.3 66.4 38.3
Red + soil fraction 0.43/20% 32.9 28.2 64.7 61.6 51.4 79.3
Soil fraction 20% 7.1 29.8 33.6 15.5 23.9 23.4
2002 NDVI 0.76 39.3 44.2 73.7 77.0 73.3 83.4

MOD13
Red difference � + 2 std dev 35.8 59.9 60.8 45.7 69.3 32.4
NDVI difference � + 2 std dev 39.0 63.2 59.6 46.1 68.1 32.4
NDVI filtered � − 1/2 std dev 39.6 31.5 52.1 57.8 71.9 81.7
2002 red 0.54 19.5 4.7 34.4 36.0 54.3 44.2
2002 NDVI 0.76 42.8 28.1 60.6 60.5 72.7 73.1
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deforestation polygon) increased with polygon size (Table 5). Results in Table 5
are reported as a percent of the available polygons, disregarding PRODES defor-
estation polygons masked out as a result of clouds or the forest edge. Between
NDVI methods using MOD09 and MOD13 data, NDVI derived from the daily
surface reflectance product gave consistently higher detection for all polygon sizes
than from the composited product. For large polygons (> 20 ha), all 10 methods in
Table 5 produced greater than 75% detection; three methods detected greater than
90% of the available polygons in this size class. Polygon detection by size did vary
between scenes for each technique (Figure 2). Higher variability in detection
estimates for small and medium polygons reflects the lower sample size of avail-
able polygons in these size classes.

The number of available polygons was not significantly different between
analyses with MOD09 and MOD13 input data (Pearson �2 � 0.09, degrees of
freedom (DF) � 3, p value � 0.99). Removing the edge pixel from the forest
mask did significantly alter the distribution of available polygons between
PRODES Digital and both MOD09 and MOD13 available polygons (�2 � 248.8,
DF � 3, p value < 0.0001). Masked polygons that are unavailable for analysis
accounted for 8% of the total deforestation area across all six test scenes (Table 6),
compared to the greater than 50% reduction in commission through edge pixel
removal (data not shown). A substantial fraction of small and medium polygons
were masked out by removing the edge pixel from the forest mask or through
eliminating clouds and other nonideal quality data in MOD09 and MOD13 ap-
proaches. The NDVI-filtered method, a two-phase differencing approach, elimi-
nated more polygons from consideration than the other methods because of the use
of a second forest mask.

Table 5. Percent of available polygons detected by size class and summarized by
technique for all test scenes. Percentages are calculated as detected/avail-
able for each technique. The number of polygons detected in each size class is
shown in parentheses. Distributions of available polygons in MOD09, MOD13, and
NDVI-filtered approaches are significantly different from PRODES Digital polygons
(p < 0.0001), but are similar between MOD09 and MOD13 (p = 0.99).

0–3 ha 3–10 ha 10–20 ha 20+ ha Tot

Total 636 1591 1500 2784 6511
MOD09

Available 170 996 1152 2613 4931
Red difference 13.5 (23) 45.7 (455) 56.4 (650) 83.2 (2174) 67.0 (3302)
NDVI difference 20.6 (35) 50.3 (501) 60.6 (698) 86.3 (2254) 70.7 (3488)
Red + soil fraction 43.5 (74) 65.9 (656) 78.1 (900) 91.4 (2387) 81.5 (4017)
Soil fraction 27.6 (47) 42.8 (426) 51.0 (588) 76.0 (1987) 61.8 (3048)
2002 NDVI 58.8 (100) 83.0 (827) 90.5 (1043) 95.1 (2485) 90.3 (4455)

MOD13
Available 171 990 1149 2634 4944
Red difference 19.9 (34) 46.2 (457) 60.1 (691) 85.7 (2258) 69.6 (3440)
NDVI difference 19.9 (34) 42.3 (419) 56.1 (645) 82.2 (2164) 66.0 (3262)
2002 red 17.5 (30) 43.1 (427) 55.4 (636) 77.0 (2028) 63.1 (3121)
2002 NDVI 40.9 (70) 71.5 (708) 83.6 (960) 92.5 (2436) 84.4 (4174)

