
558: Calculation of Eddy Currents in the ETE Spherical Torus

G.O. Ludwig

Instituto Nacional de Pesquisas Espaciais, 12227-010 S. J. Campos, SP, Brazil

Abstract. The currents induced during startup in the vacuum vessel of the ETE spherical torus (Experimento Tokamak Esférico)
are evaluated using a circuit model based on the Green’s function method. The distribution of eddy currents is calculated using a
thin shell approximation for the vessel and local curvilinear coordinates. The predicted results agree quite well with values of the
eddy currents measured in ETE.

INTRODUCTION

This paper presents a magnetostatic model developed to evaluate the currents induced during startup in the continuous
vacuum vessel of the ETE spherical torus. The distribution of eddy currents is modeled using a thin shell
approximation for the vessel. The equation governing the induction of surface current on the thin shell is derived using
the Green’s function method. Symmetry considerations, and adoption of both a local curvilinear coordinates system
and a spectral representation for the contour of the vacuum vessel reduce this threedimensional problem in space to
one dimension. The resulting onedimensional integral equation for the surface current can be solved expanding the
current in a Fourier series in the poloidal angle. Finally, by the introduction of Laplace transformation in time, the
problem for the set of Fourier components of the surface current is reduced to a circuit model that can be solved by
matrix procedures. The results are compared with preliminary measurements of the eddy currents in ETE.

FORMULATION OF THE MAGNETOSTATIC PROBLEM

The surface current density in a thin shell of thickness δ is given in terms of the current density by
−→
K = δ

−→
j [1],

where the current density is related to the electric field by Ohm’s law,
−→
j = σ

−→
E . Application of Faraday’s law for a

constant conductivity σ leads to

∇×−→K = σδ∇×−→E = −σδ
³
∂
−→
B/∂t

´
,

where
−→
B corresponds to the total induction. The condition of current continuity gives∇ ·−→K = σδ∇ ·−→E = 0.

For an axisymmetric configuration the problem is independent of the toroidal angle ζ. Furthermore, the variation
of the toroidal ux in time, ∂ΦT /∂t, is neglected during startup, and so no poloidal currents are induced on the
vacuum vessel. In this case, axisymmetry and the solenoidal property of the magnetic field, ∇ · −→B = 0, imply a
single toroidal component of the vector potential. In vector form the potential is given in terms of the poloidal ux
ΦP by

−→
A = (2π)−1ΦP∇ζ. In the same way, the surface current vector is expressed in terms of the single toroidal

component KT by
−→
K = hζKT∇ζ, where the scale factor hζ = |∂−→r /∂ζ| corresponds to the radial distance to the

symmetry axis in cylindrical coordinates. Now, the magnetic induction is calculated in terms of the poloidal ux by
−→
B = ∇×−→A = − (2π)−1∇ζ ×∇ΦP .

This equation, combined with the previous one and the assumption of an uniform distribution over the small thickness
δ, leads to a relation between the toroidal surface current density and the local value of the poloidal ux:

KT = −σδ (2πhζ)−1 (∂ΦP /∂t) .
In general, the vector potential at any point −→r not lying on the surface S0 is given by the extension of the Biot

Savart law
−→
A (−→r ) = µ0

4π

ZZ
S0

−→
K (−→r 0)
|−→r −−→r 0|d

2r0 +
−→
A ext (

−→r ) ,



where
−→
A ext stands for the external sources. The differential element of area in the coordinate surface ρ that

coincides with the surface layer of current is d2r (ρ) = hζd` (θ) dζ. Using the properties |∇ζ|2 = h−2ζ and
∇ζ ·∇ζ 0 = cos ¡ζ − ζ 0

¢
/
¡
hζhζ0

¢
the equivalent integral relation for the ux function is

ΦP (
−→r ) = µ0

I
KT (

−→r 0)
*
πhζhζ0 cos

¡
ζ − ζ 0

¢
|−→r −−→r 0|

+
ζ0
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¡
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¢
+Φext (

−→r ) ,

where h. . .iζ = (2π)
−1 R

(. . .) dζ. This defines the Green’s function for the axisymmetric Ampère’s law,
G (−→r ,−→r 0) = πhζhζ0 cos ¡ζ − ζ0