NDVI filtered
Available 82 560 766 2318 3726
NDVI filtered 50.0 (41) 46.1 (258) 55.0 (421) 78.9 (1828) 68.4 (2548)
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Deforestation detection is summarized by different methods for all six scenes in
Table 7. No one method had the highest accuracy with respect to the PPV, area,
and polygons detected. Therefore, the most accurate method will depend on the
decision to maximize one component. The choice of daily or composited MODIS
source data showed little influence on accuracy. For the same methods, MOD09
input data slightly outperformed MOD13 data in the percent of polygons that were
detected, performed similarly to MOD13 in the percent of PRODES Digital de-
forestation area detected, and yet had a lower PPV, on average, than the MOD13
approaches. Methods that used red reflectance and NDVI also showed similar
results. NDVI analyses identified greater numbers of small polygons but had
higher commission than red reflectance methods. Image difference methods iden-
tified a higher percent of deforested area than single-date methods. Soil fraction
input data produced results that were consistent with other methods in PPV and

Table 6. Impact of source data and method on deforestation area in available
polygons. Areas are reported in hectares by size class. Area in available polgyons
as a percent of total PRODES Digital deforestation area is shown in parentheses.

0–3 ha 3–10 ha 10–20 ha 20+ ha Tot

Total PRODES Digital area 808 13 121 23 655 286 334 323 918
Area in available polygons

MOD09 176 (21.8) 7327 (55.8) 16 447 (9.5) 273 428 (95.5) 297 378 (91.8)
MOD13 177 (21.9) 7275 (55.4) 16 412 (69.4) 274 003 (95.7) 297 868 (92.0)
MOD13 NDVI filtered 90 (11.1) 4107 (31.3) 11 013 (46.6) 261 113 (91.2) 276 323 (85.3)

Figure 2. Distribution of the percent of polygons detected by size class for the
single-date threshold method using MOD13 2002 NDVI. Small sample sizes
for available 0–3- and 3–10-ha polygons created wider variations in de-
tection estimates than for polygons > 20 ha or total polygons, where larger
sample sizes show more consistent detection percentages between
scenes.
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polygons detected. We selected the MOD13 single-date red reflectance method for
field validation based on low commission and polygon detection that is compa-
rable with other techniques.

The VCC algorithm had the highest PPV (0.90) for all of the test scenes
combined, but the method detected only 20% of the largest polygons (> 20 ha) and
less than 10% of all of the deforestation polygons (data not shown). A deforesta-
tion threshold of < 30% forest cover in 2002 VCF produced results that are
consistent with other techniques (PPV � 0.72). Differencing VCF 2002 and 2001
products produced modest results (PPV � 0.57), largely a result of compounding
the effects of edge pixel errors over 2 yr. Techniques that utilized EVI, MIR, or
blue reflectance differences or thresholds had lower PPV results in all of the test
scenes (data not shown).

3.2. Field validation

Field validation of the 2004 MOD13 red reflectance classification produced mea-
sures of per-pixel and per-cluster accuracy. On a per-pixel basis, overall classifi-
cation accuracy was 81.5% (393/456 pixels correctly classified). User’s and pro-
ducer’s accuracies were 97.6% (289/296) and 83.7% (289/345) for forest and 65%
(104/160) and 93.7% (104/111) for deforested classes, respectively. All 56 pixels
that were classified as forest and observed as deforestation were at the forest/
deforestation edge, such that the pixels contained a mixture of forest and defor-
estation. Interobserver accuracy for pixel interpretation in the field was ±5%.
Clusters were defined as conterminous groups of MODIS deforested pixels—
analogous to polygons in the PRODES analysis. Of the 120 clusters visited in the
field, 109 were observed as deforested (Figure 3). All deforestation clusters larger
than two MODIS pixels were observed as actual deforestation in the field.

3.3. Deforestation detection in Mato Grosso 2001–04

We applied the field-validated MOD13 red reflectance method to the entire state
for the intervals of August 2001–August 2002, August 2002–August 2003, and

Table 7. Average percent PPV, percent of PRODES Digital deforestation area de-
tected, and percent of available polygons detected for each technique for all six
test scenes.

Technique Threshold PPV
Deforested
area (%)

Available
polygons (%)

MOD09
Red difference � + 2 std dev 76.6 50.9 67.0
NDVI difference � + 2 std dev 78.2 53.8 70.7
Red + soil fraction 0.43/20% 77.8 53.0 81.5
Soil fraction 20% 76.3 22.2 61.8
2002 NDVI 0.76 64.3 65.1 90.3

MOD13
Red difference � + 2 std dev 77.2 50.6 69.6
NDVI difference � + 2 std dev 81.3 51.4 66.0
NDVI filtered � − 1/2 std dev 74.1 55.8 68.4
2002 red 0.54 89.0 32.2 63.1
2002 NDVI 0.76 74.4 56.3 84.4
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August 2003–August 2004 (Figure 4). Single-pixel clusters were removed based
on field validation results that indicated lower reliability for single pixels. Figure
5 shows the number of deforestation clusters that are detected each year by cluster
size. Between 2001 and 2004, the total number of deforestation clusters detected
increased by more than 60%, and the number of large deforestation clusters (>10
pixels) doubled.

4. Discussion
4.1. Test scene analysis

Moderate-resolution satellite data from the MODIS instrument are appropriate for
rapid identification of the location of deforestation events and characterization of
trends in deforestation dynamics, using simple algorithms and low data volumes.
Using a forest/nonforest mask, simple methods, such as image differences and
single-date image thresholds, identified greater than 80% of deforestation poly-
gons in our dataset larger than 3 ha and more than 95% of polygons 20 ha or larger.
Several methods maintained an average PPV above 80% for all scenes, supporting
the idea that the automated processing of MODIS data can be a useful step in
monitoring deforestation with few false detections. Individual methods that were
developed and field validated in this study identified deforestation events greater

Figure 3. Number of deforestation clusters observed during field validation and the
percent correctly classified by cluster size.
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than 10 ha with low false detection, suggesting that methods requiring minimal
processing and the storage of MODIS data can rapidly identify the location of
larger deforestation events.

The MODIS analyses presented in this study are not a replacement for a ba-
sinwide analysis of Landsat TM or other high-resolution data. No MODIS algo-
rithm in this study identified a consistently high percentage of the area of new
deforestation or the number of small clearings compared to high-resolution data
products. Removing an edge pixel from the analysis reduced commission errors,
but excluded an important region of analysis for mapping finescale deforestation
dynamics. As a result, most small clearings (0–3 ha) at the forest edge were not
discernable with MODIS data, especially for two test scenes with highly frag-
mented forest cover (223/66 and 232/67). Other modifications to the algorithms in
this study, such as the independent treatment of pixels at the forest edge or

Figure 4. Deforestation detections in Mato Grosso for 2002 (Aug 2001–02; yellow),
2003 (Aug 2002–03; blue), and 2004 (Aug 2003–04; red) are shown. Re-
maining forest cover in 2004 is shown in green. Background values for
nonforested regions are NDVI values from the MOD13 16-day composite
from 8 to 23 May 2004 (Julian days 129–144). Single-pixel deforestation
clusters were removed based on the lower reliability of single-pixel clus-
ters from field validation results.
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inclusion of only near-nadir pixels, could greatly improve the ability to detect
subpixel forest change with 250-m resolution MODIS data. Differences were
minimal between the daily and 16-day composite MODIS data that were used as
input to change detection algorithms. Images for this study were taken from
cloud-free periods near the end of the dry season on an annual basis. Comparative
advantages of daily or composited data were minimized by the long analysis
interval and cloud-free conditions. At more frequent time steps or during periods
of rapid clearing, daily data preserve temporal information regarding forest clear-
ing. Data-compositing algorithms that preferentially select high NDVI values dur-
ing the compositing period to avoid undetected clouds or smoke, such as the
MOD13 algorithm (Huete et al. 1999), may impact deforestation detection by
selecting a predeforestation pixel during the compositing period. As a result,
evidence of deforestation may not be detected in composited products until the
subsequent compositing period, when no predeforestation pixel values exist. Dur-
ing the transition between wet and dry seasons, when both clouds and deforestation
are common, quality flags and compositing may prove more essential. However,
even “ideal” data based on QA flags contained artifacts from clouds, cloud shad-
ows, or sensor errors, such as striping and missing data. As a result, human
interpretation of preprocessed images and classification products may be necessary
to ensure high-quality results. Other techniques, such as additional cloud filters or

Figure 5. Number of deforestation clusters detected for 2002 (Aug 2001–02), 2003
(Aug 2002–03), and 2004 (Aug 2003–04) in Mato Grosso summarized by
cluster size (in MODIS 250-m pixels).
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water masks in the preprocessing steps, could help to eliminate some of these
issues.