¢
/ |−→r −−→r 0|®

ζ0 . The Green’s function integral for ΦP automatically satisfies the
boundary condition bn ·∇ΦP = −2πµ0hζKT , which corresponds to the discontinuity of the magnetic induction across

the surface layer of current, bn × h−→Bi
S
= µ0

−→
K (bn is the unit normal). Finally, taking the derivative with respect to

time and using the relation between KT and ∂ΦP /∂t provided by Faraday’s law, the excitation of Foucault currents
in a thin axisymmetric shell is governed by the equation

2πhζ
σδ

KT (
−→r ) = −µ0

I
∂KT (

−→r 0)
∂t

G (−→r ,−→r 0) d` ¡θ0¢− ∂Φext (
−→r )

∂t
. (1)

This equation has local terms depending on the shell resistivity and nonlocal terms depending on mutual inductance
effects between diverse regions of the current distribution. The total toroidal current induced in the shell is
IT =

R 2π
0
KT (θ) hθ dθ, where the scale factor hθ = |∂−→r /∂θ|.

SPECTRAL REPRESENTATION OF THE ETE VACUUM VESSEL

In order to apply effectively the onedimensional integral equation for the eddy currents obtained in the previous
section, it is necessary to use a coordinate system coinciding with the contour of the axisymmetric shell. The centerline
of the ETE vacuum vessel has an exact sectionally (piecewise) continuous representation shown on the left side of
Figure 1 as a continuous line.

FIGURE 1. The centerline of the ETE vacuum vessel (continuous line) and its spectral fit (dashed line) are shown on the left
side. The white circles correspond to the center of anges used to measure the eddy current distribution, and the black circle on the
spectral fit corresponds to the inner edge of the vessel centerline. The adjusted θ − ω mapping is shown on the right side.

In accordance with Figure 1 the sectional continuous representation specifies the cylindrical coordinates R (ω),
Z (ω) as functions of the poloidal angle ω in a pseudotoroidal coordinate system centered in the crosssection of the
vacuum vessel. Now, the centerline of the vacuum vessel can be represented approximately by a truncated spectral
expansion in Chebyshev polynomials:

R (θ) = C0 + C1 cos θ − a
XN

n=1
Cn [1− Tn (cos θ)]

Z (θ) = EV sin θ

·
C1 − a

XN

n=1
CnUn−1 (cos θ)

¸
The coefficients C0 and C1 are determined by the constraints R (0) = R0 + a, R (π) = R0 − a, where R0 and



a are the major and minor radii of the toroidal vessel, respectively. The elongation EV and the remaining spectral
coefficients C2, C3, . . . CN can be determined by a leastsquares fitting procedure. In the case of the ETE vacuum
vessel a reasonable spectral representation can be obtained including only elongation, triangularity and quadrangularity
(squareness) corrections. The leastsquares calculation gives EV = 2.164, C0 = 0.320, C1 = 0.287, C2 = 0.0981
and C3 = −0.110, and the resulting spectral fit is show on the left side of Figure 1 as a dashed line. The leastsquares
fitting procedure includes also a determination of the best mapping between the pseudotoroidal angle coordinate ω
and the poloidal angle θ in the local curvilinear coordinate system. The adjusted θ− ω mapping is shown on the right
side of Figure 1.

FOURIER COMPONENTS OF THE SURFACE CURRENT

The integral equation (1) for the Foucault currents in a thin shell that was derived in the second section of this paper
can be solved by expansion ofKT (θ, t) in a Fourier series

KT (θ, t) =
1

2πhθ (θ)

Ã
IT (t) +

∞X
n=1

In (t) cosnθ

!
. (2)

The total toroidal current owing in the axisymmetric shell is IT (t) according to the definition in the second section.
Substitution of the Fourier series (2) in the integral equation (1) gives
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σδhθ (θ)
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where h. . .iθ = (2π)−1
R
(. . .) dθ. Limiting the Fourier coefficients to order `, the cosmθ harmonics of this equation

result in a set of `+ 1 linear equations for IT (t) and In (t) that can be written in the form

R0mIT (t) + L0m
∂IT
∂t

+
X̀
n=1

µ
RnmIn (t) + Lnm

∂In
∂t

¶
= − ∂

∂t
hΦext (θ, t) cosmθiθ ,

where Rnm and Lnm are resistance and mutual inductance coefficients defined by: Rnm =
1

σδ

¿
hζ (θ)

hθ (θ)
cosnθ cosmθ

À
θ

Lnm = µ0

G
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®
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®
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These definitions and the symmetry of the Green’s function show that Rnm and Lnm are symmetric matrices.
In general, the external ux is the sum of the magnetizing ux ΦM (t) produced by an ideal transformer and the

uxes Φk (
−→r , t) produced by sets of poloidal field coils:

Φext (
−→r , t) = ΦM (t) +

X
k

Φk (
−→r , t) = ΦM (t) + µ0

X
k

Ik (t) [Gk (
−→r ,Rk, Zk) +Gk (−→r ,Rk,−Zk)] ,

where it was assumed that the external coils are formed by pairs of coils placed symmetrically with respect
to the equatorial plane, and connected in series. Defining the mutual inductance coefficients, Lkm =
µ0 h[Gk (θ) +Gk (−θ)] cosmθiθ, the equations for the Fourier coefficients of the surface current density may be
written (δnm is the Kronecker delta)

R0mIT (t) + L0m
∂IT
∂t

+
X̀
n=1

µ
RnmIn (t) + Lnm

∂In
∂t

¶
= −∂ΦM

∂t
δ0m −

X
k

Lkm
∂Ik
∂t

. (3)

In this way the problem of Foucault currents induced in a thin axisymmetric shell is reduced to the solution of a set
of circuitlike coupled linear equations for the Fourier components of the surface current density. The calculation of
the mutual coefficients Lnm requires some attention due to selffield effects related to the singular character of the
Green’s function [2].

SOLUTION OF THE CIRCUIT MODEL AND RESULTS

It is now an easy matter to solve the set of circuit equations (3) for the Fourier components of the Foucault current.



Introducing Laplace transformation in time and denoting the complex frequency by s, the equations for IT (s) and
In (s) (n = 1, 2, . . . , `) can be written in matrix form, [[R+ sL]] [I (s)] = −s [Φ (s)], where [[R+ sL]] is a symmetric
matrix. The initial values of the magnetizing sources are taken equal to zero at startup. The solution of the circuit model
is obtained simply by multiplying the vector of electromotive forces−s [Φ (s)] by the inverse matrix [[R+ sL]]−1 and
then calculating the inverse Laplace transform. One advantage of the method is that the inverse matrix depends only
on the geometry of the problem, which is independent of the detailed excitation.

The resistance and inductance components scale as A/
¡
EV σδ

¢
and µ0R0 [ln (8A)− 2], respectively, where

EV = 2.164 is the elongation, A = 1.346 is the aspect ratio and R0 = 0.348m is the major radius of the vacuum
vessel. The conductivity of Inconel at room temperature is σ ∼= 7.8 × 105 (Ω ·m)−1. Now, the thickness of the
vacuum vessel is∆V = 6.35mm for both the torispherical head and the external cylindrical wall, and δV = 1.00mm
for the internal cylindrical wall. In the calculation of Rnm the θ integration is split in two sections to account for the
change in the wall thickness, and an average thickness δ ∼= 4.59mm is defined taking into account the length of the
two segments. The average surface current scales asKT ∼ AIT / (2πR0).

Calculations of the eddy current behavior in space and time were performed and compared with measurements
taken in the ETE vacuum vessel. Satisfactory results were obtained including only three harmonics, ` = 3, in the
calculations. Figure 2 shows the distribution of the surface current at the instant τ0/4 that corresponds approximately
to the maximum negative value of the induced current (τ0 = µ0σδR0/A

∼= 1.16ms sets the time scale). From the
plot in Figure 2 and the mapping θ − ω shown in Figure 1 one verifies that the eddy current distribution has a peak at
ω ∼ 113◦, θ ∼ 127◦, near the inside corner of the vacuum vessel contour and in accordance with rough measurements
of the distribution excited by the ohmic heating system in ETE. The bar chart in Figure 2 compares the relative currents
measured over several sectors of the vacuum chamber (light gray bars) with the calculated values (dark bars).

FIGURE 2. The calculated eddy current distribution in the vacuum vessel is shown on the left at the instant of maximum current
induced during tests. The measured and calculated distributions are compared on the right.

Based on these results the operation of a pair of compensation coils is being optimized to apply a vertical field
bias during plasma breakdown in ETE. In addition, the eddy current distribution is being used to model the vacuum
vessel effects in plasma discharge simulations during the early phase. In these zerodimensional simulations the
external inductance of the low aspect ratio ETE plasma and the mutual inductance coefficients between the plasma,
the vacuum vessel and the external poloidal field coils are calculated in accordance with a previous work [3].
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