The focal region for this study was the arc of deforestation, where a high
percentage of the total annual deforestation increment occurs (information avail-
able online at http://www.obt.inpe.br/prodes/). Deforestation and climatic charac-
teristics in this region are favorable for MODIS-based deforestation monitoring.
Longer dry seasons and lower-stature transition forest types enable the mechanized
clearing of forest cover. These larger clearings are more easily detected by the
methods presented in this study. Cloud cover is much lower during the dry season
(Asner 2001), increasing the chance for cloud-free MODIS imagery. In regions
with smaller clearing sizes and more persistent cloud cover, methods that rely on
longer compositing periods or higher-resolution data may be more appropriate for
deforestation monitoring. In addition, strong seasonal or El Niño–induced phenol-
ogy, especially in transition forest types along the arc of deforestation, could
complicate threshold setting for more frequent monitoring efforts.

Input data from periodic or annual products, such as MOD44A and MOD44B,
limit the frequency of deforestation monitoring. The starting and ending dates for
annual or periodic data products can also greatly impact the ability to detect
deforestation. For example, if deforestation occurs near the end of the processing
period, the change may not be detected until the following product cycle. The
regional applicability of these data products is constrained by two elements of a
global product algorithm. First, global products are not optimized for any particu-
lar region, but are generalized for a wide range of conditions. Second, these
algorithms were designed to map forest conversion and forest cover without ad-
ditional data sources, such as the forest/nonforest mask applied in this study. VCC
data had very low commission errors, accurately identifying very large clearings
but missing a substantial percentage of clearings of all sizes. Although the
MOD44B percent of tree-cover data were created at 500-m resolution, VCF data
performed comparably to other techniques. This performance suggests that a
250-m VCF product could be highly accurate for annual deforestation monitoring.
In addition, a VCF percent of the tree-cover product could be used as an initial
cloud-free forest mask in the Brazilian Amazon or in other deforestation-
monitoring efforts. Using the VCF product as a forest/nonforest mask would
enable the extension of the simple methods presented in this study in other regions.

Deforestation detection accuracy was especially sensitive to the degree of forest
fragmentation in each test scene. In highly fragmented forest conditions such as
scene 223/66, VCF, soil fraction, and EVI inputs constructed from 500-m data
generated a high number of edge-effect commission errors. In scenes with more
continuous forest cover, edge-effect errors as a result of 500-m source data or
250-m MODIS resolution more generally were less problematic. With only two
MODIS bands at 250-m resolution, future subpixel spectral unmixing at 250-m
resolution may need to focus on red and NIR unmixing algorithms that have been
applied to data from other sensors (Hall et al. 1995).

Results reflect the accuracy of automated techniques without the additional
human interpretation. Common errors were false detections along river courses
and at the forest/nonforest boundary, even after removing an edge pixel from the
forest mask. Mixed pixel effects, changing water levels, and varying nominal
spatial resolution (depending on view angle) could account for many of these false
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detections. In some cases, trained interpreters could easily recognize and remove
these detections. In addition, the removal of small clusters (one and two pixels)
could also reduce errors.

We tested simple change detection methods with low computer processing and
data storage requirements. Many methods performed well in the test scene analy-
sis. The most appropriate method for monitoring deforestation in the Brazilian
Amazon will depend on the need to balance omission and commission errors with
the detection of new clearings of various sizes. Additional components that influ-
ence the choice of input data and the detection method are the frequency of
monitoring efforts and the need to perform under cloudy conditions.

4.2. Field validation

Field validation of MODIS classification results in central Mato Grosso generated
two important measures of classification accuracy. The method proved highly
accurate for identifying deforestation events, with 100% accuracy for observed
clusters larger than two pixels. Detection accuracy was lower on a per-pixel basis
because of subpixel deforestation edge effects. All pixels that were classified as
forest, but were observed to contain some new deforestation, were located at the
forest/deforestation edge. Future analyses will focus on the subpixel fraction of
deforestation within these edge pixels.

Study design for field validation made omission errors difficult to quantify.
Pixel- and cluster-based approaches were stratified by accessibility with a vector
layer of Mato Grosso roads. All pixels and clusters that intersected a road were
considered part of the validation sample. Field observers were directed to forest
and deforested samples based on classification results, not to likely areas for
omission. As a result, characterization of omission was only possible through
anecdotal evidence from chance observations. Future validation campaigns should
more accurately quantify omission errors.

Field validation was made possible through quality equipment and highly ac-
cessible terrain. The combination of near-coincident Landsat TM and MODIS data
with real-time GPS proved excellent for evaluating MODIS pixels and clusters in
the field. The unpaved road network in central Mato Grosso is extensive, which
facilitated access to a variety of sampling conditions. Ground-based field valida-
tion without high-resolution imagery or roaded access would yield significantly
fewer sample observations.

4.3. Mato Grosso deforestation 2001–04

Analysis of the deforestation in Mato Grosso between 2001 and 2004 showed an
increase in the total number of MODIS deforestation clusters over the 3-yr period
and a substantial difference in the number of large clusters in 2001–02 versus
2002–03 and 2003–04. Because MODIS-based estimates of the deforestation area
did not correlate well with the total deforestation area from PRODES in test scene
analyses, trends in MODIS deforestation detections cannot be directly translated
into trends in the deforestation area. However, large clearings do account for a
substantial portion of the total deforestation increment each year in Mato Grosso
(Fearnside and Barbosa 2003). Therefore, an increase in MODIS deforestation
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detections of large clusters suggests an increasing deforestation area that should be
confirmed with high-resolution mapping in Mato Grosso for this period.

Initial deforestation estimates for Mato Grosso from PRODES for 2002 and
2003 support the MODIS-based result. For the Legal Amazon, 2002 (23 260 km2)
and initial 2003 (23 750 km2 ± 4%) deforestation estimates from PRODES are
similar (information online at http://www.obt.inpe.br/prodes/). However,
PRODES estimates of deforestation in Mato Grosso for 2001–02 (7478 km2) and
2002–03 (10 416 km2) show a 40% increase in deforestation (as above, see online
at http://www.obt.inpe.br/prodes/). This increase in deforested area supports the
MODIS-based findings of more large deforestation clusters in 2002–03 than in
2001–02. Additional high-resolution efforts for the entire state are required to
confirm these findings and to investigate similar results for deforestation in 2003–
04. Obtaining an accurate estimate of deforestation area is particularly important
because previous research showed a slowing of deforestation rates between 1999
and 2002 that may have reversed in recent years (Fearnside and Barbosa 2003;
Fearnside 2003).

5. Conclusions
MODIS 250-m resolution data can be used to accurately identify the location of
new deforestation with simple change detection algorithms and minimal data
processing and storage needs. A forest/nonforest mask is an essential component
of the MODIS-based deforestation-detection methods in this study. Application of
these results outside the Brazilian Amazon may be possible through the use of the
VCF percent of tree-cover data as a forest mask.

The results from this study also highlight the trade-offs between the detection of
deforestation area, small and large polygons, and minimizing commission errors.
MODIS-based methods presented in this study identified high percentages of
available polygons larger than 3 ha with low commission, but did not detect
consistently high percentages of PRODES deforestation area. As a result, the
methods presented in this study are not a substitute for high-resolution analysis to
estimate deforestation area and the number of small clearings.

A monitoring system that combines frequent deforestation monitoring with
MODIS and annual high-resolution mapping efforts could benefit from shared
input and output datasets. For example, MODIS-based results on the location and
trends in deforestation could help to prioritize high-resolution analyses. Annual
high-resolution analyses would then provide detailed estimates of deforestation
area and small clearings, creating an updated forest mask for use with subsequent
MODIS monitoring efforts.
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